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λS λR

한장 요약

- 왜?
- 무엇을?
- 어떻게?

다단계 언어 단계 없는 언어

다단계 프로그램을 분석하기 위해

단계제거 변환을

정의하고 실행의미를 보존함을 증명했다
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Intro

- 왜?
- 무엇을?
- 어떻게?
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다단계 프로그램?

이런 다단계가 아니라......
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다단계 프로그램

“실행 결과가 다음단계 실행을 위한 프로그램” 인 프로그램

1단계
프로그램

2단계
프로그램

. . . .실행 실행
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다단계 프로그램의 용도

#define Square(x) (x*x)

int main(){
return Square(3);

}

C macro : 2단계

특정 입력에 특화된 빠른 코드를 만들 때
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실행
int main(){
return 3*3;

}
실행 9



다단계 프로그램 안전한가?

#define Square(x) (x*x)

int main(){
return Square(1+2);

}

원하는 것과 다르게 파싱되는 결과물

실행 int main(){
return 1+2*1+2;

}

C macro
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다단계 프로그램 안전한가?
#define LOG(msg) printf(“%d:%s\n”,pid,msg)
void main(){
    //int pid = 0;
    LOG(“some error”);
}

실행

변수의 바인딩이 올바르지 않음
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void main(){
    //int pid = 0;
    printf(“%d;%s”,pid,“some error”);
}

실행
error: 'pid' 
undeclared 



어떻게 안전하게 만들까?

#define Square(x) ((x)*(x))

int main(){
return Square(1+2);

}

입력변수를 괄호로 싼다

혹은

A Modal Analysis of Staged Computation

Rowan Davies

and

Frank Pfenning

Carnegie Mellon University

We show that a type system based on the intuitionistic modal logic S4 provides an expressive
framework for specifying and analyzing computation stages in the context of typed λ-calculi and
functional languages. We directly demonstrate the sense in which our λ→e -calculus captures stag-
ing, and also give a conservative embedding of Nielson & Nielson’s two-level functional language
in our functional language Mini-ML , thus proving that binding-time correctness is equivalent to
modal correctness on this fragment. In addition, Mini-ML can also express immediate evaluation
and sharing of code across multiple stages, thus supporting run-time code generation as well as
partial evaluation.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—lambda calculus and related systems, modal logic, proof theory; F.3.3 [Log-
ics and Meanings of Programs]: Studies of ProgramConstructs—type structure; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Languages—partial evaluation; D.3.3
[Programming Languages]: Language Constructs and Features

General Terms: Languages,Theory

Additional Key Words and Phrases: Staged computation, binding times, run-time code generation

1. INTRODUCTION

Dividing a computation into separate stages is a common informal technique for
the derivation of algorithms [Jørring and Scherlis 1986]. For example, instead of
directly matching strings against a regular expression we may first compile the reg-
ular expression into a finite automaton and then execute the same automaton on
different strings. Because significant efficiency gains can often be realized, there is

This is an extended and revised version of the conference paper [Davies and Pfenning 1996].
This work was sponsored in part by the National Science Foundation under grant CCR-9619832
and by the Advanced Research Projects Agency (ARPA) under Order No. 8313.
The first author was partly supported by a Hackett Studentship from the University of Western
Australia. Part of this work was completed during a visit by the first author to BRICS
(Basic Research in Computer Science, Centre of the Danish National Research Foundation).
Address: 5000 Forbes Ave, Pittsburgh, Pennsylvannia 15213-3891

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
grantedwithout fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

Syntax를 안전하게 만든다

파싱이 이상하게 되지 않도록
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어떻게 안전하게 만들까?

조심스럽게 프로그래밍

혹은

A Polymorphic Modal Type System for Lisp-Like Multi-Staged
Languages ∗

Ik-Soon Kim
Seoul National University
iskim@ropas.snu.ac.kr

Kwangkeun Yi
Seoul National University
kwang@ropas.snu.ac.kr

Cristiano Calcagno
Imperial College
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Abstract
This article presents a polymorphic modal type system and its prin-
cipal type inference algorithm that conservatively extend ML by
all of Lisp’s staging constructs (the quasi-quotation system). The
combination is meaningful because ML is a practical higher-order,
impure, and typed language, while Lisp’s quasi-quotation system
has long evolved complying with the demands from multi-staged
programming practices. Our type system supports open code, un-
restricted operations on references, intentional variable-capturing
substitution as well as capture-avoiding substitution, and lifting
values into code, whose combination escaped all the previous sys-
tems.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features; F.3.3 [Logics
and Meanings of Programs]: Studies of Program Constructs—Type
structure

General Terms Languages, Theory

Keywords Multi-staged languages, Type systems, Polymorphic
types, Modal types, ML, Let-polymorphism, Quasi-quotation,
Lisp, Scheme, Record type, Type inference

1. Introduction
Staged computation, which explicitly divides a computation into
separate stages, is a unifying framework for the existing program-
generation systems. Partial evaluation [12, 5], runtime code genera-
tion [9, 19, 15, 16], function inlining, and macro expansion [23, 10]
are all instances of staged computation. The stage levels can be ar-
bitrarily large, determined by the nesting depth of program gen-
erations: stage 0 is for conventional non-staged programs, and a
program of stage 0 generates a program of stage 1 that generates a
program of stage 2, and so on.

The key aspect of multi-staged languages is to have code tem-
plates (program fragments) as first-class objects. Code templates

∗ This work is partially supported by Brain Korea 21 Project of Korea
Ministry of Education and Human Resources, by IT Leading R&D Support
Project of Korea Ministry of Information and Communication, and by
Microsoft Research Asia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’06 January 11–13, Charleston, South Carolina, USA.
Copyright c© 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

are freely passed, stored, composed with code of other stages, and
executed when appropriate.

This article presents a polymorphic type system and its prin-
cipal type inference algorithm that conservatively extend ML by
all of Lisp’s multi-staged programming constructs. The combina-
tion is meaningful because ML is a practical higher-order, im-
pure, and typed language, while Lisp has long evolved to com-
ply with the demands from multi-staged programming practices.
Lisp’s staged programming features are all included in its so-called
“quasi-quote” system. This system supports open code templates,
imperative operations with code templates, intentional variable-
capturing substitution (at the sacrifice of alpha-equivalence) as well
as capture-avoiding substitution (as “gensym” does) of free vari-
ables in open code templates, and lifting values into code templates.
Our type system supports all of these features, allowing a program-
mer both type safety as well as the expressiveness that has so far
been only available using the quasi-quotation operators in Lisp (or
Scheme).

Contributions Our contributions are as follows.

• We present a polymorphic type system for a higher-order multi-
staged language that supports all features of Lisp’s quasi-quote
programming:

Open code: code with free variables can be constructed and
composed without restrictions.
Imperative operations with open code: open code can be
stored, dereferenced, and overwritten without restrictions.
Intentional variable-capturing substitution at stages > 0
(“unhygienic” macros): hence alpha-equivalence at stages
> 0 (i.e., during code definitions and expansions) is not
preserved. This sacrifice, which may be unacceptable to a
purely functional language, is a feature that Lisp’s quasi-
quote programmers have long enjoyed for efficiency and
programming convenience.
Capture-avoiding substitution at stages > 0 (“hygienic”
macros [14]): the target language has an explicit new-name
generation construct like Lisp’s “gensym.” Programmers
use this construct to rename bound variables at runtime in
order to avoid an unintentional variable-capture.

• Our type system conservatively extends ML with Lisp’s quasi-
quote system. ML’s let-polymorphism with the value restriction
is conservatively extended for imperative staged programs that
handle open code templates as first-class objects. Also, ML’s
let-polymorphism is orthogonally combined with a record poly-
morphism to allow a single open code template in multiple en-
vironments.

• We present the type system’s principal type inference algo-
rithm.

Type으로 (매크로 확장 전에)
미리 잡아낸다

바인딩이 이상하게 되지 않도록
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#define LOG(msg) printf(“%d:%s\n”,pid,msg)
void main(){
    int pid = 0;
    LOG(“some error”);
}



어떻게 더욱 안전하게 만들까?

