COBET:

Fffective COncurrency Bug dETector Framework for OS Kernel
Hong,Shin (advised by Prof. Moonzoo Kim)

Introduction COBET Framework v Overview

Most concurrency errors are caused by For this purpose, COBET provide the pattern

r \ \ unintended interferences among concurrently description language (PDL) to describe the
v M . . Bug Bug executing multiple threads. Therefore, to detect syntactic features of multiple code patterns.
Ot|Vat|On #2 00 a concurrency bug accurately, the concurrency And the COBET semantic analysis engine
pattern#1 | | pattern : . L . :
\ " hard 5 . o L L bug pattern should be modeled with multiple enables the feasibility test, which is a salient
5 WU-EoR NECuEe loeconues Inaessiaglhy description| |description code patterns each of which captures a specific ~ feature of COBET compared to other pattern-
powerful and popular, operating systems \ J \ J

: - : code to be executed on each thread. based bug detection techniques.
(OSes) such as Linux utilize the cutting-edge : Furthermore, it is necessary to check whether
multithreaded techniques heavily to enhance COBET SyntheS|Zer these multiple code patterns are possible to be

performance.

executed concurrently at the same time, or not.
However, current analysis techniques and r \B o \ (N \ .
tools for concurrent programs are not yet ® 5tomic instructiosn ™ Conditional Variable ug Bug ‘/ Pattem DeteCtOl’ COHS’[I’UC’[IOI’]
mature enough to support OS developers in = Memory barrier B RW semaphore pattern#1 | pattern#2 | ©® @ .
a practical manner due to the unique ® RW spin lock ™ Thread operation 1 detector detector The construction process has the three steps: Bug-pattern ::= Sub-pattern”
characteristics of the kernel programming. In | Semaphore H Spin lock .': 7 = ’ 1. A user specifies the syntactic characteristics of a Sub-pattern = pattern constant {Function™}
particular, the following three obstacles Mutex ; bug pattern in PDL. Function := fun Identifier {Stmt"}

hinder analysis of the concurrent behavior of

OSes. Statistics on synchronization statments Pattern —specific
In the Linux kernel 2.6.30.4

2The COBET synthesizer translates the PDL Stmt:= if Scond{Stmt} *
, description to the corresponding bug pattern | i€ Scond {Stmt'} else {Stmt]
pattern—matchlng detector template code. The template code | Loop SC"”‘??{S_““” | break ; |
performs the syntactic pattern matching and calls | Lock Identifier; | unlock Identifier;

sem_cond_checking() to check the semantic | read dentll 1er; | | erte+ dentifier
conditions | call Identifier Sargs; | \ {Stmt*}

3. The user fills out sem_cond_checkingQ) function | igentifier == consiant | $<name>

with the semantic condition checking routine to Brief Grammar of PDL
complete the bug pattern detector.

e Various customized synchronization

primitives A static analysis, on the other hand,
cannot analyze the OS code accurately
due to its complex code and data
structure. the monolithic structure of OSes
severely hinder modular analyses.

o . Semantic Analysis Engine
OS developers sometimes implement their

own synchronization primitives. Concurrency
bug detection tools for standard
synchronization mechanisms do not
recognize these customized synchronization

Lock guard

condition Alias

analysis

mechanisms and produce imprecise results. ‘/ analyS|S C PDL description Augmented semantic conditions A
T ApprOaCh la: pattern 1 { 1b: pattern 2 { 1:BOOL sem cond_checking(bug instance bi) {

e Limitations of lock-based bug h lvei 2a: fun $f1 { ob: fun $F2 { 2: if(is_lockset_exclusive(bi._3a,bi._3b) == FALSE)
detections We developed the COncurrency Bug Path ana YSIS 3a: if $cond { 3b: write $w ; 3 return FALSE;
Most et el cleeion ek dETector (COBET) framework that utilizes 4a: lock $1; 4b: }} gf 'Ié;ﬁFihli‘;ﬁgE‘_’ar(b'-—W) = =)

