
COBET Framework

Further work
Patternize conventional data race and atomicity violations
Many bug definitions used for standard lock-based concurrency bug detection
techniques such as data race or atomicity violations can be represented or
approximated to COBET patterns.

Apply to Application-level programs
Large-size application programs such as HTTP daemon or DBMS systems suffer
similar difficulties to Linux kernel programming. We plan to apply COBET
approach and COBET bug patterns to find bugs in these domain and compare
the result to the case of Linux kernel.
Enhance PDL to include semantic conditions specification
Currently, PDL only specifies syntactic aspects of bug patterns. We plan to
extend PDL to associate essential semantic conditions to improve usability of
COBET framework.

COBET:
Effective COncurrency Bug dETector Framework for OS Kernel
Hong,Shin (advised by Prof. Moonzoo Kim)

hongshin@kaist.ac.kr
http://pswlab.kaist.ac.kr

KAIST
Computer
Science

Introduction

Experiments

Pattern-specific
pattern-matching

Lock guard
condition
analysis

Alias
analysis

Path analysis

AST generator

Semantic Analysis Engine

Bug
pattern#1
detector

Bug
pattern#2
detector

 Overview

Bug
pattern#1
description

COBET Synthesizer

Bug
pattern#2
description

 Five bug patterns with semantic conditions

Answer to the reporting detected bug
from the corresponding Linux maintainer

Detected bug of “Misused Test and Test-and-Set” pattern

 Bug Detection Results on Device Drivers and Network Modules
To demonstrate applicability, we applied 5 pattern detectors to Linux device drivers and network modules

 Evaluation of Semantic

Analysis Techniques

To demonstrate the effectiveness of
COBET semantic analyses, we measured
the false alarm reduction rate through
the semantic analyses and the additional
time cost.

The result shows additional analyses
reduce false alarms and the time cost
were not burdensome.

 Bug Detection Result on File Systems

We applied the five COBET bug pattern detectors to the seven Linux file systems. The result

shows the number of alarms was modest. (5 bug patterns X 7 file systems result 42 warnings)

A relatively new file systems btrfs have several bugs and COBET approach effectively

detected these bugs.

Error scenario

1: void wait_func() {

2: loop(flag != true) {

3: /* no barrier */

4: }

5: }

6: void notify_func() {

8: flag = true ;

9: }

2: (flag != true)
2: (flag != true)

2: (flag != true)
2: (flag != true)
2: (flag != truee)

:
:

8: flag = true

• lock guard conditions at line2 and line5 must be exclusive
• flag at line2 and flag at line8 may be aliasing

Busy-waiting without barrier

unnecessary spinning

Misused Test and Test-and-Set
1: void func1() {

2: if(condition(data)) {
3: lock(m);
4: /* no if(condition(data))...*/
5: ...
6: unlock(m);
7: }
8: }

8: void func2() {

9: write data ;

10: }

Error scenario

2: if(condition(data))

3: lock($m)

6: write data

• lock guard conditions at line2 and line9 must be exclusive.
• data at line3 and data at line9 may be aliasing.

condition(data)
might not be true

1: void init_thread() {

2: thread_run(child,arg);

3: arg->data = setting ;

4: }

5: void child(arg) {

6: parameter = arg->data ;

7: }

Unsynchronized communication at thread creation

Error scenario

2: thread_run(child,arg)

3: arg->data = setting

6: paramter = arg->data

• lock guard conditions at line2, line3 and line6 must be exclusive
• arg->data at line3 and arg->data at line6 may be aliasing

arg->data is invalid

Error scenario

Using atomic instructions in non-atomic ways
1: void func1() {

2: atomic_inc(count) ;

3: if (atomic_read(count) > c){

...

4: }

5: }

6: void func2() {

7: atomic_inc(count) ;

8: }

2: atomic_inc(count)

3:(atomic_read(count) > c)

7: atomic_inc(count)

• lock guard conditions at line2 and line7 must be exclusive
• count at line3 and count at line7 may be aliasing

Error scenario

Waiting already terminated thread
1: void child() {

2: loop(!kthread_should_stop()){

3: if (err)

4: break ;

5: }

6: /*no kthread_should_stop() checking*/

7: }

8: void parent() {

9: $th = kthread_run(child);

10: kthread_stop($th) ;

11: }

2: (!kthread_should_stop())
:

3: (err == true)
4: break;
--- child terminates ---

9: th = kthread_run(child...)

