Regular Languages and Applications

Yo-Sub Han

Department of Computer Science

Yonsei University
Regular Languages

- An old and well-known topic in CS
- Kleene Theorem in 1959
- FA (finite-state automaton) constructions: Thompson automata, position automata in 1960s
- Pattern Matching Problem in 1970s
- in 1980s
- REVISIT State Complexity, Prime Decomposition, Pattern Matching since mid 1990s
Regular Languages

- An old and well-known topic in CS
- Kleene Theorem in 1959
- FA (finite-state automaton) constructions: Thompson automata, position automata in 1960s
- Pattern Matching Problem in 1970s
- ... in 1980s
- REVISIT State Complexity, Prime Decomposition, Pattern Matching since mid 1990s
 - XML, Bioinformatics - New Applications
Overview

- Basic Notions
- Position Construction and XML DTD
- Regular-Expression Pattern Matching
- State Complexity
- Future Directions and Conclusions
Regular Expressions

Regular expressions are a very convenient form that represents (infinite) sets of strings called regular sets.

Given a finite alphabet Σ, a regular expression over Σ is defined recursively as follows:

1. \emptyset, the empty-set symbol, is a regular expression.
2. λ, the empty-string symbol, is a regular expression.
3. $a \in \Sigma$ is a regular expression.
4. $E + F$ (union), where E and F are regular expressions, is a regular expression.
5. $E \cdot F$ (catenation), where E and F are regular expressions, is a regular expression.
6. E^* (Kleene star), where E is a regular expression, is a regular expression.
Finite-state Automata (FAs)

A finite-state automaton \mathcal{A} is specified by a tuple $(Q, \Sigma, \delta, s, F)$;

- Q a finite set of states
- Σ a finite alphabet
- $\delta(p, a) = q$ a set of transition rules
- $s \in Q$ the start state
- $F \subseteq Q$ a set of final states
Finite-state Automata - example

$s = q_1$

$F = \{q_9, q_{10}\}$
Finite-state Automata - example

\[T = aaabbabbb \]

\[s = q_1 \]

\[F = \{ q_9, q_{10} \} \]
Finite-state Automata - example

\[T = \check{aaabbabbb} \]

\[Q' = \{ q_2 \} \]
Finite-state Automata - example

\[T = \text{aaabbabbabb} \]
\[Q' = \{ q_2 \} \]

\[s = q_1 \]
\[F = \{ q_9, q_{10} \} \]
Finite-state Automata - example

\[T = aaabbabbb \]

\[s = q_1 \]
\[F = \{ q_9, q_{10} \} \]
Finite-state Automata - example

\[T = aaabbabbbb \]
\[Q' = \{q_3\} \]
Finite-state Automata - example

\[T = aaabbabb \]
\[Q' = \{q_4, q_6\} \]
Finite-state Automata - example

$T = aaabbabbb$

$Q' = \{q_7\}$

$s = q_1$

$F = \{q_9, q_{10}\}$
Finite-state Automata - example

\[T = aaabbabbbb \]

\[Q' = \{ q_8, q_9 \} \]
Finite-state Automata - example

\[T = aaabbbabbb \]
\[Q' = \{q_9\} \]
Finite-state Automata - example

\[T = aaabbabbb \checkmark \text{ accepted!!} \]

\[Q' = \{ q_9 \} \subseteq F \]

\[s = q_1 \]

\[F = \{ q_9, q_{10} \} \]
Finite-state Automata - example

\[L = L(aa^*b(ab^*bab^* + ba(bb^* + ba))) \]

\[s = q_1 \]
\[F = \{ q_9, q_{10} \} \]
REs into Finite-state Automata

The well-known Thompson construction by Ken Thompson in 1968.

\[E = \lambda \]

\[E = \emptyset \]

\[E = a \]

\[E_1 + E_2 \]

\[E_1 \cdot E_2 \]

\[E^* \]
REs into Finite-state Automata

The well-known Thompson construction by Ken Thompson in 1968.

- $E = \lambda$
- $E = \emptyset$
- $E = a$
- $E_1 + E_2$
- $E_1 \cdot E_2$
- E^*

Easy to understand and build-up
Too many λ transitions
Position Automata - another automaton construction

- Proposed by Glushkov and McNaughton and Yamada in 1960 independently.

- The construction is based on the positions of characters of a given regular expression.
Position Automata - an example

\[E = (a + b)^*c(a + b) \quad E' = (1 + 2)^*3(4 + 5) \]
Position Automata - an example

\[E = (a + b)^*c(a + b) \quad E' = (1 + 2)^*3(4 + 5) \]
Position Automata - an example

\[E = (a + b)^{\ast}c(a + b) \quad E' = (1 + 2)^{\ast}3(4 + 5) \]
Position Automata - an example

\[E = (a + b)^* c(a + b) \quad E' = (1 + 2)^* 3(4 + 5) \]
Position Automata - an example

\[E = (a + b)^*c(a + b) \quad E' = (1 + 2)^*3(4 + 5) \]
Position Automata - an example

\[E = (a + b)^*c(a + b) \quad E' = (1 + 2)^*3(4 + 5) \]
Position Automata - an example

\[E = (a + b)c(a + b) \quad \quad E' = (1 + 2)3(4 + 5) \]
Position Automata - an example

\[E = (a + b)^*c(a + b) \quad E' = (1 + 2)^*3(4 + 5) \]
Position Automata - an example

\[E = (a + b)^* c (a + b) \quad E' = (1 + 2)^* 3 (4 + 5) \]
Position Automata

- The construction looks nice!
- All in-transitions of a state have the same label.
- The number of states = $|E| + 1$

Less states than the Thompson automata and, thus usually faster!

$E = (a + b)^* c(a + b)$
Where do position automata lead us?
One-Unambiguous Regular Languages

- Proposed by Brüggemann-Klein and Wood.

- A regular language L is **one-unambiguous** if there is a regular expression E such that $L = L(E)$ and the position automaton of E is deterministic.
One-Unambiguous Regular Languages

- Proposed by Brüggemann-Klein and Wood.

- A regular language L is one-unambiguous if there is a regular expression E such that $L = L(E)$ and the position automaton of E is deterministic.

- Given an one-unambiguous regular expression E and an input string w, we can read w using one lookahead with respect to E.

$$E = SEO(UL)^*N$$
One-Unambiguous Regular Languages

Proposed by Brüggemann-Klein and Wood.