Semantics Types Static Analysis

?
A Modal Analysis of Staged Computation

Rowan Davies

and

Frank Pfenning

Carnegie Mellon University

We show that a type system based on the intuitionistic modal logic S4 provides an expressive
framework for specifying and analyzing computation stages in the context of typed λ-calculi and
functional languages. We directly demonstrate the sense in which our λ→e -calculus captures stag-
ing, and also give a conservative embedding of Nielson & Nielson’s two-level functional language
in our functional language Mini-ML , thus proving that binding-time correctness is equivalent to
modal correctness on this fragment. In addition, Mini-ML can also express immediate evaluation
and sharing of code across multiple stages, thus supporting run-time code generation as well as
partial evaluation.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—lambda calculus and related systems, modal logic, proof theory; F.3.3 [Log-
ics and Meanings of Programs]: Studies of ProgramConstructs—type structure; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Languages—partial evaluation; D.3.3
[Programming Languages]: Language Constructs and Features

General Terms: Languages,Theory

Additional Key Words and Phrases: Staged computation, binding times, run-time code generation

1. INTRODUCTION

Dividing a computation into separate stages is a common informal technique for
the derivation of algorithms [Jørring and Scherlis 1986]. For example, instead of
directly matching strings against a regular expression we may first compile the reg-
ular expression into a finite automaton and then execute the same automaton on
different strings. Because significant efficiency gains can often be realized, there is
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Abstract
This article presents a polymorphic modal type system and its prin-
cipal type inference algorithm that conservatively extend ML by
all of Lisp’s staging constructs (the quasi-quotation system). The
combination is meaningful because ML is a practical higher-order,
impure, and typed language, while Lisp’s quasi-quotation system
has long evolved complying with the demands from multi-staged
programming practices. Our type system supports open code, un-
restricted operations on references, intentional variable-capturing
substitution as well as capture-avoiding substitution, and lifting
values into code, whose combination escaped all the previous sys-
tems.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features; F.3.3 [Logics
and Meanings of Programs]: Studies of Program Constructs—Type
structure

General Terms Languages, Theory

Keywords Multi-staged languages, Type systems, Polymorphic
types, Modal types, ML, Let-polymorphism, Quasi-quotation,
Lisp, Scheme, Record type, Type inference

1. Introduction
Staged computation, which explicitly divides a computation into
separate stages, is a unifying framework for the existing program-
generation systems. Partial evaluation [12, 5], runtime code genera-
tion [9, 19, 15, 16], function inlining, and macro expansion [23, 10]
are all instances of staged computation. The stage levels can be ar-
bitrarily large, determined by the nesting depth of program gen-
erations: stage 0 is for conventional non-staged programs, and a
program of stage 0 generates a program of stage 1 that generates a
program of stage 2, and so on.

The key aspect of multi-staged languages is to have code tem-
plates (program fragments) as first-class objects. Code templates
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are freely passed, stored, composed with code of other stages, and
executed when appropriate.

This article presents a polymorphic type system and its prin-
cipal type inference algorithm that conservatively extend ML by
all of Lisp’s multi-staged programming constructs. The combina-
tion is meaningful because ML is a practical higher-order, im-
pure, and typed language, while Lisp has long evolved to com-
ply with the demands from multi-staged programming practices.
Lisp’s staged programming features are all included in its so-called
“quasi-quote” system. This system supports open code templates,
imperative operations with code templates, intentional variable-
capturing substitution (at the sacrifice of alpha-equivalence) as well
as capture-avoiding substitution (as “gensym” does) of free vari-
ables in open code templates, and lifting values into code templates.
Our type system supports all of these features, allowing a program-
mer both type safety as well as the expressiveness that has so far
been only available using the quasi-quotation operators in Lisp (or
Scheme).

Contributions Our contributions are as follows.

• We present a polymorphic type system for a higher-order multi-
staged language that supports all features of Lisp’s quasi-quote
programming:

Open code: code with free variables can be constructed and
composed without restrictions.
Imperative operations with open code: open code can be
stored, dereferenced, and overwritten without restrictions.
Intentional variable-capturing substitution at stages > 0
(“unhygienic” macros): hence alpha-equivalence at stages
> 0 (i.e., during code definitions and expansions) is not
preserved. This sacrifice, which may be unacceptable to a
purely functional language, is a feature that Lisp’s quasi-
quote programmers have long enjoyed for efficiency and
programming convenience.
Capture-avoiding substitution at stages > 0 (“hygienic”
macros [14]): the target language has an explicit new-name
generation construct like Lisp’s “gensym.” Programmers
use this construct to rename bound variables at runtime in
order to avoid an unintentional variable-capture.

• Our type system conservatively extends ML with Lisp’s quasi-
quote system. ML’s let-polymorphism with the value restriction
is conservatively extended for imperative staged programs that
handle open code templates as first-class objects. Also, ML’s
let-polymorphism is orthogonally combined with a record poly-
morphism to allow a single open code template in multiple en-
vironments.

• We present the type system’s principal type inference algo-
rithm.
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그런데 직접 분석은 어렵다

분석할 코드가 
불분명하다코드가 값이다

코드가 돌아다닌다
+

코드가 만들어진다
+

 만들어진 코드가 실행된다

=⇒ =⇒
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아이디어 :
변환을 통해 단계를 제거하자

변환

 다단계 
프로그램

단계없는 
프로그램

13



좋은 변환이 있으면 : 
직접 분석하지 않아도 된다

 다단계 
프로그램

단계없는 
프로그램

분석

검증

14



변환의 조건 : 
실행의미를 보존해야

 다단계 
프로그램

단계없는 
프로그램

실행

실행

=
15



매크로 펴면 되는거 아냐?

16

#define Square(x) (x*x)

int main(){
return Square(3);

}

실행
int main(){
return 3*3;

}



단순히 매크로를 펴는 것과는 다르다

17

(define (f n) 
    (if (= n 1)
        (`(x+,(f (n-1))))
        `x))

(define x 2)
(eval (f (get)))

보통은 여러 단계의 실행이 서로 얽혀있음

   n=1        =>   “x”
   n=2        =>   “x+x”
   n=3        =>   “x+x+x”

   get=1        =>   2
   get=2        =>   4
   get=3        =>   6



Translation

- 왜?
- 무엇을?
- 어떻게?
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Abstract
This article presents a polymorphic modal type system and its prin-
cipal type inference algorithm that conservatively extend ML by
all of Lisp’s staging constructs (the quasi-quotation system). The
combination is meaningful because ML is a practical higher-order,
impure, and typed language, while Lisp’s quasi-quotation system
has long evolved complying with the demands from multi-staged
programming practices. Our type system supports open code, un-
restricted operations on references, intentional variable-capturing
substitution as well as capture-avoiding substitution, and lifting
values into code, whose combination escaped all the previous sys-
tems.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features; F.3.3 [Logics
and Meanings of Programs]: Studies of Program Constructs—Type
structure

General Terms Languages, Theory

Keywords Multi-staged languages, Type systems, Polymorphic
types, Modal types, ML, Let-polymorphism, Quasi-quotation,
Lisp, Scheme, Record type, Type inference

1. Introduction
Staged computation, which explicitly divides a computation into
separate stages, is a unifying framework for the existing program-
generation systems. Partial evaluation [12, 5], runtime code genera-
tion [9, 19, 15, 16], function inlining, and macro expansion [23, 10]
are all instances of staged computation. The stage levels can be ar-
bitrarily large, determined by the nesting depth of program gen-
erations: stage 0 is for conventional non-staged programs, and a
program of stage 0 generates a program of stage 1 that generates a
program of stage 2, and so on.

The key aspect of multi-staged languages is to have code tem-
plates (program fragments) as first-class objects. Code templates
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are freely passed, stored, composed with code of other stages, and
executed when appropriate.

