KAIST Provable SW 1Al

SAM AEFE

2011-06-27



Motivations (1/2)

Many SW applications utllize multi-threaded
programming techniques as multi-core hardware
become widely spread.

Writing correct multi-threaded programs is difficult.
— Exponential number of execution scenarios
— Detecting errors by assertion is not effective

=» Bug detection technigues specialized for
concurrency errors

2011-06-27 M Hong,Shin @ PSWLAB



Motivations (2/2)

« Many techniques have evolved
— Deadlock : [K. M. Chandy et al., TOCS 1983],
[R. Agarwal et al. , IBM J. 2010]

 However, for race bugs, techniques have used their own
definitions and notations without any reliance on a common

ground or platform.

Bug checking method

Bug name Specification Target program
Kivati Atomicity User annotation C m Memory access pattern in run-time
: . nnotations rogra .
vatl violation Ser prog y P
LiteRace Data race N/A x86 binary Execution orders in run-time
High-level | Analyze code and Relationship between synchronization
Havelund et al. dat . - Java . . . _
ataracé | infer specifications and variables in run-time execution

=» Develop classification which clarify the relationship between techniques

and provide a clear top-down view of race detection techniques

Hong,Shin @ PSWLAB

2011-06-27




Approach (1/2)

* Provide a formal execution model and specify various bug

conditions according to the model

- Decoupling what to detect and how to detect

— Concurrent behavior analyses: generate potential executions of a program
by information from static/dynamic analyses [F. Chen et al. ICSE 2008]

— Bug condition checking: examine a given execution is
acceptable/erroneous

(- )
Code Concurrent % % % % % % % % Bug
behavior > condition
checking

analysis " .
k ) Possible executions

Executions I Req,

2011-06-27 M Hong,Shin @ PSWLAB



Approach

« Classify bug conditions according to type of specifications

- (A1) thread(p) [ (A2) oprd(p) (A3) eonflict(p.q) (Ad) p pq
—_— O p e r atl O n b | O C k RaCe- 1 precise precise W—=R [ R=W [ WoW [ R=R || Tock others
. thread info. alias info.
L techni qUES [Toaan 0 0 O 1 0 1 0 ] X O] thead forjon
— Data aSSOClatlon Chord [22] A iy 0 0 0 X [0 N/A
Eraser [27] A 0 0 0 0 X 0 N/A
Hybrid Data 8] 4] 0 [6] 0 X 0 msg. passing
Race Detection [24]
Racer [2) 0 [§] 0 0 0 X 0 N/A
RacerX [7] A A 0 | © 0 [ X [ O N/A
ReeJava [9] A A 0 0 0 0 0 N/A
RELAY [30] A A 0 0 0 X 0 N/A
RaceTrack [34] A 0 0 0 0 X 0O | thread fork-join
TRaDe [6] A 0 0 0 0 X 0 N/A
LiteRace [21] ¢} 0 0 0 0 X O | atomic operation,
msg. passing

2011-06-27 M Hong,Shin @ PSWLAB



« Execution model for multithreaded program

* Four classes of race detection techniques
— For each class,
* bug example
* bug conditions
 techniques for checking conditions

« Implications for better race detections

2011-06-27 M Hong,Shin @ PSWLAB



Execution Model

« An execution model of a target program P used for technique D is defined as

EMAD) = (T, e, >}, B,, Ayl

Program behavior Requirements

o T afinite set of threads

* e:an interleaved execution
a finite sequence of operations p,, p,, ... , p, where p,cOperation

- thread(p) € T
- optr(p) € Operator

con flict(optr(p), optr(q)) if the operators of p and ¢ are commutable.
- oprd(p) € Vg

2011-06-27

Hong,Shin @ PSWLAB



Execution Model

« An execution model of a target program P used for technique D is defined as

EMP(D) — (T1 €, > ' Bop’ Adata)

o T": afinite set of threads

* e:an interleaved execution
a finite sequence of operations p,, p,, ... , p, where p,cOperation

- thread(p) € T
- optr(p) € Operator

con flict(optr(p), optr(q)) if the operators of p and ¢ may not be commutable.
- oprd(p) € Vg

2011-06-27

Hong,Shin @ PSWLAB



Execution Model

« An execution model of a target program P used for technique D is defined as

2011-06-27

EMP(D) - (T1 €, > ’ Bop’ Adata)

- Operations in an execution are totally ordered by their start time.