A regular language L is one-unambiguous if there is a regular expression E such that $L = L(E)$ and the position automaton of E is deterministic.

Given an one-unambiguous regular expression E and an input string w, we can read w using one lookahead with respect to E.

$$E = SEO(UL)^*N$$

\[
\text{[S E O U L U L N]}
\]
One-Unambiguous Regular Languages

- Proposed by Brüggemann-Klein and Wood.
- A regular language L is one-unambiguous if there is a regular expression E such that $L = L(E)$ and the position automaton of E is deterministic.
- Given an one-unambiguous regular expression E and an input string w, we can read w using one lookahead with respect to E.

$$E = SEO(UL)^*N$$

$S E O U L U L N$
One-Unambiguous Regular Languages

- Proposed by Brüggemann-Klein and Wood.

- A regular language L is one-unambiguous if there is a regular expression E such that $L = L(E)$ and the position automaton of E is deterministic.

- Given an one-unambiguous regular expression E and an input string w, we can read w using one lookahead with respect to E.

$$E = SEO(UL)^*N$$

S E O U L L L L N
One-Unambiguous Regular Languages

- Proposed by Brüggemann-Klein and Wood.

- A regular language L is one-unambiguous if there is a regular expression E such that $L = L(E)$ and the position automaton of E is deterministic.

- Given an one-unambiguous regular expression E and an input string w, we can read w using one lookahead with respect to E.

\[E = SEO(UL)^*N \]

\[S E O \boxed{U} L U L N \]
One-Unambiguous Regular Languages

- Proposed by Brüggemann-Klein and Wood.

- A regular language L is **one-unambiguous** if there is a regular expression E such that $L = L(E)$ and the position automaton of E is deterministic.

- Given an one-unambiguous regular expression E and an input string w, we can read w using one lookahead with respect to E.

\[
E = SEO(UL)^*N
\]
One-Unambiguous Regular Languages

- Proposed by Brüggemann-Klein and Wood.
- A regular language L is **one-unambiguous** if there is a regular expression E such that $L = L(E)$ and the position automaton of E is deterministic.
- Given an one-unambiguous regular expression E and an input string w, we can read w using one lookahead with respect to E.

$$E = SEO(UL)^*N$$

|S|E|O|U|L|U|L|N|
One-Unambiguous Regular Languages

- Proposed by Brüggemann-Klein and Wood.
- A regular language L is one-unambiguous if there is a regular expression E such that $L = L(E)$ and the position automaton of E is deterministic.
- Given an one-unambiguous regular expression E and an input string w, we can read w using one lookahead with respect to E.

$$E = SEO(UL)^* N$$

$S E O U L U L N$
One-Unambiguous Regular Languages

- Proposed by Brüggemann-Klein and Wood.

- A regular language \(L \) is one-unambiguous if there is a regular expression \(E \) such that \(L = L(E) \) and the position automaton of \(E \) is deterministic.

- Given an one-unambiguous regular expression \(E \) and an input string \(w \), we can read \(w \) using one lookahead with respect to \(E \).

\[
E = SEO(UL)^*N
\]
One-Unambiguous Regular Languages

- Proposed by Brüggemann-Klein and Wood.

- A regular language L is one-unambiguous if there is a regular expression E such that $L = L(E)$ and the position automaton of E is deterministic.

- Not all regular expressions are one-unambiguous.

$$E = SEO(UL)^*UNI$$

- Not all regular languages are one-unambiguous. There are some regular languages that cannot be defined by an one-ambiguous regular languages. e.g. $L((a + b)^*a(a + b)^k), k \geq 1$
One-Unambiguous Regular Languages

- Proposed by Brüggemann-Klein and Wood.

- A regular language L is one-unambiguous if there is a regular expression E such that $L = L(E)$ and the position automaton of E is deterministic.
One-Unambiguous Regular Languages

Proposed by Brüggemann-Klein and Wood.

A regular language L is one-unambiguous if there is a regular expression E such that $L = L(E)$ and the position automaton of E is deterministic.

```xml
<?xml version="1.0"?>
<!DOCTYPE BOOK [ 
  <!ELEMENT p (#PCDATA)> 
  <!ELEMENT BOOK (OPENER, SUBTITLE?, INTRODUCTION?, (SECTION | PART)+)> 
  <!ELEMENT OPENER (TITLE_TEXT)*> 
  <!ELEMENT TITLE_TEXT (#PCDATA)> 
  <!ELEMENT SUBTITLE (#PCDATA)> 
  <!ELEMENT INTRODUCTION (HEADER, p+)+> 
  <!ELEMENT PART (HEADER, CHAPTER+)> 
  <!ELEMENT SECTION (HEADER, p+)> 
  <!ELEMENT HEADER (#PCDATA)> 
  <!ELEMENT CHAPTER (CHAPTER_NUMBER, CHAPTER_TEXT)> 
  <!ELEMENT CHAPTER_NUMBER (#PCDATA)> 
  <!ELEMENT CHAPTER_TEXT (p)+> ]>
```
One-Unambiguous Regular Languages

- Proposed by Brüggemann-Klein and Wood.

- A regular language L is one-unambiguous if there is a regular expression E such that $L = L(E)$ and the position automaton of E is deterministic.

<?xml version="1.0"?>
<!DOCTYPE BOOK [
 <!ELEMENT p (#PCDATA)>
 <!ELEMENT BOOK (OPENER, SUBTITLE?, INTRODUCTION?, (SECTION | PART)+)>>
 <!ELEMENT OPENER (TITLE_TEXT)*>>

BOOK ::=
 OPENER · (SUBTITLE+λ) · (INTRODUCTION+λ) · (SECTION + PART)(SECTION + PART)*
One-Unambiguous Regular Languages

Proposed by Brüggemann-Klein and Wood.

A regular language L is one-unambiguous if there is a regular expression E such that $L = L(E)$ and the position automaton of E is deterministic.