This article presents a polymorphic type system and its prin-
cipal type inference algorithm that conservatively extend ML by
all of Lisp’s multi-staged programming constructs. The combina-
tion is meaningful because ML is a practical higher-order, im-
pure, and typed language, while Lisp has long evolved to com-
ply with the demands from multi-staged programming practices.
Lisp’s staged programming features are all included in its so-called
“quasi-quote” system. This system supports open code templates,
imperative operations with code templates, intentional variable-
capturing substitution (at the sacrifice of alpha-equivalence) as well
as capture-avoiding substitution (as “gensym” does) of free vari-
ables in open code templates, and lifting values into code templates.
Our type system supports all of these features, allowing a program-
mer both type safety as well as the expressiveness that has so far
been only available using the quasi-quotation operators in Lisp (or
Scheme).

Contributions Our contributions are as follows.

• We present a polymorphic type system for a higher-order multi-
staged language that supports all features of Lisp’s quasi-quote
programming:

Open code: code with free variables can be constructed and
composed without restrictions.
Imperative operations with open code: open code can be
stored, dereferenced, and overwritten without restrictions.
Intentional variable-capturing substitution at stages > 0
(“unhygienic” macros): hence alpha-equivalence at stages
> 0 (i.e., during code definitions and expansions) is not
preserved. This sacrifice, which may be unacceptable to a
purely functional language, is a feature that Lisp’s quasi-
quote programmers have long enjoyed for efficiency and
programming convenience.
Capture-avoiding substitution at stages > 0 (“hygienic”
macros [14]): the target language has an explicit new-name
generation construct like Lisp’s “gensym.” Programmers
use this construct to rename bound variables at runtime in
order to avoid an unintentional variable-capture.

• Our type system conservatively extends ML with Lisp’s quasi-
quote system. ML’s let-polymorphism with the value restriction
is conservatively extended for imperative staged programs that
handle open code templates as first-class objects. Also, ML’s
let-polymorphism is orthogonally combined with a record poly-
morphism to allow a single open code template in multiple en-
vironments.

• We present the type system’s principal type inference algo-
rithm.

이 논문에서 다루는 언어를 위한 변환을 찾자

19



λS λR

큰 그림

다단계 언어 단계 없는 언어 + 레코드

- 코드는 함수로
- 코드 실행은 함수호출로
- 변수 바인딩은 레코드로

20



문법

다단계 e := λx.e | ee | x | ‘e | , e | run e

21

단계없는 e := λx.e | ee | x | {} | e{x = e} | e.x



문법

다단계 e := λx.e | ee | x | ‘e | , e | run e

22

e := λx.e | ee | x | {} | e{x = e} | e.x

특별하지 않은 레코드 연산들

단계없는



문법

다단계 e := λx.e | ee | x | ‘e | , e | run e

23

e := λx.e | ee | x | {} | e{x = e} | e.x

다단계 코드 관련된 연산들

단계없는



실행 의미

Syntax e := λx.e | ee | x | ‘e | , e | run e

코드를 정의한다
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실행 의미

Syntax e := λx.e | ee | x | ‘e | , e | run e

1 + 1 /∈ Value

코드를 정의한다
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실행 의미

Syntax e := λx.e | ee | x | ‘e | , e | run e

‘(1 + 1) ∈ Value

1 + 1 /∈ Value

코드를 정의한다
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실행 의미

Syntax e := λx.e | ee | x | ‘e | , e | run e

코드를 실행한다
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실행 의미

Syntax e := λx.e | ee | x | ‘e | , e | run e

run ‘(1 + 1) 2

코드를 실행한다
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변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

run ‘(1 + 1) 2
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변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

run ‘(1 + 1) 2

(λρ.1 + 1) {}
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변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

run ‘(1 + 1) 2

(λρ.1 + 1) {}

코드정의는 함수로 변환
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변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

run ‘(1 + 1) 2

(λρ.1 + 1) {}

코드 실행은 함수 호출로 변환

32



변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

run ‘(1 + 1) 2

(λρ.1 + 1) {} 2

=
33



실행의미

Syntax e := λx.e | ee | x | ‘e | , e | run e

코드를 다른 코드에 끼워넣는다

34

‘(1+, ‘1) ‘(1 + 1)



실행의미

Syntax e := λx.e | ee | x | ‘e | , e | run e

, 안의 표현식을 실행하고 
결과 코드를 다른 코드에 끼워넣는다

‘(1+, ((λx.x) ‘1)) ‘(1 + 1)
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‘(1+, ‘1) ‘(1 + 1)



변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

‘(1+, ((λx.x) ‘1))

(λh.λp.1 + hp) ((λx.x) λρ.1)

‘(1 + 1)
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변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

‘(1+, ((λx.x) ‘1))

(λh.λp.1 + hp) ((λx.x) λρ.1)

‘(1 + 1)

37

,안의 표현식은 코드 밖으로 이동시켜 실행한다



변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

‘(1+, ((λx.x) ‘1))

(λh.λp.1 + hp) ((λx.x) λρ.1)

‘(1 + 1)

실행 결과를 제자리에 돌려놓을 장치들
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변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

‘(1+, ((λx.x) ‘1))

(λh.λp.1 + hp) ((λx.x) λρ.1)

‘(1 + 1)

코드자체는 여전히 함수로 변환
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변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

‘(1 + 1)‘(1+, ((λx.x) ‘1))

(λh.λp.1 + hp) ((λx.x) λρ.1) λρ.1 + 1

=
40



실행의미

Syntax e := λx.e | ee | x | ‘e | , e | run e

코드는 자유변수를 가질 수 있다

‘(x+ 1) ∈ Value
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변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

‘(x+ 1)

λρ.ρ.x+ 1

∈ Value
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변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

‘(x+ 1)

λρ.ρ.x+ 1

∈ Value

자유변수는 레코드 접근으로 변환
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변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

‘(x+ 1) ∈ Value

λρ.ρ.x+ 1 ∈ Value
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실행 의미

Syntax e := λx.e | ee | x | ‘e | , e | run e

‘(λx.x)‘(λx., ‘x)

자유변수는 코드가 조립될때 해소된다
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변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

‘(λx.x)‘(λx., ‘x)

46

(λh.λρ.λx.h (ρ{x = x})) λρ.ρ.x



변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

‘(λx.x)‘(λx., ‘x)

47

(λh.λρ.λx.h (ρ{x = x})) λρ.ρ.x



변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

‘(λx.x)‘(λx., ‘x)
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(λh.λρ.λx.h (ρ{x = x})) λρ.ρ.x



변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

‘(λx.x)‘(λx., ‘x)

변수의 바인딩은 레코드를 통해 전달된다

49

(λh.λρ.λx.h (ρ{x = x})) λρ.ρ.x



변환

Syntax e := λx.e | ee | x | ‘e | , e | run e

‘(λx.x)‘(λx., ‘x)

λρ.λx.x
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(λh.λρ.λx.h (ρ{x = x})) λρ.ρ.x



변환의 수학적 정의
let a = λρ.ρ·x

b = (λh.λρ.λx.λy.(h (ρ + {x = x, y = y}))+y)a
in (b {}) 1 1
R−→
let b = (λh.λρ.λx.λy.(h (ρ + {x = x, y = y}))+y)(λρ.ρ·x)
in (b {}) 1 1
R−→
let b = λρ.λx.λy.((λρ.ρ·x) (ρ + {x = x, y = y}))+y
in (b {}) 1 1
A−→
let b = λρ.λx.λy.(((ρ + {x = x, y = y})·x))+y
in (b {}) 1 1
A−→
let b = λρ.λx.λy.x+y
in (b {}) 1 1
R−→ ((λρ.λx.λy.x+y) {}) 1 1
R−→ (λx.λy.x+y) 1 1
R−→ (λy.1+y) 1
R−→ 1+1
R−→ 2

Figure 6. Reduction trace of the example expression after the

unstaging translation. Admin-reducible terms are underlined.

let a = box x
b = box (λx.λy.(unbox a)+y)

in (run b) 1 1
0−→

let b = box (λx.λy.(unbox (box x))+y)
in (run b) 1 1

0−→
let b = box (λx.λy.x+y)
in (run b) 1 1

0−→ (run (box (λx.λy.x+y))) 1 1
0−→ (λx.λy.x+y) 1 1
0−→ (λy.1+y) 1
0−→ 1+1
0−→ 2

Figure 7. Reduction trace of the example staged expression. Any

term in this trace translates to a term in Figure 6.

pressions (see rules TABS and TFIX). A box expression starts a

new environment by putting a fresh environment variable on top of

the environment stack. Dually, unbox chops off the topmost envi-

ronment from the stack.