- > C Operation x Operation

(0, @) e> 1T t,(p) <tylg) and t.(p) <t.(q)

pb>r
pD>q

T % q
qiFr

Hong,Shin @ PSWLAB



Execution Model (4/5)

« An execution model of a target program P used for technique D is defined as

EMP(D) — (T1 e, >, Bop’ Adata)

B,,={by, by, ..., } where b, : Operation X Operation
An execution of an atomic code region corresponds

to a sequence of operation, operation blocks.
(p, q) € b; indicates that p and g are in the same operation block.

class BankAccount {
int balance ;

void withdraw(int amount) {
it (getBalance() >= amount) {
lTock(m) ;
balance = balance - amount ;
unlock(m) ;

2011-06-27 M Hong,Shin @ PSWLAB



Execution Model

« An execution model of a target program P used for technique D is defined as

EMP(D) - (T1 €, > ’ Bop’ Adata)

A, Ve x Vo where Vi is a set of shared variables

Frequently, variables in a composite data structure have dependencies

and there exists relations/invariances on these variables.

class BankAccount {
int balance ;
int debt ;
/* invariant: (debt == A balance == 0) v
(debt > 0 A balance == 0) V
(balance > 0 A debt == 0) */

> (balance, debt) € 4,,,
(debt, balance) € A,,,,

2011-06-27

Hong,Shin @ PSWLAB



« EXxecution model for multithreaded program

* Four classes of race detection techniques
— For each class,
* bug example
* bug conditions
 techniques for checking conditions

* Implications for better race detections

2011-06-27 M Hong,Shin @ PSWLAB



Race-1: Data-race

In parallelization,

{

{
)
}
}

A sufficient condition for safe parallelization:
MemoryRead(B,) N MemoryWrite(B,) = & and
MemoryWrite(B,) N MemoryRead(B,) = &

* |n “What are race conditions?” [R. H. Netzer et al., LOPLAS 1992],
a data race <a, b> over an execution exists if and only if
(1) a data conflict exists in a program between a and b,
(2) no temporal ordering between a and b.

2011-06-27 M Hong,Shin @ PSWLAB



Race-1: Data-race

In [Savage et al., SOSP 1997],
a data race occurs when there exists two operations
(1) executed by two concurrent threads,
(2) access a shared variable
(3) at least one access Is write,
(4) no explicit mechanism to coordinate their execution order

2011-06-27 M Hong,Shin @ PSWLAB



Race-1: Data-race

- Buggy program code

- Error scenario

class BankAccount A {
int balance;
// balance should be non-negative
void withdraw (int x) {

1: 1if (balance >= x) {

2 balance = balance - x;}}

[ balance = 10 ]

—-tl: withdraw(10)-- :--t2: withdraw(10)—-

1:if (balance>= 10)
:2:balance = 10-10; @

2:balance = 0 - 10;

:1:if (balance >= 10)

v

} The invariant is violated:
balance becomes -10.

« Atarget program P has a race-1 bug if there is an execution ¢ such that
o has two operations p and ¢ that satisfy the following conditions:

A~~~
N
N =
—_— — — —

A s
(I

thread(p) # thread(q)
oprd(p) N oprd(q) # &
con flict(optr(p), optr(q))
PP aAqp

p and g are commutable?

w

Hong,Shin @ PSWLAB

2011-06-27



Race-1: Data-race

Race-1 Detection Techniques

2011-06-27

CHE MEE T2 OO HAMAMELR

=

T O

0 H =
Eﬂ'ﬂ —Tr

(A1) (A2) (A3) (A4)
thread(p) | oprd(p) N con flict(optr(p), optr(q)) ptq
#thread(q) | oprd(Q) # D | wr | rRw | ww | RR
. concrete concrete tracking lock acqg/rel,
Choietal thread id. mem. addr. = e 2 A thread fork/join
Eraser check shared SRR @) @) O X tracking lock acqg/rel
or non-shared | mem. addr.
Hybrid data concrete concrete tracking lock acqg/rel,
race . @) @) @) X .
. thread id. mem. addr. message send/receive
detection
concrete concrete :
Racer thread id. mem. addr. O O O X tracking lock acqg/rel
check shared | concrete tracking lock acq/rel,
RaceTrack or non-shared | mem. addr. = = 2 X thread fork/join
TRaDe check shared - SEUEESS O O O X tracking lock acqg/rel
or non-shared | mem. addr.
tracking lock acqg/rel,
. concrete concrete .
LiteRace . @) @) @) X message passing,
thread id. mem. addr. . :
atomic instructions
Chord static approx. static a}llas O 0] @) X tracking lock acqg/rel
analysis
RacerX static approx. static a}llas O 0] O X tracking lock acqg/rel
analysis
RELAY static approx. static a}llas O 0] O X tracking lock acqg/rel
analysis
RccJava static approx. Ztr]aatlllcsailgas @) @) O @) tracking lock acqg/rel