<?xml version="1.0"?>
<!DOCTYPE BOOK [
 <!ELEMENT p (#PCDATA)>
 <!ELEMENT BOOK (OPENER,SUBTITLE?,INTRODUCTION?,(SECTION | PART)+)>
 <!ELEMENT OPENER (TITLE_TEXT)*>
 <!ELEMENT SUBTITLE (#PCDATA)>
 <!ELEMENT INTRODUCTION (HEADER, p+)+>
 <!ELEMENT PART (HEADER, CHAPTER+)>
 <!ELEMENT SECTION (HEADER, p+)>
 <!ELEMENT HEADER (#PCDATA)>
 <!ELEMENT CHAPTER (CHAPTER_NUMBER, CHAPTER_TEXT)>
 <!ELEMENT CHAPTER_NUMBER (#PCDATA)>
 <!ELEMENT CHAPTER_TEXT (p)+>]>

BOOK ::=
 OPENER · (SUBTITLE+λ) · (INTRODUCTION+λ) · (SECTION + PART)(SECTION + PART)*

One-unambiguous regular expression!!
One-Unambiguous Regular Languages vs XML DTD

- Regular expressions for content models of DTD are one-unambiguous.
- XML DTDs are LL(1) grammars [Wood’96].
- $LL(k)$ grammars have a proper hierarchy [AU’72].
- k-unambiguous regular languages??
One-Unambiguous Regular Languages vs XML DTD

- Regular expressions for content models of DTD are one-unambiguous
- XML DTDs are LL(1) grammars [Wood’96]
- \(LL(k)\) grammars have a proper hierarchy [AU’72]
- \(k\)-unambiguous regular languages??

 We have \(k\)-lookahead for processing an input string.

```plaintext
XML INSTANCE
```

current state

6-lookahead
k-lookahead Regular Languages

Two ways for defining k-lookahead regular languages.

- The first is based on a lookahead of at most $k \geq 1$ symbols to determine the next, at most one, matching position in a given regular expression: deterministic k-lookahead regular expressions

- The second is similar except that when we use a lookahead of k symbols, we must match the next k positions uniquely: k-block-deterministic regular expressions
Deterministic k-lookahead regular languages

at state q_i

$\cdots a_i a_{i+1} a_{i+2} \cdots a_i a_k a_{k+1}$

k-lookahead

after reading a_{i+1}

at state q_i+1

$\cdots a_i a_{i+1} a_{i+2} \cdots a_i a_k a_{k+1}$

k-lookahead
Deterministic k-lookahead regular languages

- A regular language L is deterministic k-lookahead if there is a deterministic k-lookahead regular expression for L.

- A regular expression is deterministic k-lookahead if its position automaton is deterministic k-lookahead.

$$E = (a + b)^* a$$
Deterministic k-lookahead regular languages

- A regular language L is deterministic k-lookahead if there is a deterministic k-lookahead regular expression for L.

- A regular expression is deterministic k-lookahead if its position automaton is deterministic k-lookahead.

$E = (a + b)^* a$

$\cdots aaa\#$
Deterministic k-lookahead regular languages

- A regular language L is deterministic k-lookahead if there is a deterministic k-lookahead regular expression for L.

- A regular expression is deterministic k-lookahead if its position automaton is deterministic k-lookahead.

\[E = (a + b)^* a \]

\[
\begin{array}{c}
0 \quad a \\
\downarrow \quad a \\
1 \quad a \\
\downarrow \quad a \\
2 \quad b \\
\downarrow \quad b \\
3 \quad a \\
\end{array}
\]

\[
\begin{array}{c}
\cdots [a a a \#]
\end{array}
\]
Deterministic k-lookahead regular languages

A regular language L is deterministic k-lookahead if there is a deterministic k-lookahead regular expression for L.

A regular expression is deterministic k-lookahead if its position automaton is deterministic k-lookahead.

\[E = (a + b)^* a \]

\[\cdots [aaa\#] \]
A regular language L is deterministic k-lookahead if there is a deterministic k-lookahead regular expression for L.

A regular expression is deterministic k-lookahead if its position automaton is deterministic k-lookahead.

$$E = (a + b)^*a$$

$\cdots[aaa\#]$
Deterministic k-lookahead regular languages

- A regular language L is deterministic k-lookahead if there is a deterministic k-lookahead regular expression for L.

- A regular expression is deterministic k-lookahead if its position automaton is deterministic k-lookahead.

$$E = (a + b)^* a$$

$\cdots a[a][a][\#]$
Deterministic k-lookahead regular languages

- A regular language L is deterministic k-lookahead if there is a deterministic k-lookahead regular expression for L.

- A regular expression is deterministic k-lookahead if its position automaton is deterministic k-lookahead.

$$E = (a + b)^* a$$

$$\cdots a\underline{a}a\#$$
Deterministic k-lookahead regular languages

- A regular language L is deterministic k-lookahead if there is a deterministic k-lookahead regular expression for L.

- A regular expression is deterministic k-lookahead if its position automaton is deterministic k-lookahead.

$$E = (a + b)^* a$$

E is deterministic 2-lookahead.

$$\cdots aaaa\#$$
Deterministic k-lookahead regular languages

Thm. $L((a+b)^*a(a+b)^k)$, for $k \geq 0$, is deterministic $(k+1)$-lookahead.
Deterministic k-lookahead regular languages

Thm. $L((a+b)^*a(a+b)^k)$, for $k \geq 0$, is deterministic $(k+1)$-lookahead.
Deterministic k-lookahead regular languages

Thm. $L((a+b)^* a (a+b)^k)$, for $k \geq 0$, is deterministic $(k+1)$-lookahead.
Deterministic k-lookahead regular languages

Thm. $L((a+b)^*a(a+b)^k)$, for $k \geq 0$, is deterministic $(k+1)$-lookahead.

- There exists a **hierarchy** for deterministic k-lookahead regular languages
\(k\)-block-deterministic regular languages

After reading \(a_i + 1 \cdot \cdot \cdot a_i + k\)

at state \(q_i\)

\(k\)-lookahead

at state \(q_i'\)
We define a regular language L to be k-block-deterministic if there exists a k-block automaton $A' = (Q, \Sigma, \Gamma, \delta, s, F)$ that satisfies the following conditions:

1. A' is a position automaton over Γ.
2. A' is a deterministic block automaton.
3. $L = L(A')$.

It is easy to verify that a position automaton A for an 1-deterministic regular language is 1-block-deterministic.
k-block-deterministic regular languages

Thm. There is a proper hierarchy in k-block-deterministic regular languages.

Sketch of Proof. A $(k-1)$-block-deterministic regular language is k-block-deterministic by definition. Thus, it is enough to show that there is a k-block-deterministic regular language that is not $(k-1)$-block-deterministic.
\[k-3 \text{ states} \]

Diagram showing a transition graph with states labeled as follows:

- **A**: Transition from state q_1 to q_2 on input a, then to q_3 on input b.
- **A'**: Transition from state q_1 to q_3 on input $aaa \cdots aab$.

