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Information Diffusion 

 Various networks play fundamental roles as a 
medium for diffusion of information, ideas, and 
influence among its members. 

 World Wide Web 

 Infection networks 

 Co-authorship networks 

 Social Networks 

 

 Understanding how information flows on networks, 
how often and when it results in large spreadings 
are important problems. 
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Threshold phenomenon 

 Some kinds of influences spread greatly compared 

to others. 

 Public protests in Tunisia, Egypt, and Libya in 2001 

 The tipping point of Harry Potter in 2000 

 

 Threshold phenomenon (appearance of large spreading) 

 When an information spreads rapidly and 

dramatically at a certain moment.  

 In sociology, this moment is called tipping point. 
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Applications 

 Maximization of spreading of influences 

 Advertisement 

 Opinion spreading 

 

 

 Minimization of spreading of bad information 

 Prevention of epidemics (vaccination) 

 Public abnormality control 
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 Traditionally the diffusion of innovation studied in 

Sociology 

 Adoption of hybrid corn (Ryan and Gross, 1943) 

 Diffusion of innovations among physicians (Coleman 

et al., 1957) 

 Innovation decision process theory (Rogers, 1962) 
 

 Lots of models have been investigated 

 Linear threshold model 

 SIR model  

 

Studies on Information Diffusion 

KAIST Applied Algorithm Lab 5 



Information Diffusion Models 

 A network is represented as a graph. Each user is 

considered as a node.  

 Each node can be either active or inactive.  

 

 By the “word-of-mouth” effects, each node’s 

tendency to become active increases monotonically 

as more of its neighbors become active.  

 A node can switch to active from inactive, but does not 

switch in the other direction.   
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 Individuals make their decisions based on their 

neighbor’s decisions. 

 Each individuals have threshold value 𝜙𝑣 ∈ [0,1] 

 Drawn from a distribution 𝑓 ∈ 𝐶1 in an i.i.d. 
manner. 

 If the number of neighbor nodes that accepted the 

innovation exceed 𝜙𝑣, then 𝑣 adopt it. 

 

Linear Threshold Model 

I’ll buy a smart 
phone, if 60% of 
my friends use it 
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Linear Threshold Diffusion Process 
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 Information spreading and the occurrence of a 

tipping point have been analyzed for special cases 

 Complete graph with any 𝑓 
(Granovetter, The American Journal of Sociology, 1978) 

 

 Infinite and locally tree-like graph with any 𝑓 
(Watts, PNAS, 2002) 

 

 Erdős-Rényi random network with constant 𝑓 
(Whitney, Phys. Rev. E, 2010) 

 

 

Previous Work on Linear Threshold Model 
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Main Question 

Can we predict 𝑡 𝑘  with high probability 
for a more general class of  network structures and 
threshold distribution 𝑓? 
 
Based on this analysis, can we predict  
when a tipping point will appear? 

 

 Let 𝑡(𝑘) be the cascade size with 𝑘 proportion of 
initial adopters. 
 

 Select 𝑘 proportion of initial adopters uniformly at 
random and independently 

 

 

    

 

 
 

 We provide positive answers 
 Work with Seulki Lee and Hyuna Kim 
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 Dataset 

 Facebook network  

 New Orleans regional network 

 |V| = 60,290, |E| = 1,545,686, average degree = 23  

 MySpace network 

 |V| = 100,000, |E| = 6,854,231, average degree = 137 

 Erdős-Rényi random network 

 |V| = 100,000, average degree = 100 

 Complete graph 

 |V| = 100,000 

 

 Setup 

 𝑓~𝑁(𝜇, 𝜎) with various 𝜇 and 𝜎 values 

Experiments 

Diffusion of innovations curve  

(Rogers, 1962)  
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Experiment Results 
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 For many values of  𝜇 and 𝜎, we observe that tipping 

point occurs for both real world social networks and 

synthetic networks 
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Experiment Results 
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SIR Model 

 The SIR model is originally used to model diffusion of 

epidemics.  

 An individual in a network is susceptible for the first 

time, having a possibility to be infected. After infected, it 

remains infected for a while, infecting contactees. 

Finally, it is cured (removed). 

 

 

 This process explains a simple way of information 

diffusions or social interactions. 

 Facebook, Twitter retweet, information spreading in 

the blog space, etc 

Susceptible Infected Removed 
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SIR Model 

 The SIR spreading procedure examples 

𝑝𝑖,𝑗 = 0.5 𝑝𝑖,𝑗 = 0.75 

susceptible 

infectious 

removed 
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Our Interests 

 We are interested in … 

Probabilities of large spreading 

Sizes of large spreading 

Conditions under which large spreading 

occurs 
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Outline of Our Results 

 Work with Sungsu Lim and Namju Kwak 
 

 Previous work considers only the case when the 

diffusion probability is a constant for each edge. 

 We consider when the diffusion probability depends on 

the local information of the two end nodes 

 which appears often in social networks and complex networks 

 

 We obtain formula to exactly compute probabilities and 

sizes of large spreading of a network under the SIR 

model using the degree distribution of the network. 
 

 The results of our mathematical calculations are very 

similar to the empirical results. 
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Simulations 

 Use the SIR spreading model. 

 𝑝𝑖,𝑗 = 𝑓 𝑑𝑖 , 𝑑𝑗 =
𝑐

𝑑𝑖
  and 𝑝𝑖,𝑗 = 𝑓 𝑑𝑖 , 𝑑𝑗 =

𝑐

𝑑𝑗
 

 Simulations are performed on … 

 Preferential attachment graph 

 General random graph 

 Facebook and Myspace friendship graph 

 A single initial infectious (𝐼) node is randomly 

picked. All the other nodes are susceptible (𝑆). 

 Observe probabilities and sizes of large spreading 

at the end of the procedure. 
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Simulations 
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Simulations 
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Simulations 
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