Hong,Shin @ PSWLAB




Race-1: Data-race

« Limitations — false positive

|
| T »
| |

|

Interferences by ¢ do not affect the correctness
of further executions of 7}

Casel: no further p is dependent on p
Case2: p and g are commutable due to semantics

2011-06-27 M Hong,Shin @ PSWLAB



Race-1: Data-race

* Limitations — false negative

~
5
=
IS

< , q
: : . >
1 I 1 I
1 I 1 I
I I — < i
! < :
: . | >
| i | | >
1 I 1 I
1 | | ' .
1 1 | - .
| | | Invariant/constraints over
| | ! z, and z, might be broken
| | | | |
1 1 1 1

2011-06-27 M Hong,Shin @ PSWLAB



Race-2: Atomic Block Violation (1/5)

« Race-2 techniques check whether or not an operation block can
interfere with another thread.

In [Savage et al., SOSP 1997],

2011-06-27

From a previous slide for race-1

a data race occurs when there exists two operations
(1) executed by two concurrent threads,
(2) access a shared variable

(3) at least

a sequence of
accesses

ONE aCCESS

ISWrite,

(operation block)

(4) no explicit mechanism to coordinate their execution order

Hong,Shin @ PSWLAB



Race-2: Atomic Block Violation (2/5)

« Atarget program P has a race-2 bug if there is an execution ¢ such that
o has three operations p, p’, and ¢ that satisfy the following conditions:

(B Sheed) = Hhreai) ! z 15
(B2)  oprd(p) N oprd(g) = D : |
(B3)  conflict{optr(p), optr(q)) },9 ;
(B4)  3b € B,,.((p, 1) €b;) : : (IJ
(B5)  oprd(p) N oprd(y) # @ : : .
(B6)  conflict(optr(p), optr(p) :, ;
(B7)  oprd(p) N oprd(q) # @ P ,
(B8)  conflict(optr(pl), optr(q))
(B9) q¥p N PHg | | |

2011-06-27 M Hong,Shin @ PSWLAB



Race-2: Atomic Block Violation (3/5)

« Race-2 bug example:

- Buggy program code - Race-2 error scenario
class BankAccount B {
Lock m; - [ balance = 10 ] :
// balance should be non-negative O.P_GIfit'_O_n_b_lch_k_b ________ o

// balance should be synchronized by m |iLl1:if (getBalance () >—10)'§
NER lock(m), E
3:unlock(m),

4:return tmp;

int getBalance() {
int tmp;
lock (m) ;
tmp = balance ;
unlock (m) ;
return tmp; }

12: lock (m) ;
13: balance=10-10; g
14: unlock (m) ;

S w N -

void withdraw (int x) {
/*Q@atomic region begins*/
11: if (getBalance() >= x) {

12: lock (m) ; The invariant is violated:
13: balance = balance - x ; balance becomes -10. :
14: unlock (m); } \ 4

/*Q@atomic region ends*/

2011-06-27 M Hong,Shin @ PSWLAB



Race-2: Atomic Block Violation (4/5)

* Race-2 Detection Techniques

(B1) (B2, (B6) (B3, BS) (B9)
B4,B7) | con flict(optr(p), optr(q)) | con flict(optr(p), optr(q))
thread() | oprd0 where thread(p) # thread(q) | where thread(p) = thread(q) 4
W-R R-W W-W R-R W-R R-W W-W R-R
Atomic-Aid t%?g;;eit g_ ooneree o) O | Cond. X o) o) 0 0 tracking lock/unlock
AtomRace t%?gg[fit 0| e o) O |Cond. | X o) o) 0 O | tracking lock/unlock
AVIO t%c;re];:jeitg . mceomn?;edtgr. O O Cond. X O O O O executtci)ct){::| order
Blockbased | conae | oot | o | o |comt| X | 0 | 0 | o | o |
Commit-node | (O0o°® | cone@e o o) o) X o) o) o) O | e
e o [ evm T 5 [0 [ o | x | o | 0| o | o |
Kivati cone | pmeree | O O |cCond. | X o) o) o) o) oA
so  Jeme == T o [0 | o | o [ x| X |0 |0 ..
PENELOPE | ;onor®e | <o | o o) o) X 0 0 0 O | tracking lock/unlock
veoarome | e [ = T | 0 | o | x | o | o | o | o |wime
Atomizer ;;?Jtri; a:al\i@/zis o) o) o) o) o) o) o) O | tracking lock/unlock