States are connected by arrows indicating transitions on inputs a and b. The diagram includes a sequence of states labeled with dotted lines to indicate the $k-3$ states.
Two Ways...

Thm. k-block-deterministic regular languages are a proper subfamily of deterministic k-lookahead regular languages.

XML DTD vs XML Schema

- There’s no vs
- XML Schema are much more flexible and powerful
- Thus, there’re also much more difficult and confusing
XML DTD vs XML Schema

- There’s no vs
- XML Schema are much more flexible and powerful
- Thus, there’re also much more difficult and confusing
XML DTD vs XML Schema

- There’s no vs
- XML Schema are much more flexible and powerful
- Thus, there’re also much more difficult and confusing

XML DTD ➔ 1-lookahead determinism ➔ XML Schema ➔ k-lookahead determinism
XML DTD vs XML Schema

- There’s no vs
- XML Schema are much more flexible and powerful
- Thus, there’re also much more difficult and confusing

XML DTD = 1-lookahead determinism

XML Schema = k-lookahead determinism
XML DTD vs XML Schema

- There’s no vs
- XML Schema are much more flexible and powerful
- Thus, there’re also much more difficult and confusing

\[\begin{align*}
\text{XML DTD} & \quad \equiv \quad 1\text{-lookahead determinism} \\
\text{XML Schema} & \quad ? \quad k\text{-lookahead determinism}
\end{align*}\]
Pattern Matching - an application of regular languages

Given a regular expression pattern P and a text T, find all substrings of T that are in $L(P)$.

$T = AGCTAATCCCTGAGAGTCCAGTTAGTCCCAT$

$P = T \cdot (AG + C)^* \cdot T$
Pattern Matching - an application of regular languages

Given a regular expression pattern P and a text T, find all substrings of T that are in $L(P)$.

$T = AGCTAA\textcolor{red}{TCCCTGAGAGTCCAGT}TAGTCCCAT$

$P = T \cdot (AG + C)^* \cdot T$
Pattern Matching

New Domains: WEB, Bioinformatics, Huge DB, Images or Source Codes
Pattern Matching - related work

Given a text T and a regular expression E,

- The recognition problem: We can report all end positions of matching substrings of T in $O(mn)$ time [Aho] or in $O(mn/\log n)$ time [Myers].

- The identification problem: We can report all (start, end) positions of matching substrings of T in $O(mn^2)$ time [Aho].
Pattern Matching - recognition problem

Given E over Σ, we prepend Σ^* to E; this allows matching to begin at any position in T.

$$E = a(a + b)^*ba$$

$$T = \begin{array}{cccccccccccc}
a & b & b & a & b & a & a & b & a & b & b & a & a \\
\end{array}$$
Pattern Matching - recognition problem

Given E over Σ, we prepend Σ^* to E; this allows matching to begin at any position in T.

\[E = a(a + b)^*ba \]

\[T = \begin{array}{cccccccccccc}
 a & b & b & a & b & a & a & b & a & b & b & a & a \\
\end{array} \]
Pattern Matching - recognition problem

Given \(E \) over \(\Sigma \), we prepend \(\Sigma^* \) to \(E \); this allows matching to begin at any position in \(T \).

\[
E = a(a + b)^*ba
\]

\[
T = \begin{array}{cccccccccccc}
 a & b & b & a & b & a & a & b & a & b & b & a & a \\
\end{array}
\]
Pattern Matching - recognition problem

Given E over Σ, we prepend Σ^* to E; this allows matching to begin at any position in T.

$$E = a(a + b)^*ba$$

$$T = \begin{array}{cccccccccc}
 a & b & b & a & b & a & a & b & a & b & b & a & a \\
\end{array}$$

Given E and T, we can find all end positions of matching substrings of T in $O(mn)$ time using $O(m)$ space, where $|E| = m$ and $|T| = n$ [Aho].
Pattern Matching - identification problem

Given E over Σ, we prepend Σ^* to E; this allows matching to begin at any position in T.

$$E = a(a + b)^*ba$$

$$T = \begin{array}{cccccccccccc}
a & b & b & a & b & a & a & b & a & b & b & a & a \\
\end{array}$$
Pattern Matching - identification problem

Given E over Σ, we prepend Σ^* to E; this allows matching to begin at any position in T.

$$E = a(a + b)^*ba \quad E^R = ab(a + b)^*a$$

$T = \begin{array}{ccccccccccc}
 a & b & b & a & b & a & a & b & a & b & b & a & a \\
\end{array}$
Pattern Matching - identification problem

Given E over Σ, we prepend Σ^* to E; this allows matching to begin at any position in T.

$$E = a(a+b)^*ba \quad E^R = ab(a+b)^*a$$

$$T = \begin{array}{cccccccccccc}
 a & b & b & a & b & a & a & b & a & b & b & a & a \\
\end{array}$$
Pattern Matching - identification problem

Given E over Σ, we prepend Σ^* to E; this allows matching to begin at any position in T.

\[E = a(a + b)^*ba \quad E^R = ab(a + b)^*a \]

$T = a\ b\ b\ a\ b\ a\ a\ b\ a\ b\ b\ a\ a$
Pattern Matching - identification problem

Given E over Σ, we prepend Σ^* to E; this allows matching to begin at any position in T.

\[
E = a(a + b)^*ba \quad E^R = ab(a + b)^*a
\]

$T =$

\[
\begin{array}{cccccccccccc}
 a & b & b & a & b & a & a & b & a & b & b & a & a \\
\end{array}
\]
Pattern Matching - identification problem

Given \(E \) over \(\Sigma \), we prepend \(\Sigma^* \) to \(E \); this allows matching to begin at any position in \(T \).

\[
E = a(a+b)^*ba \quad E^R = ab(a+b)^*a
\]

\[
T = \begin{array}{cccccccccccc}
 a & b & b & a & b & a & a & b & a & b & b & a & a
\end{array}
\]
Pattern Matching - identification problem

Given E over Σ, we prepend Σ^* to E; this allows matching to begin at any position in T.

$$E = a(a + b)^*ba \quad E^R = ab(a + b)^*a$$

$T = a\ b\ b\ a\ b\ a\ a\ b\ a\ b\ b\ a\ a$

Running Time = No. of matching end positions $\times O(mn)$
$= O(n) \times O(mn) = O(mn^2)$.
Pattern Matching - identification problem

Given E over Σ, we prepend Σ^* to E; this allows matching to begin at any position in T.

$$E = a(a + b)^*ba \quad E^R = a(b(a + b))^*a$$

$$T = \begin{array}{cccccccccccccc}
 a & b & b & a & b & a & a & b & a & b & b & a & a
\end{array}$$

Running Time = No. of matching end positions $\times O(mn)$

$$= O(n) \times O(mn) = O(mn^2).$$

We can solve the identification problem in $O(mn^2)$ worst-case time using $O(m)$ space [Aho].
Prefix and Infix

Given two strings x and y over Σ, we say

- x is a **prefix** of y if there exists $z \in \Sigma^*$ such that $xz = y$.