:
:
:

10: kthread_stop(th) Deadlockcount might be
unexpected value

Most concurrency errors are caused by
unintended interferences among concurrently
executing multiple threads. Therefore, to detect
a concurrency bug accurately, the concurrency
bug pattern should be modeled with multiple
code patterns each of which captures a specific
code to be executed on each thread.
Furthermore, it is necessary to check whether
these multiple code patterns are possible to be
executed concurrently at the same time, or not.

For this purpose, COBET provide the pattern
description language (PDL) to describe the
syntactic features of multiple code patterns.
And the COBET semantic analysis engine
enables the feasibility test, which is a salient
feature of COBET compared to other pattern-
based bug detection techniques.

 Pattern Detector Construction

Brief Grammar of PDL

The construction process has the three steps:

1. A user specifies the syntactic characteristics of a
bug pattern in PDL.

2.The COBET synthesizer translates the PDL
description to the corresponding bug pattern
detector template code. The template code
performs the syntactic pattern matching and calls
sem_cond_checking() to check the semantic
conditions.

3. The user fills out sem_cond_checking() function
with the semantic condition checking routine to
complete the bug pattern detector.

 Motivation
As multi-core hardware becomes increasingly
powerful and popular, operating systems
(OSes) such as Linux utilize the cutting-edge
multithreaded techniques heavily to enhance
performance.

However, current analysis techniques and
tools for concurrent programs are not yet
mature enough to support OS developers in
a practical manner due to the unique
characteristics of the kernel programming. In
particular, the following three obstacles
hinder analysis of the concurrent behavior of
OSes.

• Various customized synchronization
primitives
OS developers sometimes implement their
own synchronization primitives. Concurrency
bug detection tools for standard
synchronization mechanisms do not
recognize these customized synchronization
mechanisms and produce imprecise results.

• Limitations of lock-based bug
detections
Most available bug detection techniques
focus on low-level data races through the
analysis of binary lock usages. However,
OSes exploit various synchronization
mechanisms for performance. In addition,
high-level data race and atomicity
violations are more difficult to detect than
low-level data races.

•Lack of scalability
A dynamic analysis often fails to uncover
hidden concurrency bugs due to the
exponential number of possible interleaving
scenarios.

 Approach
We developed the COncurrency Bug
dETector (COBET) framework that utilizes
bug patterns augmented with semantic
conditions.

A salient contribution of COBET is that it
utilizes semantic information to define and
detect bug patterns in a more precise
manner while sustaining scalability, as
previous research works utilizing syntactic
patterns often raise many false alarms and
examine relatively simple patterns.

As a user can define various concurrent bug
patterns in a precise manner, COBET can
detect real concurrency bugs that cannot
be detected with conventional lock-based
concurrency bug detection tools.

Statistics on synchronization statments
in the Linux kernel 2.6.30.4

PDL description Augmented semantic conditions

COBET bug description of “Misused Test and Test-and-Set” pattern

1a: pattern 1 {
2a: fun $f1 {
3a: if $cond {
4a: lock $l;
5a: \{ if $cond { }}
6a: unlock $l;
7a: }}}

1b: pattern 2 {
2b: fun $f2 {
3b: write $w ;
4b: }}

1:BOOL sem_cond_checking(bug_instance bi) {
2: if(is_lockset_exclusive(bi._3a,bi._3b) == FALSE)
3: return FALSE;
4: if(is_shared_var(bi._w) == FALSE)
5: return FALSE;
7: if(may_alias(bi._cond, bi._w) == FALSE)
8: return FALSE;
9: return TRUE; }

A static analysis, on the other hand,
cannot analyze the OS code accurately
due to its complex code and data
structure. the monolithic structure of OSes
severely hinder modular analyses.

	슬라이드 번호 1