2011-06-27 M Hong,Shin @ PSWLAB



Race-2: Atomic Block Violation (5/5)

« Limitation: false-negative

- Limitations — false negative

T,

Iy
|
I

L J

F 3

Ty

F 3

vy Y

]
Invarlantfconstramts

over x, and x, might
be brot( L

2011-06-27

Hong,Shin @ PSWLAB




Race-3: Data Assoc. Violation (1/4)

« Aunit of data can be located in two or more distinct variables.
« Race-3 detection techniques look for inconsistent updates of associated

variables. [K. Havelund VVEIS03, S. Lu SOSP07, F. Tip ICSEO08]

In [Savage et al., SOSP 1997], From a previous slide for Race-1
a data race occurs when there exists two operations
(1) executed by two concurrent threads,
(2) access|a shared variable _

: : set of variables
(3) at least one access is write, . .
o _ _ (associated variables)

(4) no explicit mechanism to coordinate tREFreXecution oraer"

memory area,

2011-06-27 M Hong,Shin @ PSWLAB



Race-3: Data Assoc. Violation (2/4)

« Race-3 bug condition:

(C1)  thread(p) # thread(q)

(C2) Jvy, v,€Vs.(vi€0prd(p) N vy€oprd(q) N (vy, v2)€EA 410)

(C3) con flict(optr(p), optr(q))

(C4) pH¥qg N q¥p

2011-06-27 M Hong,Shin @ PSWLAB



Race-3: Data Assoc. Violation (3/4)

 Example

class BankAccount_C { [ balance=0, debt=10 ]
int balance ; ——t1l: deposit(20)-- : --t2: withdraw(5)--
int debt : §21:if(getBalance()==0)

/* Invariant:
(balance == 0 A debt == 0) Vv
(debt > 0 — balance == 0) VvV

11l:lock(m_debt) ; :
12:if(0 < 10 && 10 <=20):
13:tmp = 20-10; :

(balance > 0 — debt == 0) */ 14:dept=0;
= (balance, debt) € A4,,,, A 15:unlock (m_debt) ;
(debt, balance) € A4,,, 16:lock (m_balance); © 22:1lock (m_debt) ;

17:balance = 10; D

Lock m_balance ;
Lock m_debt ; The invariant is violated:

balance is 10 and debt is 5

23:debt = 0+ 5; 0

2011-06-27 M Hong,Shin @ PSWLAB



Race-3: Data Assoc. Violation (4/4)

« Race-3 detection techniques

(C1) (C2) (C3) (C4)
Adata
thread() con flict() Dé
transi- [ symm-
Type tive etric Source
W-R :
. Concrete . ’ tracking
MultiRace read d [ aq, ay, ..., a,] O O User annotation \F/%VV\\//V loek/unlock
. W-R, .
MUVI-Eraser | Heuristics <(ay, t1), (ay, t5)> X X Inferring RW. tracking
where t,, t, € {rd, wr, rd&wr} from executions W-W lock/unlock
Object data Static { } o o User annotation \F/{V_;/s' tracking
race detection | apprx. A1y A2y weey Gy Wow lock/unlock

2011-06-27 M Hong,Shin @ PSWLAB



Race-4 (1/4)

« Race-4 techniques utilize both operation block and data association
together to reduce false positives and false negatives.

In [Savage et al., SOSP 1997], From a previous slide for Race-1
a data race occurs when there exists two operations
(1) executed by two concurrent threads,
(2) access|a shared variable
(3) at least jone accesy is write,
(4) no explicit mechanism to coordinate their execution order

2011-06-27 M Hong,Shin @ PSWLAB



Race-4 (2/4)

« Race-4 bug conditions:

Race-B conditions

(D1)  thread(p) # thread(q) Race-C conditions

(D2) vy, vy € Va(vi€oprd(p) A vycoprd(q) N (v, vy) € Agypy)
(D3)  conflict(optr(p), optr(q))

(D4)  Fvs, vy € Va(vg€oprd(p) N vy€oprd(q) N (vs, vg) € Agyrg)
(D5)  conflict(optr(p"), optr(q))

(D6) b€ B,.((pp)e€b)

(D7) s, vg€ Va.(vs€oprd(p) A vg€oprd(q) N (vs, vg) € Agyry)
(D8)  con flict(optr(p), optr(p'))