- x is an **infix** of y if there exists $u, v \in \Sigma^*$ such that $uxv = y$; we often call x a **substring** of y.
Prefix and Infix

Given two strings x and y over Σ, we say

- x is a prefix of y if there exists $z \in \Sigma^*$ such that $xz = y$.
- x is an infix of y if there exists $u, v \in \Sigma^*$ such that $uxv = y$; we often call x a substring of y.

\[
y = \text{seoul}\]
Prefix and Infix

Given two strings x and y over Σ, we say

- x is a prefix of y if there exists $z \in \Sigma^*$ such that $xz = y$.

- x is an infix of y if there exists $u, v \in \Sigma^*$ such that $uxv = y$; we often call x a substring of y.

$y = \text{seoul}$
‘seo’ is a prefix of y.

Prefix and Infix

Given two strings \(x \) and \(y \) over \(\Sigma \), we say

- \(x \) is a prefix of \(y \) if there exists \(z \in \Sigma^* \) such that \(xz = y \).

- \(x \) is an infix of \(y \) if there exists \(u, v \in \Sigma^* \) such that \(uxv = y \); we often call \(x \) a substring of \(y \).

\[y = \text{seoul} \quad \text{‘eou’ is an infix of } y. \]
Prefix and Infix

Given two strings x and y over Σ, we say

- x is a **prefix** of y if there exists $z \in \Sigma^*$ such that $xz = y$.

- x is an **infix** of y if there exists $u, v \in \Sigma^*$ such that $uxv = y$; we often call x a **substring** of y.

We define a pattern P to be

- **prefix-free** if no string in P is a prefix of any other strings in P.

- **infix-free** if no string in P is an infix of any other strings in P.
Infix-free Regular-Expression Matching

$\mathcal{L}_{IN} \subsetneq \mathcal{L}_{PRE} \subsetneq \mathcal{L}_{REG}$
Infix-free Regular-Expression Matching

$$\mathcal{L}_{IN} \subseteq \mathcal{L}_{PRE} \subseteq \mathcal{L}_{REG}$$

Given an infix-free regular expression E and a text T:

$$y = \text{seoul}$$

‘eou’ is an infix of y.

<table>
<thead>
<tr>
<th>E</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>
Infix-free Regular-Expression Matching

$$\mathcal{L}_{IN} \subseteq \mathcal{L}_{PRE} \subseteq \mathcal{L}_{REG}$$

Given an infix-free regular expression E and a text T:

$$y = \text{seoul}$$

‘eou’ is an infix of y.

E

T

1 2 3 4 5 6 7 8 9 10 11 12

the recognition process
Infix-free Regular-Expression Matching

\(\mathcal{L}_{IN} \subset \mathcal{L}_{PRE} \subset \mathcal{L}_{REG} \)

Given an infix-free regular expression \(E \) and a text \(T \):

\[y = \text{seoul} \]

‘eou’ is an infix of \(y \).

\[E \]

\[T \]

1 2 3 4 5 6 7 8 9 10 11 12

\(\Rightarrow \)

the recognition process
Infix-free Regular-Expression Matching

\(\mathcal{L}_{IN} \subsetneq \mathcal{L}_{PRE} \subsetneq \mathcal{L}_{REG} \)

Given an infix-free regular expression \(E \) and a text \(T \):

\(y = \text{seoul} \quad \text{‘eou’ is an infix of } y. \)

Given an infix-free regular expression \(E \) and a text \(T \):

\(E \)

\(T \)

1 2 3 4 5 6 7 8 9 10 11 12

\(E \)

\(E^R \)
Infix-free Regular-Expression Matching

\[\mathcal{L}_{IN} \subsetneq \mathcal{L}_{PRE} \subsetneq \mathcal{L}_{REG} \]

Given an infix-free regular expression \(E \) and a text \(T \):

\[y = \text{seoul} \quad \text{‘eou’ is an infix of } y. \]

Because of infix-freeness, each pair of (↓, ↑) from left to right must be a matching substring.
Infix-free Regular-Expression Matching

\[\mathcal{L}_{IN} \subsetneq \mathcal{L}_{PRE} \subsetneq \mathcal{L}_{REG} \]

Given an infix-free regular expression \(E \) and a text \(T \):

\[y = \text{seoul} \quad \text{‘eou’ is an infix of } y. \]

Because of **infix-freeness**, each pair of (\(\downarrow, \uparrow \)) from left to right must be a matching substring.

We can find all matching substrings in \(O(mn) \) time [HWW07].

Prefix-Free Regular Languages and Pattern Matching, **Yo-Sub Han**, Yajun Wang and Derick Wood

Prefix-free Regular-Expression Matching

- $L_{IN} \subsetneq L_{PRE} \subsetneq L_{REG}$
- If E is infix-free, we have an $O(mn)$ running time algorithm
- If E is a (normal) regular expression, we have an $O(mn^2)$ running time algorithm
- If E is prefix-free, then there are at most n matching substrings of T that belong to $L(E)$, where n is the size of T.
Prefix-free Regular-Expression Matching

- $L_{IN} \subsetneq L_{PRE} \subsetneq L_{REG}$

- If E is infix-free, we have an $O(mn)$ running time algorithm

- If E is a (normal) regular expression, we have an $O(mn^2)$ running time algorithm

- If E is prefix-free, then there are at most n matching substrings of T that belong to $L(E)$, where n is the size of T.

$$|T| = 13$$
Prefix-free Regular-Expression Matching

- $L_{IN} \subset L_{PRE} \subset L_{REG}$
- If E is infix-free, we have an $O(mn)$ running time algorithm
- If E is a (normal) regular expression, we have an $O(mn^2)$ running time algorithm
- If E is prefix-free, then there are at most n matching substrings of T that belong to $L(E)$, where n is the size of T.

```
a b c a c a c b c b b a a
```