The notion of a context was informally discussed in the previous

section. A context ((λh.[·]) e) corresponds to unbox e where e
is the translation of the unboxed expression e. Contexts are used

for putting the unboxed expression outside their enclosing box

expressions so that the evaluation order is preserved. The variable

that a context binds, that is h, is a fresh variable that replaces the

original unbox in the translation. Note that there may be multiple

unbox expressions at a particular stage, e.g. box (unbox (e1) +
unbox (e2)). Therefore, contexts are defined recursively, as in

((λh.κ) e). This way, a context is able to keep information about

multiple unbox expressions in a stage, while still preserving their

relative order of evaluation. Also note that unbox expressions can

be nested, e.g. box (box (unbox (unbox e))). The translation,

Definitions

Environment r ::= {} | ρ | r+{x=x}
Environment Stack R ::= ⊥ | R, r

Context κ ::= ((λh.[·]) e) | ((λh.κ) e)
Context Stack K ::= ⊥ | K, κ

Environment Lookup

r(x) =

8
<

:

x if r = r�+{x=x}
r�(x) if r = r�+{y= } and x �= y
ρ·x if r = ρ

Term Translation

(TCON) R � i �→ (i,⊥)

(TVAR) R, r � x �→ (r(x),⊥)

(TABS)
R, r+{x=x} � e �→ (e, K)

R, r � λx.e �→ (λx.e, K)

(TFIX)
R, r+{x=x}+{f=f} � e �→ (e, K)

R, r � fix f x.e �→ (fix f x.e, K)

(TAPP)
R � e1 �→ (e1, K1) R � e2 �→ (e2, K2)

R � e1 e2 �→ (e1 e2, K1 �� K2)

(TBOX)
R, ρ � e �→ (e, (K, κ))

R � box e �→ (κ[λρ.e], K)
new ρ

R, ρ � e �→ (e,⊥)

R � box e �→ (λρ.e,⊥)
new ρ

(TUNB)
R � e �→ (e, K)

R, r � unbox e �→ (h r, (K, (λh.[·]) e))
new h

(TRUN)
R � e �→ (e, K)

R � run e �→ (let h = e in (h{}), K)
new h

Context Stack Merge Operator

⊥ �� K = K
K �� ⊥ = K

(K1, κ1) �� (K2, κ2) = (K1 �� K2), (κ1[κ2])

Figure 8. Translation from λS to λR.

therefore, produces context stacks instead of a single context. Each

context in the stack corresponds to a stage. The contexts in a stack

are positioned in the following order: The context of the stage that

is immediately lower than the current stage is positioned at the

rightmost side; stages go lower (i.e. get closer to 0) as we go left.

The stage closest to 0 is located at the leftmost side of the stack.

New contexts in the translation are populated by unbox ex-

pressions (see rule TUNB). A fresh hole variable is also gener-

ated as a placeholder for the unboxed expression. The translation

of a box expression pulls the topmost context from the stack and

puts the translated expression inside this context. The translation

of expressions with no subexpressions (e.g. variables) results in

empty context stacks, since there are no unbox contained within

the expression. The translation of expressions with single subex-

pressions (e.g. abstraction) simply threads the context stack that

results from the translation of the subexpression. The translation

of expressions with more than one subexpression (e.g. application)

merges the context stacks resulting from the translation of subex-

pressions. A context stack merge operation respects the order of

appearance, hence serves the preservation of the order of evalua-

tion.

When discussing the translation informally, we converted run
to a function application, but in the formal definition we translate

to a let-expression. The difference is merely syntactic; we want to

let a = λρ.ρ·x
b = (λh.λρ.λx.λy.(h (ρ + {x = x, y = y}))+y)a

in (b {}) 1 1
R−→
let b = (λh.λρ.λx.λy.(h (ρ + {x = x, y = y}))+y)(λρ.ρ·x)
in (b {}) 1 1
R−→
let b = λρ.λx.λy.((λρ.ρ·x) (ρ + {x = x, y = y}))+y
in (b {}) 1 1
A−→
let b = λρ.λx.λy.(((ρ + {x = x, y = y})·x))+y
in (b {}) 1 1
A−→
let b = λρ.λx.λy.x+y
in (b {}) 1 1
R−→ ((λρ.λx.λy.x+y) {}) 1 1
R−→ (λx.λy.x+y) 1 1
R−→ (λy.1+y) 1
R−→ 1+1
R−→ 2

Figure 6. Reduction trace of the example expression after the

unstaging translation. Admin-reducible terms are underlined.

let a = box x
b = box (λx.λy.(unbox a)+y)

in (run b) 1 1
0−→

let b = box (λx.λy.(unbox (box x))+y)
in (run b) 1 1

0−→
let b = box (λx.λy.x+y)
in (run b) 1 1

0−→ (run (box (λx.λy.x+y))) 1 1
0−→ (λx.λy.x+y) 1 1
0−→ (λy.1+y) 1
0−→ 1+1
0−→ 2

Figure 7. Reduction trace of the example staged expression. Any

term in this trace translates to a term in Figure 6.

pressions (see rules TABS and TFIX). A box expression starts a

new environment by putting a fresh environment variable on top of

the environment stack. Dually, unbox chops off the topmost envi-

ronment from the stack.

The notion of a context was informally discussed in the previous

section. A context ((λh.[·]) e) corresponds to unbox e where e
is the translation of the unboxed expression e. Contexts are used

for putting the unboxed expression outside their enclosing box

expressions so that the evaluation order is preserved. The variable

that a context binds, that is h, is a fresh variable that replaces the

original unbox in the translation. Note that there may be multiple

unbox expressions at a particular stage, e.g. box (unbox (e1) +
unbox (e2)). Therefore, contexts are defined recursively, as in

((λh.κ) e). This way, a context is able to keep information about

multiple unbox expressions in a stage, while still preserving their

relative order of evaluation. Also note that unbox expressions can

be nested, e.g. box (box (unbox (unbox e))). The translation,

Definitions

Environment r ::= {} | ρ | r+{x=x}
Environment Stack R ::= ⊥ | R, r

Context κ ::= ((λh.[·]) e) | ((λh.κ) e)
Context Stack K ::= ⊥ | K, κ

Environment Lookup

r(x) =

8
<

:

x if r = r�+{x=x}
r�(x) if r = r�+{y= } and x �= y
ρ·x if r = ρ

Term Translation

(TCON) R � i �→ (i,⊥)

(TVAR) R, r � x �→ (r(x),⊥)

(TABS)
R, r+{x=x} � e �→ (e, K)

R, r � λx.e �→ (λx.e, K)

(TFIX)
R, r+{x=x}+{f=f} � e �→ (e, K)

R, r � fix f x.e �→ (fix f x.e, K)

(TAPP)
R � e1 �→ (e1, K1) R � e2 �→ (e2, K2)

R � e1 e2 �→ (e1 e2, K1 �� K2)

(TBOX)
R, ρ � e �→ (e, (K, κ))

R � box e �→ (κ[λρ.e], K)
new ρ

R, ρ � e �→ (e,⊥)

R � box e �→ (λρ.e,⊥)
new ρ

(TUNB)
R � e �→ (e, K)

R, r � unbox e �→ (h r, (K, (λh.[·]) e))
new h

(TRUN)
R � e �→ (e, K)

R � run e �→ (let h = e in (h{}), K)
new h

Context Stack Merge Operator

⊥ �� K = K
K �� ⊥ = K

(K1, κ1) �� (K2, κ2) = (K1 �� K2), (κ1[κ2])

Figure 8. Translation from λS to λR.

therefore, produces context stacks instead of a single context. Each

context in the stack corresponds to a stage. The contexts in a stack

are positioned in the following order: The context of the stage that

is immediately lower than the current stage is positioned at the

rightmost side; stages go lower (i.e. get closer to 0) as we go left.

