
Identifying Non-Essential
Changes Using Semantic
Code Clone Detection

Yungbum Jung
Programming Language Laboratory

Seoul National University
@ROSAEC Workshop

 의미 코드 쌍 탐지 기술로
불필요한 코드 변화 찾기

정영범

서울대학교 프로그래밍 연구실
6회 ROSAEC 워크샵 @ 파주

 의미 코드 쌍 탐지 기술로
불필요한 코드 변화 찾기

정영범

서울대학교 프로그래밍 연구실
6회 ROSAEC 워크샵 @ 파주

박사

Non-Essential Changes in Version Histories

David Kawrykow and Martin P. Robillard
McGill University
Montréal, Canada

{dkawry,martin}@cs.mcgill.ca

ABSTRACT
Numerous techniques involve mining change data captured in soft-
ware archives to assist engineering efforts, for example to identify
components that tend to evolve together. We observed that impor-
tant changes to software artifacts are sometimes accompanied by
numerous non-essential modifications, such as local variable refac-
torings, or textual differences induced as part of rename refactor-
ing. We developed a tool-supported technique for detecting non-
essential code differences in the revision histories of software sys-
tems. We used our technique to investigate code changes in over
24 000 change sets gathered from the change histories of seven
long-lived open-source systems. We found that up to 15.5% of
a system’s method updates were due solely to non-essential differ-
ences. We also report on numerous observations on the distribution
of non-essential differences in change history and their potential
impact on change-based analyses.

Keywords
Mining software repositories, software change analysis, differenc-
ing algorithms

1. INTRODUCTION
Source code repository systems have been in use since the 1970s

to keep track of the different versions of a system’s artifacts and,
by extension, of the changes made between versions [22]. Numer-
ous techniques now involve mining change data captured in soft-
ware archives to assist software engineering efforts. For example,
mining change data has been used to measure code decay in aging
systems [5], to predict defects in modules [10, 16], and to detect
non-obvious relationships between code elements [8, 23, 25]. We
refer to approaches operating on change data as change-based ap-
proaches.

Typical version control systems store changes as line-based tex-
tual deltas between committed code files. In contrast, change-based
approaches generally aim to operate on more meaningful represen-
tations of change, such as, for example, the individual methods that
were updated as part of a developer commit to the repository. More

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE11, May 21-28 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

meaningful representations of software changes support more ac-
curate reasoning about software development activity and effort.

A critical problem for change-based approaches is thus to bridge
this conceptual gap between the low-level deltas stored in version
control systems and the abstractions used to represent software de-
velopment activity. A first step, implemented by most modern
change-based approaches, is to ignore trivial low-level changes,
like those induced by white spaces or other formatting-related mod-
ifications. The general assumption behind this strategy is that these
groups of low-level differences are less likely to yield meaningful
abstractions of the actual development effort behind a code change.
For example, many change-based approaches ignore trivial updates
when determining the set of methods that were modified as part of
a code commit.

As part of our ongoing investigation of software archives, we ob-
served that many additional kinds of minor (or non-essential) code
changes can also cause change-based approaches to infer inaccu-
rate high-level representations of software development effort. For
example, every time a developer performs a rename refactoring, all
methods that include references to the renamed element will also
be textually modified; a naive abstraction of these non-essential
rename-induced statement updates can then result in a bloated high-
level representation of the change that appears to span many lines
of code, methods, and files, despite corresponding to a single devel-
oper modification (that is generally a very simple tool-assisted op-
eration). Given the growing importance of change analysis in soft-
ware engineering, our long-term goal is to enable change-based ap-
proaches to incorporate information about the essentiality of code
changes into their analyses. With this information, change-based
approaches will be able to more precisely select the individual low-
level modifications they use to derive their high-level representa-
tions of development activity or effort.

We investigated the potential impact of non-essential differences
on the abstractions that are typically analyzed by many change-
based approaches. In particular, we sought i) to characterize the
prevalence of non-essential differences in change history, and, ii) to
measure their impact on the code churn and method updates asso-
ciated with code commits, two facets of code change that are con-
sidered in existing empirical studies involving change data [5, 16]
and change task oriented analyses [25].

Analyzing change history to detect the kinds of non-essential dif-
ferences mentioned above is far from trivial. An automated detec-
tion of non-essential differences requires both a characterization of
structural changes occurring within statements and an analysis of
their impact on the underlying system. In addition, to avoid recon-
structing an entire program snapshot for every committed change,
the impact of changes must be determined given only a change
set, or group of files that were co-committed by a developer [24].