$|T| = 13$

$cacbcb$ is a prefix of $cacbcbba$. This contradicts that $L(E)$ is prefix-free.
Prefix-free Regular-Expression Matching

- $L_{IN} \subsetneq L_{PRE} \subsetneq L_{REG}$
- If E is infix-free, we have an $O(mn)$ running time algorithm
- If E is a (normal) regular expression, we have an $O(mn^2)$ running time algorithm
- If E is prefix-free, then there are at most n matching substrings of T that belong to $L(E)$, where n is the size of T.
- Can we have an $O(mn)$ time algorithm?

cacbcb is a prefix of cacbcbba. This contradicts that $L(E)$ is prefix-free.
Prefix-free Regular-Expression Matching

- $L_{IN} \subsetneq L_{PRE} \subsetneq L_{REG}$
- If E is infix-free, we have an $O(mn)$ running time algorithm
- If E is a (normal) regular expression, we have an $O(mn^2)$ running time algorithm
- If E is prefix-free, then there are at most n matching substrings of T that belong to $L(E)$, where n is the size of T.
- Can we have an $O(mn)$ time algorithm?

\[a \ a \ c \ c \ b \ c \ b \] is a prefix of \[a \ c \ a \ c \ b \ c \ b b a \]. This contradicts that $L(E)$ is prefix-free.

\[\text{\textbf{YES!!}}\]
Prefix-free Regular-Expression Matching

Sketch of our algorithm:

\[E \]
\[T \]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Prefix-free Regular-Expression Matching

Sketch of our algorithm:

\[E \]

\[T \]

\[\rightarrow \]

the recognition process
Prefix-free Regular-Expression Matching

Sketch of our algorithm:

\[E \]

\[T \]

\[\begin{array}{ccccccccccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ \end{array} \]

the recognition process
Prefix-free Regular-Expression Matching

Sketch of our algorithm:

\[E \]

\[T \]

\[
\begin{array}{cccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15
\end{array}
\]

\[E^R \]
Prefix-free Regular-Expression Matching

Sketch of our algorithm:

\[E \]

\[T \]

\[1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \]

\[E^R \]
Prefix-free Regular-Expression Matching

Sketch of our algorithm:

\[E \]

\[T \]

\[E^R \]

parallel processing starts
Prefix-free Regular-Expression Matching

Sketch of our algorithm:

\[E \]

\[T \]

\[a \ b \ b \ a \ b \ a \ a \ b \ b \ a \ b \ a \ a \]

Running Time = No. of matching end positions \(\times O(mn) \)

\(= O(n) \times O(mn) = O(mn^2). \)
Prefix-free Regular-Expression Matching

Sketch of our algorithm:

\[
E
\]
\[
T
\]

Running Time = No. of matching end positions

= \(O(n) \times O(mn) = O(mn^2) \).

Parallel processing starts
Prefix-free Regular-Expression Matching

Sketch of our algorithm:

$$E$$

$$T$$

Running Time = No. of matching end positions
$$= O(n) \times O(mn) = O(mn^2)$$.

parallel processing starts
Prefix-free Regular-Expression Matching

Sketch of our algorithm:

Because of prefix-freeness, no two process can have the same state of E at the same time. This implies that a single reverse scan is enough to find corresponding start positions for each end position.
Prefix-free Regular-Expression Matching

Given a prefix-free regular expression E and a text T, we can identify all matching substrings of T that belong to $L(E)$ in $O(mn)$ worst-case time - [HWW07].

Prefix-Free Regular Languages and Pattern Matching, Yo-Sub Han, Yajun Wang and Derick Wood
State Complexity

What is the state complexity of a regular language \(L \)?
State Complexity

What is the state complexity of a regular language \(L \)?

State complexity is a descriptional complexity of \(L \)

- \(L \) has a unique minimal DFA \(A \)
- We define the state complexity of \(L \) to be the number of states in \(A \)
State Complexity

What is the state complexity of a regular language L?

State complexity is a descriptional complexity of L

- L has a unique minimal DFA A
- We define the state complexity of L to be the number of states in A

We can estimate needed resource.
State Complexity Problem

Given two (arbitrary) regular languages L_1 and L_2, what is the state complexity of $L_1 \cap L_2$?
State Complexity Problem

Given two (arbitrary) regular languages L_1 and L_2, what is the state complexity of $L_1 \cap L_2$?

- Upper bound

![Diagram](image)
State Complexity Problem

Given two (arbitrary) regular languages L_1 and L_2, what is the state complexity of $L_1 \cap L_2$?

- Upper bound

\[m_1 \cap m_2 \begin{array}{c}
\cap
\end{array} \quad f(m_1, m_2) \leq \text{at most} \]
State Complexity Problem

Given two (arbitrary) regular languages L_1 and L_2, what is the state complexity of $L_1 \cap L_2$?

- Upper bound

- Lower bound

\[m_1 \cap m_2 \leq f(m_1, m_2) \]
State Complexity Problem

Given two (arbitrary) regular languages L_1 and L_2, what is the state complexity of $L_1 \cap L_2$?

- **Upper bound**

 \[
 m_1 \cap m_2 \leq f(m_1, m_2)
 \]

- **Lower bound**

 Present two (general) L_1 and L_2 such that the state complexity of $L_1 \cap L_2$ always reaches the upper bound.
State Complexity Problem

Given two (arbitrary) regular languages \(L_1 \) and \(L_2 \), what is the state complexity of \(L_1 \cap L_2 \)?

- Upper bound

\[
\text{at most } f(m_1, m_2)
\]

- Lower bound

Present two (general) \(L_1 \) and \(L_2 \) such that the state complexity of \(L_1 \cap L_2 \) always reaches the upper bound.

- Tight bound: \(\text{UB} = \text{LB} \), the state complexity of the intersection of two regular languages is \(f(m_1, m_2) \)
State Complexity - Motivation

In recent years, there have been many new applications of FAs, such as in natural language and speech processing, software engineering, and image generation and encoding that need a large number of states.

the Bell Labs multilingual TTS system: 26.6MB for German, 30.0MB for French and 39.0MB for Chinese.
State Complexity - motivation

New Helper: FA manipulation software systems such as *Grail+, Auto-mate* and *FireLite*
State Complexity - motivation

New Helper: FA manipulation software systems such as Grail+, Automate and FireLite

We calculate the upper bound.
State Complexity - motivation

New Helper: FA manipulation software systems such as *Grail+, Auto-mate* and *FireLite*

We calculate the upper bound.