The stage closest to 0 is located at the leftmost side of the stack.

New contexts in the translation are populated by unbox ex-

pressions (see rule TUNB). A fresh hole variable is also gener-

ated as a placeholder for the unboxed expression. The translation

of a box expression pulls the topmost context from the stack and

puts the translated expression inside this context. The translation

of expressions with no subexpressions (e.g. variables) results in

empty context stacks, since there are no unbox contained within

the expression. The translation of expressions with single subex-

pressions (e.g. abstraction) simply threads the context stack that

results from the translation of the subexpression. The translation

of expressions with more than one subexpression (e.g. application)

merges the context stacks resulting from the translation of subex-

pressions. A context stack merge operation respects the order of

appearance, hence serves the preservation of the order of evalua-

tion.

When discussing the translation informally, we converted run
to a function application, but in the formal definition we translate

to a let-expression. The difference is merely syntactic; we want to

let a = λρ.ρ·x
b = (λh.λρ.λx.λy.(h (ρ + {x = x, y = y}))+y)a

in (b {}) 1 1
R−→
let b = (λh.λρ.λx.λy.(h (ρ + {x = x, y = y}))+y)(λρ.ρ·x)
in (b {}) 1 1
R−→
let b = λρ.λx.λy.((λρ.ρ·x) (ρ + {x = x, y = y}))+y
in (b {}) 1 1
A−→
let b = λρ.λx.λy.(((ρ + {x = x, y = y})·x))+y
in (b {}) 1 1
A−→
let b = λρ.λx.λy.x+y
in (b {}) 1 1
R−→ ((λρ.λx.λy.x+y) {}) 1 1
R−→ (λx.λy.x+y) 1 1
R−→ (λy.1+y) 1
R−→ 1+1
R−→ 2

Figure 6. Reduction trace of the example expression after the

unstaging translation. Admin-reducible terms are underlined.

let a = box x
b = box (λx.λy.(unbox a)+y)

in (run b) 1 1
0−→

let b = box (λx.λy.(unbox (box x))+y)
in (run b) 1 1

0−→
let b = box (λx.λy.x+y)
in (run b) 1 1

0−→ (run (box (λx.λy.x+y))) 1 1
0−→ (λx.λy.x+y) 1 1
0−→ (λy.1+y) 1
0−→ 1+1
0−→ 2

Figure 7. Reduction trace of the example staged expression. Any

term in this trace translates to a term in Figure 6.

pressions (see rules TABS and TFIX). A box expression starts a

new environment by putting a fresh environment variable on top of

the environment stack. Dually, unbox chops off the topmost envi-

ronment from the stack.

The notion of a context was informally discussed in the previous

section. A context ((λh.[·]) e) corresponds to unbox e where e
is the translation of the unboxed expression e. Contexts are used

for putting the unboxed expression outside their enclosing box

expressions so that the evaluation order is preserved. The variable

that a context binds, that is h, is a fresh variable that replaces the

original unbox in the translation. Note that there may be multiple

unbox expressions at a particular stage, e.g. box (unbox (e1) +
unbox (e2)). Therefore, contexts are defined recursively, as in

((λh.κ) e). This way, a context is able to keep information about

multiple unbox expressions in a stage, while still preserving their

relative order of evaluation. Also note that unbox expressions can

be nested, e.g. box (box (unbox (unbox e))). The translation,

Definitions

Environment r ::= {} | ρ | r+{x=x}
Environment Stack R ::= ⊥ | R, r

Context κ ::= ((λh.[·]) e) | ((λh.κ) e)
Context Stack K ::= ⊥ | K, κ

Environment Lookup

r(x) =

8
<

:

x if r = r�+{x=x}
r�(x) if r = r�+{y= } and x �= y
ρ·x if r = ρ

Term Translation

(TCON) R � i �→ (i,⊥)

(TVAR) R, r � x �→ (r(x),⊥)

(TABS)
R, r+{x=x} � e �→ (e, K)

R, r � λx.e �→ (λx.e, K)

(TFIX)
R, r+{x=x}+{f=f} � e �→ (e, K)

R, r � fix f x.e �→ (fix f x.e, K)

(TAPP)
R � e1 �→ (e1, K1) R � e2 �→ (e2, K2)

R � e1 e2 �→ (e1 e2, K1 �� K2)

(TBOX)
R, ρ � e �→ (e, (K, κ))

R � box e �→ (κ[λρ.e], K)
new ρ

R, ρ � e �→ (e,⊥)

R � box e �→ (λρ.e,⊥)
new ρ

(TUNB)
R � e �→ (e, K)

R, r � unbox e �→ (h r, (K, (λh.[·]) e))
new h

(TRUN)
R � e �→ (e, K)

R � run e �→ (let h = e in (h{}), K)
new h

Context Stack Merge Operator

⊥ �� K = K
K �� ⊥ = K

(K1, κ1) �� (K2, κ2) = (K1 �� K2), (κ1[κ2])

Figure 8. Translation from λS to λR.

therefore, produces context stacks instead of a single context. Each

context in the stack corresponds to a stage. The contexts in a stack

are positioned in the following order: The context of the stage that

is immediately lower than the current stage is positioned at the

rightmost side; stages go lower (i.e. get closer to 0) as we go left.

The stage closest to 0 is located at the leftmost side of the stack.

New contexts in the translation are populated by unbox ex-

pressions (see rule TUNB). A fresh hole variable is also gener-

ated as a placeholder for the unboxed expression. The translation

of a box expression pulls the topmost context from the stack and

puts the translated expression inside this context. The translation

of expressions with no subexpressions (e.g. variables) results in

empty context stacks, since there are no unbox contained within

the expression. The translation of expressions with single subex-

pressions (e.g. abstraction) simply threads the context stack that

results from the translation of the subexpression. The translation

of expressions with more than one subexpression (e.g. application)

merges the context stacks resulting from the translation of subex-

pressions. A context stack merge operation respects the order of

appearance, hence serves the preservation of the order of evalua-

tion.

When discussing the translation informally, we converted run
to a function application, but in the formal definition we translate

to a let-expression. The difference is merely syntactic; we want to
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변환의 수학적 정의
let a = λρ.ρ·x

b = (λh.λρ.λx.λy.(h (ρ + {x = x, y = y}))+y)a
in (b {}) 1 1
R−→
let b = (λh.λρ.λx.λy.(h (ρ + {x = x, y = y}))+y)(λρ.ρ·x)
in (b {}) 1 1
R−→
let b = λρ.λx.λy.((λρ.ρ·x) (ρ + {x = x, y = y}))+y
in (b {}) 1 1
A−→
let b = λρ.λx.λy.(((ρ + {x = x, y = y})·x))+y
in (b {}) 1 1
A−→
let b = λρ.λx.λy.x+y
in (b {}) 1 1
R−→ ((λρ.λx.λy.x+y) {}) 1 1
R−→ (λx.λy.x+y) 1 1
R−→ (λy.1+y) 1
R−→ 1+1
R−→ 2

Figure 6. Reduction trace of the example expression after the

unstaging translation. Admin-reducible terms are underlined.

let a = box x
b = box (λx.λy.(unbox a)+y)

in (run b) 1 1
0−→

let b = box (λx.λy.(unbox (box x))+y)
in (run b) 1 1

0−→
let b = box (λx.λy.x+y)
in (run b) 1 1

0−→ (run (box (λx.λy.x+y))) 1 1
0−→ (λx.λy.x+y) 1 1
0−→ (λy.1+y) 1
0−→ 1+1
0−→ 2

Figure 7. Reduction trace of the example staged expression. Any

term in this trace translates to a term in Figure 6.

pressions (see rules TABS and TFIX). A box expression starts a

new environment by putting a fresh environment variable on top of

the environment stack. Dually, unbox chops off the topmost envi-

ronment from the stack.

