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" A
Information Diffusion

m Various networks play fundamental roles as a
medium for diffusion of information, ideas, and
influence among its members.

World Wide Web
Infection networks
Co-authorship networks
Social Networks

m Understanding how information flows on networks,
how often and when it results in large spreadings
are important problems.
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" A
Threshold phenomenon

m Some kinds of influences spread greatly compared
to others.

Public protests in Tunisia, Egypt, and Libya in 2001
The tipping point of Harry Potter in 2000

m Threshold phenomenon (appearance of large spreading)

When an information spreads rapidly and
dramatically at a certain moment.

In sociology, this moment is called tipping point.
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" A
Applications

m Maximization of spreading of influences
Advertisement
Opinion spreading

m Minimization of spreading of bad information
Prevention of epidemics (vaccination)
Public abnormality control
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" A
Studies on Information Diffusion

m Traditionally the diffusion of innovation studied in
Sociology

Adoption of hybrid corn (Ryan and Gross, 1943)

Diffusion of innovations among physicians (Coleman
etal., 1957)

Innovation decision process theory (Rogers, 1962)

m Lots of models have been investigated
Linear threshold model
SIR model
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" A
Information Diffusion Models

m A network is represented as a graph. Each user is
considered as a node.

m Each node can be either active or inactive.

m By the “word-of-mouth” effects, each node’s
tendency to become active increases monotonically
as more of its neighbors become active.

A node can switch to active from inactive, but does not
switch in the other direction.
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" A
Linear Threshold Model

m Individuals make their decisions based on their
neighbor’s decisions.

m Each individuals have threshold value ¢, € [0,1]

Drawn from a distribution f € C! in anii.i.d.
manner.

m If the number of neighbor nodes that accepted the
innovation exceed ¢, then v adopt it.
8¢

U buy a smart \""':jjjjj_‘::::.:::_,-yﬁb/
phone, if 60% of | 7 \
~ my friendsuseit | \ .,
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Linear Threshold Diffusion Process

Initial adopter: 1

@ @ Final cascade size: 4

(o,
@Q@ Stop!
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"
Previous Work on Linear Threshold Model

m Information spreading and the occurrence of a
tipping point have been analyzed for special cases

Complete graph with any f

(Granovetter, The American Journal of Sociology, 1978)

Infinite and locally tree-like graph with any f
(Watts, PNAS, 2002)

Erdés-Rényi random network with constant f
(Whitney, Phys. Rev. E, 2010)
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" A
Main Question

m Lett(k) be the cascade size with k proportion of
initial adopters.

m Select k proportion of initial adopters uniformly at
random and independently

Can we predict t(k) with high probability
for a more general class of network structures and
threshold distribution f?

Based on this analysis, can we predict
when a tipping point will appear?

We provide positive answers
= Work with Seulki Lee and Hyuna Kim
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" A
Experiments

m Dataset

Facebook network

s New Orleans regional network

s |V|=60,290, |E| = 1,545,686, average degree = 23
MySpace network

= |V|=100,000, |[E| =6,854,231, average degree =137
Erdds-Rényi random network

= |V|=100,000, average dearee =100

Complete graph
= [V|=100,000
Innovators
2.5% Early Early Late
Adopters| Majority Majority [Laggards
. Setup 13.5% 34% 34% 16%

Diffusion of innovations curve

f~N(u, o) with various u and o values  (Rogers, 1962)
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Cascade size (%)

Experiment Results
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m For many values of u and o, we observe that tipping
point occurs for both real world social networks and

synthetic networks
KAIST Applied Algorithm Lab 12



Experiment Results
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" A
SIR Model

m The SIR model is originally used to model diffusion of

epidemics.

m An individual in a network is susceptible for the first

time, having a possibility to be infected. After infected, it

remains infected for a while, infecting contactees.

Finally, it is cured (removed).

Susceptible

Infected

Removed

m This process explains a simple way of information
diffusions or social interactions.

Facebook, Twitter retweet, information spreading in

the blog space, etc
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" A
SIR Model

m The SIR spreading procedure examples

0 0
pij = 0.5 pij = 0.75

@ susceptible

QO infectious

@ removed
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Our Interests

m We are interested in ...
Probabilities of large spreading
Sizes of large spreading

Conditions under which large spreading
occurs
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" A
Outline of Our Results

m Work with Sungsu Lim and Namju Kwak

m Previous work considers only the case when the
diffusion probability is a constant for each edge.

m We consider when the diffusion probability depends on
the local information of the two end nodes
which appears often in social networks and complex networks

m We obtain formula to exactly compute probabilities and
sizes of large spreading of a network under the SIR
model using the degree distribution of the network.

m The results of our mathematical calculations are very
similar to the empirical results.
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" A
Simulations

m Use the SIR spreading model.
pij = f(didy) =5 and pi; = f(di dj) = o-
m Simulations are performed on ...
Preferential attachment graph
General random graph

Facebook and Myspace friendship graph

m A single initial infectious (/) node is randomly
picked. All the other nodes are susceptible (S).

m Observe probabilities and sizes of large spreading
at the end of the procedure.
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Simulations
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Simulations
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Simulations
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