We guess a lower bound and verify it, and repeat this step until we find a matching lower bound.
State Complexity - motivation

New Helper: FA manipulation software systems such as *Grail+*, *Auto-mate* and *FireLite*

We calculate the upper bound.

We guess a lower bound and verify it, and repeat this step until a matching lower bound.
State Complexity

<table>
<thead>
<tr>
<th>operation</th>
<th>finite languages</th>
<th>regular languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_1 \cup L_2$</td>
<td>$O(mn)$</td>
<td>mn</td>
</tr>
<tr>
<td>$L_1 \cap L_2$</td>
<td>$O(mn)$</td>
<td>mn</td>
</tr>
<tr>
<td>$\Sigma^* \setminus L_1$</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>$L_1 \cdot L_2$</td>
<td>$(m - n + 3)2^{n-2} - 1$</td>
<td>$(2m - 1)2^{n-1}$</td>
</tr>
<tr>
<td>L_1^*</td>
<td>$2^{m-3} + 2^{m-4}$, for $m \geq 4$</td>
<td>$2^{m-1} + 2^{m-2}$</td>
</tr>
<tr>
<td>L_1^R</td>
<td>$3 \cdot 2^{p-1} - 1$ if $m = 2p$, $2^p - 1$ if $m = 2p - 1$</td>
<td>2^m</td>
</tr>
</tbody>
</table>
Union of Finite Languages

Given two minimal DFAs A and B for non-empty finite languages L_1 and L_2, we can construct a DFA for $L(A) \cup L(B)$ based on the Cartesian product of states as follows:
Let $A = (Q_1, \Sigma, \delta_1, s_1, F_1)$ and $B = (Q_2, \Sigma, \delta_2, s_2, F_2)$.

$M = (Q_1 \times Q_2, \Sigma, \delta, (s_1, s_2), F)$, where for all $p \in Q_1$ and $q \in Q_2$ and $a \in \Sigma$,
\[
\delta((p, q), a) = (\delta(p, a), \delta(q, a))
\]
and $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$.

M is deterministic.
The $m-1$th state in A is the final state whose out-transitions go to the sink state, the mth state.
The $m-1$th state in A is the final state whose out-transitions go to the sink state, the mth state.

For a state (i, j) in M, $L_{i,j}(M) = L_i(A) \cup L_j(B)$.

Union of Finite Languages - Cartesian Product of States
The $m-1$th state in A is the final state whose out-transitions go to the sink state, the mth state.

For a state (i, j) in M,
$L_{i,j}(M) = L_i(A) \cup L_j(B)$.

all states are unreachable from state $(1,1)$ since A and B are non-returning.
Union of Finite Languages - Cartesian Product of States

The $m-1$th state in A is the final state whose out-transitions go to the sink state, the mth state.

For a state (i, j) in M, $L_{i,j}(M) = L_i(A) \cup L_j(B)$.

all states equivalent since $L_{m-1,n-1} = L_{m-1,n}$

all states are unreachable from state $(1,1)$ since A and B are non-returning.
Union of Finite Languages - Cartesian Product of States

The \(m-1 \)th state in \(A \) is the final state whose out-transitions go to the sink state, the \(m \)th state.

For a state \((i,j) \) in \(M \),
\[L_{i,j}(M) = L_i(A) \cup L_j(B). \]

Lemma 1. \(mn - (m + n - 2) - 2 = mn - (m + n) \) states are sufficient for \(L(A) \cup L(B) \).
Lemma 1. $mn - (m + n)$ states are sufficient for $L(A) \cup L(B)$.

The next question is whether or not the bound is reachable in general.
Lemma 1. $mn - (m + n)$ states are sufficient for $L(A) \cup L(B)$.

The next question is whether or not the bound is reachable in general.

The answer is YES and NO.
Lemma 2. The upper bound $mn - (m + n)$ cannot be reached with a fixed alphabet when m and n are arbitrarily large.

Proof.
Let A have $\{p_0, p_1, \ldots, p_{m-1}\}$ and B have $\{q_0, q_1, \ldots, q_{n-1}\}$.
We order the states such that if p_j is reachable from p_i, then $i < j$.
Let $i \in \{1, \ldots, m-1\}$. Any string that reaches p_i from p_0 can go through only the states p_1, \ldots, p_{i-1} in between and cannot visit the same state twice.
Hence, there are at most
\[
 t + t^2 + \cdots + t^i = \frac{t(t^i - 1)}{t - 1} = \text{def } D(i)
\]
strings that can reach p_i from p_0.
Lemma 2. The upper bound \(mn - (m + n) \) cannot be reached with a fixed alphabet when \(m \) and \(n \) are arbitrarily large.

Proof.
Let \(A \) have \(\{p_0, p_1, \ldots, p_{m-1}\} \) and \(B \) have \(\{q_0, q_1, \ldots, q_{n-1}\} \).
We order the states such that if \(p_j \) is reachable from \(p_i \), then \(i < j \).
Let \(i \in \{1, \ldots, m-1\} \). Any string that reaches \(p_i \) from \(p_0 \) can go through only the states \(p_1, \ldots, p_{i-1} \) in between and cannot visit the same state twice.
Hence, there are at most
\[
t + t^2 + \cdots + t^i = \frac{t(t^i - 1)}{t - 1} = \text{def } D(i)
\]
strings that can reach \(p_i \) from \(p_0 \).
Since \(M_\cup \) is deterministic, for any fixed \(i \) for \(1 \leq i < m - 1 \), at most \(D(i) \) of the pair-states \((p_i, q_j)\) are reachable from \((p_0, q_0)\) in \(M_\cup \).

Thus, if \(n - 2 > D(i) \), then some pair-states with \(p_i \) as the first component are not reachable. Therefore, the bound \(mn - (m + n) \) is not reachable.
Union of Finite Languages

- **Lemma 2.** The upper bound $mn - (m + n)$ cannot be reached with a fixed alphabet when m and n are arbitrarily large.

What if the size of an alphabet is NOT fixed?
Lemma 2. The upper bound $mn - (m + n)$ cannot be reached with a fixed alphabet when m and n are arbitrarily large.

What if the size of an alphabet is NOT fixed?

Lemma 3. The upper bound $mn - (m + n)$ is reachable if the size of the alphabet can depend on m and n.
Lemma 3. The upper bound \(mn - (m + n) \) is reachable if the size of the alphabet can depend on \(m \) and \(n \).

We prove the lemma by presenting two finite languages whose union reaches the bound.

