Jun 25 2011 ERC Summer Workshop

복잡계 망에서의 정보 흐름 모델과 분석

Kyomin Jung Applied Algorithm Lab KAIST

Information Diffusion

- Various networks play fundamental roles as a medium for diffusion of information, ideas, and influence among its members.
 - □ World Wide Web
 - Infection networks
 - Co-authorship networks
 - Social Networks
- Understanding how information flows on networks, how often and when it results in large spreadings are important problems.

Threshold phenomenon

- Some kinds of influences spread greatly compared to others.
 - Public protests in Tunisia, Egypt, and Libya in 2001
 - □ The tipping point of Harry Potter in 2000
- Threshold phenomenon (appearance of large spreading)
 When an information spreads rapidly and dramatically at a certain moment.
 - □ In sociology, this moment is called tipping point.

Applications

Maximization of spreading of influences

- Advertisement
- Opinion spreading

Minimization of spreading of bad information Prevention of epidemics (vaccination) Public abnormality control

Studies on Information Diffusion

- Traditionally the diffusion of innovation studied in Sociology
 - □ Adoption of hybrid corn (Ryan and Gross, 1943)
 - Diffusion of innovations among physicians (Coleman et al., 1957)
 - Innovation decision process theory (Rogers, 1962)
- Lots of models have been investigated
 Linear threshold model
 SIR model

Information Diffusion Models

- A network is represented as a graph. Each user is considered as a node.
- Each node can be either active or inactive.
- By the "word-of-mouth" effects, each node's tendency to become active increases monotonically as more of its neighbors become active.
 - A node can switch to active from inactive, but does not switch in the other direction.

Linear Threshold Model

- Individuals make their decisions based on their neighbor's decisions.
- Each individuals have threshold value φ_v ∈ [0,1]
 □ Drawn from a distribution f ∈ C¹ in an i.i.d. manner.
- If the number of neighbor nodes that accepted the innovation exceed ϕ_v , then v adopt it.

Linear Threshold Diffusion Process

Initial adopter: 1

Final cascade size: 4

Previous Work on Linear Threshold Model

Information spreading and the occurrence of a tipping point have been analyzed for special cases
 Complete graph with any *f* (Granovetter, *The American Journal of Sociology*, 1978)

Infinite and locally tree-like graph with any f (Watts, PNAS, 2002)

Erdős-Rényi random network with constant f (Whitney, *Phys. Rev. E*, 2010)

Main Question

- Let t(k) be the cascade size with k proportion of initial adopters.
- Select k proportion of initial adopters uniformly at random and independently

Can we predict t(k) with high probability for a more general class of network structures and threshold distribution f?

Based on this analysis, can we predict when a tipping point will appear?

- □ We provide positive answers
 - Work with Seulki Lee and Hyuna Kim

Experiments

- Dataset
 - Facebook network
 - New Orleans regional network
 - |V| = 60,290, |E| = 1,545,686, average degree = 23
 - MySpace network
 - IV| = 100,000, |E| = 6,854,231, average degree = 137
 - Erdős-Rényi random network
 - IV = 100,000, average degree = 100
 - Complete graph
 - |V| = 100,000

Setup

 $\Box f \sim N(\mu, \sigma)$ with various μ and σ values (Rogers, 1962)

Experiment Results

For many values of μ and σ, we observe that tipping point occurs for both real world social networks and synthetic networks

Experiment Results

 $\mu = 0.4 \sigma = 0.1$

 $\mu = 0.4 \sigma = 0.2$

SIR Model

- The SIR model is originally used to model diffusion of epidemics.
- An individual in a network is susceptible for the first time, having a possibility to be infected. After infected, it remains infected for a while, infecting contactees. Finally, it is cured (removed).

- This process explains a *simple* way of information diffusions or social interactions.
 - Facebook, Twitter retweet, information spreading in the blog space, etc

SIR Model

The SIR spreading procedure examples

Our Interests

We are interested in ...
 Probabilities of large spreading
 Sizes of large spreading
 Conditions under which large spreading occurs

Outline of Our Results

- Work with Sungsu Lim and Namju Kwak
- Previous work considers only the case when the diffusion probability is a constant for each edge.
- We consider when the diffusion probability depends on the local information of the two end nodes
 - which appears often in social networks and complex networks
- We obtain formula to exactly compute probabilities and sizes of large spreading of a network under the SIR model using the degree distribution of the network.
- The results of our mathematical calculations are very similar to the empirical results.

Use the SIR spreading model.

$$\square p_{i,j} = f(d_i, d_j) = \frac{c}{d_i} \text{ and } p_{i,j} = f(d_i, d_j) = \frac{c}{d_j}$$

- Simulations are performed on ...
 - Preferential attachment graph
 - □ General random graph
 - Facebook and Myspace friendship graph
- A single initial infectious (I) node is randomly picked. All the other nodes are susceptible (S).
- Observe probabilities and sizes of large spreading at the end of the procedure.

KAIST Applied Algorithm Lab

KAIST Applied Algorithm Lab

KAIST Applied Algorithm Lab