(D9)  aq¥p N PH¥a

2011-06-27 M Hong,Shin @ PSWLAB



- Buggy program - Error execution scenario

class BankAccount D {

?gikaiance, debt ; [balance=0, debt=10 ]
/* (balance, debt)e A,,, _ : _
(debt, balance)€ Ay, */ --t1l: withdraw(5)-- : --t2: deposit(20)--
int getBalance (int x) { l11 if (getBalance ()== 0)
int tmp; :Ial: lock (m) ;
1: Tock(m; :
2: tmp = balance; : 3: unlock(m);
3: unlock(m); I 21:1lock(m) ;
4: return tmp;} : 22:if (0 == 0)
: 23:if (20 > 10);
int withdraw(int x) (____ | 24:balance= 20-10; €l
11: Iif (getBalance () == 0) { Ib : 25:debt = 0;
12: | lock(m); 1 71 : 26 -
12: | debt — de?t X I :12:lock(m); 27 :unlock (m) ;
: 1 unlock(m);}} I v
——————————————— - .
int deposit(int x) { |14 unlock(m), :
21: lockm); |TTTTmEmEEEmEmEEEETmEEEEEET
22: 1f (balance == 0) {
23 if (x > debt) { The invariant is violated:
24 balance = x - debt; balance is 10 and debt is 15
25: debt = 0; }
26:

27: unlock(m); }

2011-06-27 M Hong,Shin @ PSWLAB



» Race-4 detection techniques

(D1) (D2, D4, D7) (D3,D5) | (D6,D8) (D9)
A data conflict() | conflict()
thread() where where P
transi- symm- thread(p) | thread(p)
Type tive etric #thread(q) | #thread(q)
Atomic-Set Concrete W-R, \FIQV_;E total .
serializabilit thread id < 0, 02> © © R w-w, | execution
y : W-W ' order
R-R
W-R
W-R ! total
Concrete ' R-W, .
ColorSafe thread id. < ay, ay> ) @) R-W, WAW, execution
W-W R-R order
W-R, W-R,
Method- Static aporx <(ay, ty), (az, 5)> 0 0 R-W, R-W, tracking
consistency PP where W-W, W-W, lock/unlock
t,, t, € {read, update} R-R R-R
Concrete <(aq, ty), (a,, ty)> W-R, \évvs total
MUVI-AVIO thread id. where R-W, W_W’ execution
ty, t, € {rd, wr, rd&wr} W-W(cond), R—R, order
View- ti?g;;eit; <(ay, £.), (@, £,)> o o \F/evvs \F/evvs tracking
consistency ' L 21 A2 2 W-W, W-W, lock/unlock
R-R R-R

2011-06-27 M Hong,Shin @ PSWLAB



Implications to Better Race Detection (1/2)

 Relations in four class of race detections

Class-D _ 7 ' o
dataraces Fig.5 .  Fig.6
. "":============:‘\\l
Class-C I ' e grassansansasans, .
data races _>| T ! I:.04 :
r FIg.S 1]. :
Class-B — Y J I J i)
dataraces | Ml i
l . OFig.8
Class-A —-\—>,
dataraces  t.—.—--- - False data races (F)
Class-C
data races >/ TrTrT T ~ True data
Class-A Fig5/ e v faces(l)
i 'Fig.5. RS F——— .
data races T ® o :
Class-B .1 i Fig3 | Fig4
data races | : :

2011-06-27



Implications to Better Race Detection (2/2)

« Static analyses can be applied for much precise race detections
— Only few work use static analyses for inferring/checking

M. J. Harrold, G. Rothermel, and S. Sinha. “Computation of Interprocedural Control Dependence”
Proceedings of the ACM International Symposium on Software Testing and Analysis, March 1998.

2011-06-27

operation block and data associations

Theorem 1. Let G** = (G,X, D,U) be a defluse graph with
G = (N, FE),and let u,v € N. If u is semantically dependent on
v and this semantic dependence is finitely demonstrated, then u is
syntactically dependent on v.?

Theorem 1 is significant because it shows that, given appropriate
definitions of control and data dependence, syntactic dependence 1s

a necessary condition for (finitely demonstrated) semantic depen-

\dence. Thus, the theorem provides justification for algorithms that

use syntactic dependence to approximate semantic dependence. We
refer to this desirable relationship between syntactic and semantic
dependence as the “synfactic—semantic relationship”.

Hong,Shin @ PSWLAB