OSt avallable bug detection tecnnigues py atterns augmented with semantic Sa: \{ if $cond { }} - R _ __
focus on low-level data races through the cor?ditlioons. ° AST generator 6a: unlock $I; 18 DO E RS ot BlafD) = 53
analysis of binary lock usages. However, . o , ,) 7a: }}} 9: return TRUE: }
OSes exploit various synchronization A salient contribution of COBET is that it N y
mechanisms for performance. In addition, Utilizes semantic information to define and COBET bug description of “Misused Test and Test-and-Set” pattern

high-level data race and atomicity detect bug patterns in a more precise

violations are more difficult to detect than Manner while sustaining scalability, as v Five bug patterﬂs Wlth Semaﬂtic COnditiOﬂS

low—level data races. previous research works utilizing syntactic
atterns often raise many false alarms and : : S :
oL ack of scalabilit patter P y Misused Test and Test-and-Set Unsynchronized communication at thread creation
y examine relatively simple patterns. 1: void funcl() { 8: void func2() {
. - . 1: id init_thread 5: id child

A dynamic analysis often fails to uncover As a user can define various concurrent bug 2: if(condition(data)) { 9: write data ; void nttthread0 void entldtaray £

. . . 3: lock ; - : - . — .
hidden concurrency bugs due to the patterns in a precise manner, COBET can v e iRconditioncdatayy. s 107 3 2: thread_run(child,arg); 6: parameter = arg->data ;
exponential number of possible interleaving detect real concurrency bugs that cannot . amiockm: 3: arg->data = setting ; 7: 3
scenarios. be detected with conventional lock-based Y 4: 3

concurrency bug detection tools. "« lock guard conditions at 1ine2 and line9 must be exclusive.
» data at 1ine3 and data at 1ine9 may be aliasing. » lock guard conditions at 1ine2, line3 and line6 must be exclusive

» arg->data at Iine3 and arg->data at 1ine6 may be aliasing
Error scenario

2: if(condition(data)) Error scenario
L 6: write data)
3: lock($m) 2: thread_run(child,arg) |
— 6: paramter = arg->data

. . Popdhitiongdata) 5: arg->data = setting \llf rarg—>data is invalid
v Bug Detection Result on File Systems ——

We applied the five COBET bug pattern detectors to the seven Linux file systems. The result | Busy-waiting without barrier Using atomic instructions in non-atomic ways || Waiting already terminated thread
shows the number of alarms was modest. (5 bug patterns X 7 file systems result 42 warnings) | 1: void wait funcO { 6: void notify_funcO { 12 void funcl() { 6: void Tuncz() { L= vord ehildO o 8: wvoid parent() {
. . . - -) .) 2 loop(Tkthread_should_stop()){) B N)
A relatively new file systems btrfs have several bugs and COBET approach effectively | 2: toop(flag = true) { 8: flag = true ; e atomic. inoccounts 7: atomic_inc(count) ; . ifp(err) g 9: $th = kthread_run(child);
detected these bugs. j }/ no barrier */ 9: } 3: if (atomic read(count) > c){ 8: } 4- break : 10: kthread_stop($th) ;
) L. 5: } -
btrfs ext4d nfs proc | reiserfs | sysfs udf vis total 5: } 4 3 6: /*no kthread_should stop() checking*/ He
(11KL) | (28KL) | (20KL) | (8KL) | (27KL) | (3KL) | (9KL) | (48KL) | (193KL) .. . B
Busy-waiting 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 * lock guard conditions at 1ine2 and 1ine5 must be exclusive =
without barrier » flag at Iine2 and flag at 1ine8 may be aliasing » lock guard conditions at line2 and Iine7 must be exclusive Error scenario
Misused test and 30 [3/0 | 4/0 | 2/0 370 /0 [2/0 | 10/0 || 28/0 g—— ¢ count at Tines and count at Tine7 may be aliasing 9: th = kthread_run(child...)
test-and-set 2: (flag !'= true) Error scenario 5- (1kthread should)
Unsync. communication || 2/1 0/0 0/0 0/0 0/0 0/0 | 0/0 0/0 2/1 2: (flag != true) - (Yidthread_should_stopO)
at thread creation 2: (flag 1= true) > 8: flag = true 2: atomic_inc(count) - 3: (err = true)
Using atomic inst. 4/0 0/0 2/0 0/0 2/0 0/0 0/0 1/0 9/0 2: (flag != true) U5 EiEilE ne(@Euis) 4: break; _
in non-atomic ways 2: (flag 1= tr?ee) v 3:(atomic_read(count) > c) ~7- ohtld terminates ---)
Waiting already 3/3 0/0 0/0 0/0 0/0 0/0 1 0/0 0/0 3/3 : count might be 10: kthread_stop(th) { Deadlock
terminated thread unnecessary spinning unexpected value - N
Total 12/4 3/0 6/0 3/0 1/0 1/0 | 2/0 11/0 1274
v Eva|uatIOn Of Sema ﬂtIC Syntactic analysis | Syntactic analysis | Syntactic analysis | Syntactic analysis Fu rther WO rk
(single (multiple + path analysis + path analysis . . M . .
Analysis Techniques boattern) sub-patterns) A I v'Patternize conventional data race and atomicity violations
+ alias analysis C .
Detec- | Time [Deotec- | Time [Deotem T Time | Detecs T Time Many bug definitions used for standard lock-based concurrency bug detection
To demonstrate the effectiveness of tons | (sec) | tioms | (sec) | tioms | (sec) | fions | (seo) techniques such as data race or atomicity violations can be represented or
: Busy-waiting 7 0.82 2 0.92 0 1.2 0 1.22 .
COBET semantic analy.ses, we measured | .- approximated to COBET patterns.
the false alarm reduction rate through Misused test and 51 0.67 36 253 39 151 73 137 .
the semantic analyses and the additional | _test-and-set ‘/App|y to Appllcatlon—level programs
s GO Unsync. communication 2 0.86 2 1.00 2 1.28 2 1.31 i i i
- at thread creation Large-size application programs such as HTTP daemon or DBMS systems suffer
- Usi tomic inst. 12 0.70 9 0.86 9 1.44 9 1.45 I - e - - .
The result shows additional analyses in nom-atomic ways similardifficulties to Linux kernel programming. We plan to apply COBET
reduce false alarms and the time cost Waiting already 3 0.64 3 0.74 3 1.01 3 1.21 approach and COBET bug patterns to find bugs IN these domain and compare
were not burdensome. terminated thread '
— = — —— —— ——| the result to the case of Linux kernel.