The notion of a context was informally discussed in the previous

section. A context ((λh.[·]) e) corresponds to unbox e where e
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let a = λρ.ρ·x
b = (λh.λρ.λx.λy.(h (ρ + {x = x, y = y}))+y)a

in (b {}) 1 1
R−→
let b = (λh.λρ.λx.λy.(h (ρ + {x = x, y = y}))+y)(λρ.ρ·x)
in (b {}) 1 1
R−→
let b = λρ.λx.λy.((λρ.ρ·x) (ρ + {x = x, y = y}))+y
in (b {}) 1 1
A−→
let b = λρ.λx.λy.(((ρ + {x = x, y = y})·x))+y
in (b {}) 1 1
A−→
let b = λρ.λx.λy.x+y
in (b {}) 1 1
R−→ ((λρ.λx.λy.x+y) {}) 1 1
R−→ (λx.λy.x+y) 1 1
R−→ (λy.1+y) 1
R−→ 1+1
R−→ 2

Figure 6. Reduction trace of the example expression after the

unstaging translation. Admin-reducible terms are underlined.

let a = box x
b = box (λx.λy.(unbox a)+y)

in (run b) 1 1
0−→

let b = box (λx.λy.(unbox (box x))+y)
in (run b) 1 1

0−→
let b = box (λx.λy.x+y)
in (run b) 1 1

0−→ (run (box (λx.λy.x+y))) 1 1
0−→ (λx.λy.x+y) 1 1
0−→ (λy.1+y) 1
0−→ 1+1
0−→ 2

Figure 7. Reduction trace of the example staged expression. Any

term in this trace translates to a term in Figure 6.

pressions (see rules TABS and TFIX). A box expression starts a

new environment by putting a fresh environment variable on top of

the environment stack. Dually, unbox chops off the topmost envi-

ronment from the stack.

The notion of a context was informally discussed in the previous

section. A context ((λh.[·]) e) corresponds to unbox e where e
is the translation of the unboxed expression e. Contexts are used

for putting the unboxed expression outside their enclosing box

expressions so that the evaluation order is preserved. The variable

that a context binds, that is h, is a fresh variable that replaces the

original unbox in the translation. Note that there may be multiple

unbox expressions at a particular stage, e.g. box (unbox (e1) +
unbox (e2)). Therefore, contexts are defined recursively, as in

((λh.κ) e). This way, a context is able to keep information about

multiple unbox expressions in a stage, while still preserving their

relative order of evaluation. Also note that unbox expressions can

be nested, e.g. box (box (unbox (unbox e))). The translation,

Definitions

Environment r ::= {} | ρ | r+{x=x}
Environment Stack R ::= ⊥ | R, r

Context κ ::= ((λh.[·]) e) | ((λh.κ) e)
Context Stack K ::= ⊥ | K, κ

Environment Lookup

r(x) =

8
<

:

x if r = r�+{x=x}
r�(x) if r = r�+{y= } and x �= y
ρ·x if r = ρ

Term Translation

(TCON) R � i �→ (i,⊥)

(TVAR) R, r � x �→ (r(x),⊥)

(TABS)
R, r+{x=x} � e �→ (e, K)

R, r � λx.e �→ (λx.e, K)

(TFIX)
R, r+{x=x}+{f=f} � e �→ (e, K)

R, r � fix f x.e �→ (fix f x.e, K)

(TAPP)
R � e1 �→ (e1, K1) R � e2 �→ (e2, K2)

R � e1 e2 �→ (e1 e2, K1 �� K2)

(TBOX)
R, ρ � e �→ (e, (K, κ))

R � box e �→ (κ[λρ.e], K)
new ρ

R, ρ � e �→ (e,⊥)

R � box e �→ (λρ.e,⊥)
new ρ

(TUNB)
R � e �→ (e, K)

R, r � unbox e �→ (h r, (K, (λh.[·]) e))
new h

(TRUN)
R � e �→ (e, K)

R � run e �→ (let h = e in (h{}), K)
new h

Context Stack Merge Operator

⊥ �� K = K
K �� ⊥ = K

(K1, κ1) �� (K2, κ2) = (K1 �� K2), (κ1[κ2])

Figure 8. Translation from λS to λR.

therefore, produces context stacks instead of a single context. Each

context in the stack corresponds to a stage. The contexts in a stack

are positioned in the following order: The context of the stage that

is immediately lower than the current stage is positioned at the

rightmost side; stages go lower (i.e. get closer to 0) as we go left.

The stage closest to 0 is located at the leftmost side of the stack.

New contexts in the translation are populated by unbox ex-

pressions (see rule TUNB). A fresh hole variable is also gener-

ated as a placeholder for the unboxed expression. The translation

of a box expression pulls the topmost context from the stack and

puts the translated expression inside this context. The translation

of expressions with no subexpressions (e.g. variables) results in

empty context stacks, since there are no unbox contained within

the expression. The translation of expressions with single subex-

pressions (e.g. abstraction) simply threads the context stack that

results from the translation of the subexpression. The translation

of expressions with more than one subexpression (e.g. application)

merges the context stacks resulting from the translation of subex-

pressions. A context stack merge operation respects the order of

appearance, hence serves the preservation of the order of evalua-

tion.

When discussing the translation informally, we converted run
to a function application, but in the formal definition we translate

to a let-expression. The difference is merely syntactic; we want to

let a = λρ.ρ·x
b = (λh.λρ.λx.λy.(h (ρ + {x = x, y = y}))+y)a

in (b {}) 1 1
R−→
let b = (λh.λρ.λx.λy.(h (ρ + {x = x, y = y}))+y)(λρ.ρ·x)
in (b {}) 1 1
R−→
let b = λρ.λx.λy.((λρ.ρ·x) (ρ + {x = x, y = y}))+y
in (b {}) 1 1
A−→
let b = λρ.λx.λy.(((ρ + {x = x, y = y})·x))+y
in (b {}) 1 1
A−→
let b = λρ.λx.λy.x+y
in (b {}) 1 1
R−→ ((λρ.λx.λy.x+y) {}) 1 1
R−→ (λx.λy.x+y) 1 1
R−→ (λy.1+y) 1
R−→ 1+1
R−→ 2

Figure 6. Reduction trace of the example expression after the

unstaging translation. Admin-reducible terms are underlined.

let a = box x
b = box (λx.λy.(unbox a)+y)

in (run b) 1 1
0−→

let b = box (λx.λy.(unbox (box x))+y)
in (run b) 1 1

0−→
let b = box (λx.λy.x+y)
in (run b) 1 1

0−→ (run (box (λx.λy.x+y))) 1 1
0−→ (λx.λy.x+y) 1 1
0−→ (λy.1+y) 1
0−→ 1+1
0−→ 2

Figure 7. Reduction trace of the example staged expression. Any

term in this trace translates to a term in Figure 6.

pressions (see rules TABS and TFIX). A box expression starts a

new environment by putting a fresh environment variable on top of

the environment stack. Dually, unbox chops off the topmost envi-

ronment from the stack.