Let \(\Sigma = \{b, c\} \cup \{a_{i,j} \mid 1 \leq i \leq m - 2, 1 \leq j \leq n - 2 \text{ and } (i,j) \neq (m-2,n-2)\} \)

Let \(A = (Q_1, \Sigma, \delta_1, p_0, \{p_{m-2}\}) \), where \(Q_1 = \{p_0, p_1, \ldots, p_{m-1}\} \) and \(\delta_1 \) is defined as follows:

- \(\delta_1(p_i, b) = p_{i+1} \), for \(0 \leq i \leq m - 2 \).
- \(\delta_1(p_0, a_{i,j}) = p_i \), for \(1 \leq i \leq m - 2 \) and \(1 \leq j \leq n - 2 \), \((i,j) \neq (m-2,n-2) \).

Let \(B = (Q_2, \Sigma, \delta_2, q_0, \{q_{n-2}\}) \), where \(Q_2 = \{q_0, q_1, \ldots, q_{n-1}\} \) and \(\delta_2 \) is defined as follows:

- \(\delta_2(q_i, c) = q_{i+1} \), for \(0 \leq i \leq n - 2 \).
- \(\delta_2(q_0, a_{i,j}) = q_j \), for \(1 \leq j \leq n - 2 \) and \(1 \leq i \leq m - 2 \), \((i,j) \neq (m-2,n-2) \).
Lemma 3. The upper bound $mn - (m + n)$ is reachable if the size of the alphabet can depend on m and n.

An example of two minimal DFAs for finite languages whose sizes are 6 and 5, respectively, where state 5 above and state 4 below are sink states.
Union of Finite Languages

Lemma 3. The upper bound $mn - (m + n)$ is reachable if the size of the alphabet can depend on m and n.

Let $L = L(A) \cup L(B)$. We show that there exists a set R consisting of $mn - (m + n)$ strings over Σ that are pairwise inequivalent modulo the right invariant congruence of L.

Let $R = R_1 \cup R_2 \cup R_3$, where

$R_1 = \{b^i \mid 0 \leq i \leq m - 1\}$.

$R_2 = \{c^j \mid 1 \leq j \leq n - 3\}$. (Note that R_2 does not include strings c^0, c^{n-2} and c^{n-1}.)

$R_3 = \{a_{i,j} \mid 1 \leq i \leq m - 2 \text{ and } 1 \leq j \leq n - 2 \text{ and } (i,j) \neq (m-2,n-2)\}$.

It is easy to verify that all strings in R are pairwise inequivalent. (The complete proof is given in the proceedings.)

Then, $|R| = mn - (m + n)$.
Union of Finite Languages

Theorem 1. Given two minimal DFAs A and B for finite languages, $mn - (m + n)$ states are necessary and sufficient in the worst-case for the minimal DFA of $L(A) \cup L(B)$, where $m = |A|$ and $n = |B|$.
Union of Finite Languages

Lemma 2 shows that the upper bound is unreachable if $|\Sigma|$ is fixed whereas Lemma 3 shows that the upper bound is reachable if $|\Sigma|$ depends on m and n.

Then, what is the state complexity of union with a fixed sized alphabet?
Lemma 4. There exist DFAs A and B, with m and n states respectively, that recognize finite languages over Σ such that the minimal DFA for $L(A) \cup L(B)$ requires $c(\min\{m, n\})^2$ states.

Proof.
Let $s \geq 1$ be arbitrary and $r = \lceil \log s \rceil$. We define the finite language

$L_1 = \{w_1w_2 \mid |w_1| = 2r, w_2 = \text{odd}(w_1) \in \{a, b\}^*, \text{even}(w_1) \in \{c, d\}^\ast \}$.

L_1 can be recognized by a DFA A with at most $10s$ states.
Union of Finite Languages

\[L_1 = \{ w_1 w_2 \mid |w_1| = 2r, w_2 = \text{odd}(w_1) \in \{a, b\}^*, \text{even}(w_1) \in \{c, d\}^* \}. \]

A DFA \(A \) that recognizes \(L_1 \) when \(r = 3 \). We omit the sink state and its in-transitions.
Union of Finite Languages

Symmetrically, we define

\[L_2 = \{ w_1w_2 \mid |w_1| = 2r, \text{odd}(w_1) \in \{a, b\}^*, w_2 = \text{even}(w_1) \in \{c, d\}^* \}. \]

The language \(L_2 \) consists of strings \(uv \), where \(|u| = 2r \), odd characters of \(u \) are in \(\{a, b\} \), even characters of \(u \) are in \(\{c, d\} \) and \(\text{even}(u) \) coincides with \(v \).

By a similar argument, \(L_2 \) can be recognized by a DFA \(B \) with at most 10s states.
Union of Finite Languages

Now let \(L = L_1 \cup L_2 \).

Let \(u_1 \) and \(u_2 \) be distinct strings of length \(2r \) such that odd\((u_i)\) \(\in \{a, b\}^* \) and even\((u_i)\) \(\in \{c, d\}^* \) for \(i = 1, 2 \).

- If \(\text{odd}(u_1) \neq \text{odd}(u_2) \): \(u_1 \cdot \text{odd}(u_1) \in L_1 \subseteq L \) but \(u_2 \cdot \text{odd}(u_1) \notin L \). Hence, \(u_1 \) and \(u_2 \) are not equivalent modulo the right invariant congruence of \(L \).
- If \(\text{even}(u_1) \neq \text{even}(u_2) \): \(u_1 \cdot \text{even}(u_1) \in L_2 \subseteq L \) but \(u_2 \cdot \text{even}(u_1) \notin L \).

The above implies that the right invariant congruence of \(L \) has at least \(2^r \cdot 2^r \geq s^2 \) different classes. Therefore, if \(m = n = 10s \) is the size of the minimal DFAs for the finite languages \(L_1 \) and \(L_2 \), then we know that the minimal DFA for \(L = L_1 \cup L_2 \) needs at least

\[
\frac{1}{100} n^2 \text{ states.}
\]
RECAP

- Structural properties of the k-lookahead determinism that might lead to an efficient XML Schema parser
- Fast regular-expression pattern matching algorithms
- State Complexity
Future Directions and Conclusions

Hierarchy of \(k \)-lookahead determinism

XML Schema parser

pattern matching + indexing

regular-expression pattern matching system for source codes

state complexity

pure theory

practical application
THANK YOU
ANY QUESTIONS??