v'Enhance PDL to include semantic conditions specification
Currently, PDL only specifies syntactic aspects of bug patterns. We plan to

: : : extend PDL to associate essential semantic conditions to improve usability of
v Bug Detection Results on Device Drivers and Network Modules C)é)BET o work | | ' 10 Improve usabifity

To demonstrate applicability, we applied 5 pattern detectors to Linux device drivers and network modules

Answer to the reporting detected bug

Detected bug of “Misused Test and Test-and-Set” pattern . . . :
Device drivers Network modules from the corresponding Linux maintainer
bluetooth | ieee1394 mtd atm ax25 | netfilter | rds(ib) Total // Matching with pattern 1
(HKL) (25KL) (15KL) (BKL) (TKL) (Q?KL) (QKL) (1[}{}KL) éifvoid br2684_push(atm_vcc *atmvcc, sk_buff *skb) {

R VOI0- 0T 07070 07070 D0/ A2A0/0 - /070) /070 3. if (List_empty(4brdev->brvces)) { that seems pretty reasonable. 1 dont be-
without barrier ' - ’

- — _ — — 4f: write_lock_irq(&devs_lock) ;
Misused tes 0/0/0 4/1/0 0/0/0 6/3 5 5/1/0 21/7/3 ,
Misused test o/ AR AL | 5t Lish_dsl (brder-hr26e_dere) live you would see this race in practice given the

- - : write_unlock_1irq evs_loc ;

Unsyne. communication 0/0/0 0/0/0 1/1/1 0/0/0 | 0/0/0 0/0/0 0/0/0 1/1/1 o -
L me, communical v e B I I e I B (R // Watching with pattorn 2 . | serialization from the userspace code for startup

_ — :int br _regvcclatm_vcc *atmvcc, __user *arg
US]Hg atomic inst. 0/0/0 0/0/0 0/0/0 |f 0/0/0 | 0/0/0 2/1/1 4/2/1 6/3/2 22: .
in non-atomic ways B N I i S N e Lock. trqadere_lock) and shutdown. hmue;:&ﬂ this isnt a reason not do

alting already dg: ... ‘
terminated thread 52: list_add(&brvcc->brvcecs, &brdev->brvccs) ; thiﬂgﬂ EGTTECtzy' e
Total 1/0/0 4/1/0 1/1/1 1/1/1 | 6/3/1 19/2/2 11/3/1 | 42/11/6 6g: write_unlock_irq(&devs_lock);

KAIST ~
5 PROVABLE hongshin@kaist.ac.kr

C t N
S:iT:c: . SOFTWARE LAB http://pswlab.kaist.ac.kr

	슬라이드 번호 1