The notion of a context was informally discussed in the previous

section. A context ((λh.[·]) e) corresponds to unbox e where e
is the translation of the unboxed expression e. Contexts are used

for putting the unboxed expression outside their enclosing box

expressions so that the evaluation order is preserved. The variable

that a context binds, that is h, is a fresh variable that replaces the

original unbox in the translation. Note that there may be multiple

unbox expressions at a particular stage, e.g. box (unbox (e1) +
unbox (e2)). Therefore, contexts are defined recursively, as in

((λh.κ) e). This way, a context is able to keep information about

multiple unbox expressions in a stage, while still preserving their

relative order of evaluation. Also note that unbox expressions can

be nested, e.g. box (box (unbox (unbox e))). The translation,

Definitions

Environment r ::= {} | ρ | r+{x=x}
Environment Stack R ::= ⊥ | R, r

Context κ ::= ((λh.[·]) e) | ((λh.κ) e)
Context Stack K ::= ⊥ | K, κ

Environment Lookup

r(x) =

8
<

:

x if r = r�+{x=x}
r�(x) if r = r�+{y= } and x �= y
ρ·x if r = ρ

Term Translation

(TCON) R � i �→ (i,⊥)

(TVAR) R, r � x �→ (r(x),⊥)

(TABS)
R, r+{x=x} � e �→ (e, K)

R, r � λx.e �→ (λx.e, K)

(TFIX)
R, r+{x=x}+{f=f} � e �→ (e, K)

R, r � fix f x.e �→ (fix f x.e, K)

(TAPP)
R � e1 �→ (e1, K1) R � e2 �→ (e2, K2)

R � e1 e2 �→ (e1 e2, K1 �� K2)

(TBOX)
R, ρ � e �→ (e, (K, κ))

R � box e �→ (κ[λρ.e], K)
new ρ

R, ρ � e �→ (e,⊥)

R � box e �→ (λρ.e,⊥)
new ρ

(TUNB)
R � e �→ (e, K)

R, r � unbox e �→ (h r, (K, (λh.[·]) e))
new h

(TRUN)
R � e �→ (e, K)

R � run e �→ (let h = e in (h{}), K)
new h

Context Stack Merge Operator

⊥ �� K = K
K �� ⊥ = K

(K1, κ1) �� (K2, κ2) = (K1 �� K2), (κ1[κ2])

Figure 8. Translation from λS to λR.

therefore, produces context stacks instead of a single context. Each

context in the stack corresponds to a stage. The contexts in a stack

are positioned in the following order: The context of the stage that

is immediately lower than the current stage is positioned at the

rightmost side; stages go lower (i.e. get closer to 0) as we go left.

The stage closest to 0 is located at the leftmost side of the stack.

New contexts in the translation are populated by unbox ex-

pressions (see rule TUNB). A fresh hole variable is also gener-

ated as a placeholder for the unboxed expression. The translation

of a box expression pulls the topmost context from the stack and

puts the translated expression inside this context. The translation

of expressions with no subexpressions (e.g. variables) results in

empty context stacks, since there are no unbox contained within

the expression. The translation of expressions with single subex-

pressions (e.g. abstraction) simply threads the context stack that

results from the translation of the subexpression. The translation

of expressions with more than one subexpression (e.g. application)

merges the context stacks resulting from the translation of subex-

pressions. A context stack merge operation respects the order of

appearance, hence serves the preservation of the order of evalua-

tion.

When discussing the translation informally, we converted run
to a function application, but in the formal definition we translate

to a let-expression. The difference is merely syntactic; we want to

52

잘 정의되었음



변환은 실행의미를 보존
 다단계 
프로그램

단계없는 
프로그램

실행

실행

=요구사항

증명한 것

53

be able to distinguish translations of run from unbox so that the
inverse translation can properly translate expressions back.

3.2 Semantics Preservation
In this section we formally make the connection between semantics
of λS and λR through the translation. For complete proofs for lem-
mas and theorems, we refer the reader to the companion technical
report [6].

Recall that a translation yields a pair of an expression and a
context stack. This pair can be constructed into a single expression
using a context closure operation:

Definition 1. (Context Closure) Let e be a λR expression and K
be a context stack. The context closure K(e) is defined as follows.

K(e) =


K�(κ[e]) if K = (K�, κ)
e if K = ⊥

In Section 3 we discussed the need for admin reductions; here
we give the formal definition:

Definition 2. (Admin Reduction) Administrative reduction of an
expression is a congruence closure of the following two rules:

(APP) (λρ.e) r
A−→ [ρ �→r]e

(ACC)
r �= ρ

r·x A−→ r(x)

The definition of administrative reductions also extends to contexts
and context stacks.

Note that an administrative reduction may happen anywhere, even
under lambdas. Also note that an admin reduction is “safe” to per-
form, in the sense that no side-effecting or non-terminating expres-
sion is eliminated by an admin reduction. It is also straightforward
to check that admin reductions terminate.

Definition 3. (Admin-normal form) An expression e is said to be
in admin-normal form iff there does not exist any e� such that
e

A−→ e�.

An important observation is that a translated expression does
not contain any admin-reducible terms:

Lemma 1. Let e be a λS expression such that R � e �→ (e, K)
for some R. Then, K(e) is in admin-normal form.

Proof. By structural induction on e [6].

Notation 1. The Kleene closure of admin reductions is denoted as
A∗−→.

Notation 2. We use R;A∗−→ to denote sequential application of one
step of eager evaluation followed by exhaustive administrative re-
ductions. Exhaustive admin reductions are those that bring an ex-
pression to the admin-normal form.

Next, we show the relation between the operational semantics of
λS and λR: Given a λS expression e, we can first translate e, then
evaluate it in record language semantics followed by application of
admin reductions, and we will have obtained the translation of the
expression that e evaluates to in the staged semantics. Furthermore,
the admin reductions that we apply are exhaustive; we do not need
to worry about oversimplification. This relation is formally stated
in Theorem 1 and illustrated in Figure 9.

Two properties are critical to prove the semantic preservation.
First, the translation preserves the substitution operation.

e
n ��

�

��

e��

��
e e�

=⇒ e
R;A∗ �� e�

Figure 9. Relation between λS and λR operational semantics.

Type Term

ι �→ ι
T1 �→ T1 T2 �→ T2

T1 → T2 �→ T1 → T2

Γ �→ Tr T �→ T

�(Γ � T) �→ Tr → T

Record Type Term
Γ �→ Tr T �→ T

Γ + x : T �→ Tr + {x : T}
∅ �→ ∅

Figure 10. Type Translation.

Lemma 2. (Substitution Preservation) Assume e1 is a stage-n λS
expression, e2 is a stage-0 λS expression with no free variables.
Let r0 . . . rn � e1 �→ (e1, κp . . . κ1) for p ≤ n and {} � e2 �→
(e2,⊥) where r0 is such that r0(x) = x for some variable x. Then

• If n = 0 then r0 � [x
0�→e2]e1 �→ ([x �→e2]e1,⊥).

• If n > p then r0 . . . rn � [x
n�→e2]e1 �→ (e1, κp . . . κ1).

• If n = p then r0 . . . rn � [x
n�→e2]e1 �→ (e1, (κ

�
p, κp−1 . . . κ1))

where κ�p = [x �→e2]κp.

Proof. By structural induction on expression e1 [6].

Second, the translation preserves the variable-capturing reduc-
tion which happens in λS because of open code.

Lemma 3. (Variable-Capturing Preservation) Assume e is a stage-
n λS expression and S is a substitution where S = [ρ �→ r]. Let
r0 . . . rn � e �→ (e, K) and S(r0 . . . rn) � e �→ (e�, K�). Then,
Se

A∗−→ e� and SK
A∗−→ K�.

Proof. By structural induction on e [6]. The substitution operations
(S(r0 . . . rn), Se, and SK) are the usual compositional, homomor-
phic operations.

Finally we give the simulation theorem that shows our transla-
tion is semantics-preserving. An illustration of this theorem is given
in Figure 9.

Theorem 1. (Simulation) Let e be a stage-n λS expression with
no free variables such that e

n−→ e�. Let R � e �→ (e, K) and
R � e� �→ (e�, K�). Then K(e)

R;A∗−→ K�(e�).

Proof. By induction on the evaluation e
n−→ e� using Lemma 1,

Lemma 2 and Lemma 3. For complete proof, see [6].

Type Translation
A relation between the two languages exists not only between their
operational semantics but also between their type systems. The
translation preserves the typability of an expression: If a λS ex-
pression is typable in the λS type system, its translation is typable
in the λR type system. The type translation is a straightforward
conversion that converts all the box-types in a λS type to arrow
types. (Figure 10)

Theorem 2. (Type Correctness) Let e be a stage-0 λS expression
with no free variables such that ∅ �S e : T. If R � e �→ (e,⊥)
then ∅ �R e : T.
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Type Translation
A relation between the two languages exists not only between their
operational semantics but also between their type systems. The
translation preserves the typability of an expression: If a λS ex-
pression is typable in the λS type system, its translation is typable
in the λR type system. The type translation is a straightforward
conversion that converts all the box-types in a λS type to arrow
types. (Figure 10)

Theorem 2. (Type Correctness) Let e be a stage-0 λS expression
with no free variables such that ∅ �S e : T. If R � e �→ (e,⊥)
then ∅ �R e : T.

 다단계 
프로그램

단계없는 
프로그램

실행

실행

=요구사항

증명한 것
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변환을 이용한 분석설계하기
ExpS ExpR표현식 집합

(Expressions)

e : ExpS

e : ExpR

일단 변환했다
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e : ExpS

e : ExpR

DS DRExpS ExpR 모듬 의미공간
(Collecting Domains)

표현식 집합
(Expressions)

[[e]]

[[e]] : DS

[[e]] : DR

[[e]]모듬의미*       와       를 정의한다
*모듬의미 = 구현생각하지 않고 만든 가장 정확한 분석



변환을 이용한 분석설계하기
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DS DRExpS ExpR 모듬 의미공간
(Collecting Domains)

표현식 집합
(Expressions)

[[e]] [[e]]좋은 투영      로       와       를 연결한다

π : DR → DS

π
[[e]] � π([[e]])

e : ExpS

e : ExpR

[[e]] : DS

[[e]] : DR



변환을 이용한 분석설계하기
DS DRExpS ExpR 모듬 의미공간

(Collecting Domains)
표현식 집합
(Expressions)

요약 의미공간
(Abstract Domains)

�DR −→
αR

γR←−−→
αR

�DRDR

좋은 요약의미       를 만든다

π : DR → DS

ˆ[[e]]
a �R b ⇔ αR(a) � b

[[e]] : DS

[[e]] : DR�αR

e : ExpS

e : ExpR ˆ[[e]] : �DR
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변환을 이용한 분석설계하기
DS DRExpS ExpR 모듬 의미공간

(Collecting Domains)
표현식 집합
(Expressions)

요약 의미공간
(Abstract Domains)

�DR −→
αR

γR←−−→
αR

�DRDR

이므로[[e]] � π([[e]])

�e : ExpS

e : ExpR

π ◦ γR

�αR

π : DR → DS

[[e]] : DS

[[e]] : DR

π(γR([[ê]])) : DS

ˆ[[e]] : �DR
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변환을 이용한 분석설계하기
DS DRExpS ExpR 모듬 의미공간

(Collecting Domains)
표현식 집합
(Expressions)

요약 의미공간
(Abstract Domains)

�DR −→
αR

γR←−−→
αR

�DRDR

�e : ExpS

e : ExpR

π ◦ γR

�αR

π : DR → DS

[[e]] : DS

[[e]] : DR

π(γR([[ê]])) : DS

ˆ[[e]] : �DR

계산이 끝나지 않을수도....
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변환을 이용한 분석설계하기
DS DRExpS ExpR 모듬 의미공간

(Collecting Domains)
표현식 집합
(Expressions)

요약 의미공간
(Abstract Domains)

�DR −→
αR

γR←−−→
αR

�DRDR

요약 의미공간을 추가해보면

�DS

γS←−−→
αS

−→
αS

DS
�DS

e : ExpS

e : ExpR �αR

π : DR → DS

[[e]] : DS

[[e]] : DR

π ◦ γR

π(γR([[ê]])) : DS�

ˆ[[e]] : �DR
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변환을 이용한 분석설계하기
DS DRExpS ExpR 모듬 의미공간

(Collecting Domains)
표현식 집합
(Expressions)

요약 의미공간
(Abstract Domains)

�DR −→
αR

γR←−−→
αR

�DRDR

요약 의미공간을 추가해보면

�DS

γS←−−→
αS

−→
αS

DS
�DS

αS ◦ π ◦ γR

αS(π(γR([[ê]]))) : �DSe : ExpS

e : ExpR �αR

π : DR → DS

[[e]] : DS

[[e]] : DR

�αS

ˆ[[e]] : �DR
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변환을 이용한 분석설계하기
DS DRExpS ExpR 모듬 의미공간

(Collecting Domains)
표현식 집합
(Expressions)

요약 의미공간
(Abstract Domains)

�DR −→
αR

γR←−−→
αR

�DRDR

여전히 끝나지 않을수도....

�DS

γS←−−→
αS

−→
αS

DS
�DS

αS ◦ π ◦ γR

αS(π(γR([[ê]]))) : �DSe : ExpS

e : ExpR �αR

π : DR → DS

[[e]] : DS

[[e]] : DR

�αS

ˆ[[e]] : �DR
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변환을 이용한 분석설계하기
DS DRExpS ExpR 모듬 의미공간

(Collecting Domains)
표현식 집합
(Expressions)

요약 의미공간
(Abstract Domains)

�DR −→
αR

γR←−−→
αR

�DRDR�DS

γS←−−→
αS

−→
αS

DS
�DS

αS ◦ π ◦ γR

αS(π(γR([[ê]]))) : �DSe : ExpS

e : ExpR ˆ[[e]] : �DS�αR

π : DR → DS

[[e]] : DS

[[e]] : DR

�αS

π̂

�αS

αS ◦ π ◦ γR π̂
αS ◦ π ◦ αR � π̂

대신 좋은     를 사용

π̂( ˆ[[e]]) : �DS
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변환을 이용한 분석설계하기
DS DRExpS ExpR 모듬 의미공간

(Collecting Domains)
표현식 집합
(Expressions)

요약 의미공간
(Abstract Domains)

�DR −→
αR

γR←−−→
αR

�DRDR�DS

γS←−−→
αS

−→
αS

DS
�DS

αS ◦ π ◦ γR

αS(π(γR([[ê]]))) : �DSe : ExpS

e : ExpR ˆ[[e]] :�αR

π

[[e]] : DS

[[e]] :

�αS �αS

π̂

π̂( ˆ[[e]]) : �DS

안전하고 끝나는 분석 완성!
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변환을 이용한 분석설계하기
DS DRExpS ExpR 모듬 의미공간

(Collecting Domains)
표현식 집합
(Expressions)

요약 의미공간
(Abstract Domains)

�DR −→
αR

γR←−−→
αR

�DRDR�DS

γS←−−→
αS

−→
αS

DS
�DS

αS ◦ π ◦ γR

αS(π(γR([[ê]]))) : �DSe : ExpS

e : ExpR ˆ[[e]] : �DS�αR

π : DR → DS

[[e]] : DS

[[e]] : DR

�αS �αS

실제 사용할 것들

π̂

π̂( ˆ[[e]]) : �DS
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변환을 이용한 분석설계하기
DS DRExpS ExpR 모듬 의미공간

(Collecting Domains)
표현식 집합
(Expressions)

요약 의미공간
(Abstract Domains)

�DR −→
αR

γR←−−→
αR

�DRDR�DS

γS←−−→
αS

−→
αS

DS
�DS

αS ◦ π ◦ γR

αS(π(γR([[ê]]))) : �DSe : ExpS

e : ExpR ˆ[[e]] : �DS�αR

π : DR → DS

[[e]] : DS

[[e]] : DR

�αS �αS

안전성을 위해 필요한 장치들 #1

[[e]] � π([[e]])

π̂

π̂( ˆ[[e]]) : �DS
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변환을 이용한 분석설계하기
DS DRExpS ExpR 모듬 의미공간

(Collecting Domains)
표현식 집합
(Expressions)

요약 의미공간
(Abstract Domains)

�DR −→
αR

γR←−−→
αR

�DRDR�DS

γS←−−→
αS

−→
αS

DS
�DS

αS ◦ π ◦ γR

αS(π(γR([[ê]]))) : �DSe : ExpS

e : ExpR ˆ[[e]] : �DS�αR

π : DR → DS

[[e]] : DS

[[e]] : DR

�αS �αS

안전성을 위해 필요한 장치들 #2

[[e]] � π([[e]])

π̂

π̂( ˆ[[e]]) : �DS

αS ◦ π ◦ αR � π̂
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요약

• 단계를 제거하는 변환을 만들었다

• 변환은 실행의미를 보존한다

• 변환 결과물을 분석하여 원본 프로그램을 검증할 수 있다
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