1

MeCC: Memory Comparison-based Clone Detector∗

Heejung Kim†, Yungbum Jung†, Sunghun Kim§, Kwangkeun Yi†

†Seoul National University, Seoul, Korea
{hjkim,dreameye,kwang}@ropas.snu.ac.kr

§The Hong Kong University of Science and Technology, Hong Kong
hunkim@cse.ust.hk

ABSTRACT

In this paper, we propose a new semantic clone detection
technique by comparing programs’ abstract memory states,
which are computed by a semantic-based static analyzer.
Our experimental study using three large-scale open source
projects shows that our technique can detect semantic clones
that existing syntactic- or semantic-based clone detectors
miss. Our technique can help developers identify inconsis-
tent clone changes, find refactoring candidates, and under-
stand software evolution related to semantic clones.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, reverse engineering, and
reengineering ; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—program analysis

General Terms

Languages, Algorithms, Experimentation

Keywords

Clone detection, abstract interpretation, static analysis, soft-
ware maintenance

1. INTRODUCTION

Detecting code clones is useful for software development
and maintenance tasks including identifying refactoring can-
didates [11], finding potential bugs [16, 15], and understand-
ing software evolution [20, 6].

∗This work was supported by the Engineering Research
Center of Excellence Program of Korea Ministry of Ed-
ucation, Science and Technology (MEST) / National Re-
search Foundation of Korea (NRF) (Grant 2010-0001717).
This work was partly supported by (A) the Brain Korea
21 Project, School of Electrical Engineering and Computer
Science, Seoul National University, (B) Fasoo.com, and (C)
Samsung Electronics.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ICSE ’11, May 21–28, 2011, Honolulu, Hawaii, USA

Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

Most clone detectors [13, 19, 24, 9, 22] are based on tex-
tual similarity. For example, CCFinder [19] extracts and
compares textual tokens from source code to determine code
clones. Deckard [13] compares characteristic vectors ex-
tracted from abstract syntax trees (ASTs).
Although these detectors are good at detecting syntactic

clones, they are not effective to detect semantic clones that
are functionally similar but syntactically different.
A few existing approaches to detect semantic clones (e.g.,

those based on program dependence graphs (PDGs)[22, 9,
25] or by observing program executions via random test-
ing [14]) have limitations. PDGs can be affected by syntac-
tic changes such as replacing statements with a semantically
equivalent procedure call. Hence, the PDG-based clone de-
tectors miss some semantic clones. The clone detectability of
random testing-based approaches may depend on the limited
test coverage, covering only up to 60 ∼ 70% of software [27,
28, 35].
To detect semantic clones effectively, we propose a new

clone detection technique: (1) we first use a path-sensitive
semantic-based static analyzer to estimate the memory states
at each procedure’s exit point; (2) then we compare the
memory states to determine clones. Since the abstract mem-
ory states have a collection of the memory effects (though
approximated) along the execution paths within procedures,
our technique can effectively detect semantic clones, and our
clone detection ability is independent of syntactic similarity
of clone candidates.
We implemented our technique as a clone detection tool,

Memory Comparison-based Clone detector (MeCC), by ex-
tending a semantic-based static analyzer[18, 17, 12]. The
extension is to support path-sensitivity and record abstract
memory states. Our experiments with three large-scale open
source projects, Python, Apache, and PostgreSQL (Section 4)
show that MeCC can identify semantic clones that other ex-
isting methods miss.
The semantic clones identified by MeCC can be used for

software development and maintenance tasks such as iden-
tifying refactoring candidates, detecting inconsistencies for
locating potential bugs, and detecting software plagiarism
(as discussed in Section 5.1).
This paper makes the following contributions:

• Abstract memory-based clone detection technique:
We show that using abstract memory states that are
computed by semantic-based static analysis is effective
to detect semantic clones.

• Semantic clone detector MeCC: We implemented
the proposed technique as a tool, MeCC (http://ropas.

서울대 홍콩과기대 맥길대

Solution Problem

4

소프트웨어 패키지에서 “지식”을 수확해왔다.

4

소프트웨어 패키지에서 “지식”을 수확해왔다.

코드가 썩었나?
[Eick et al. 2001]

4

소프트웨어 패키지에서 “지식”을 수확해왔다.

함께 변경해야할 함수들 알려주기
[Zimmermann et al. 2004]

4

소프트웨어 패키지에서 “지식”을 수확해왔다.

버그 예측하기 등등...

4

소프트웨어 패키지에서 “지식”을 수확해왔다.

4

소프트웨어 패키지에서 “지식”을 수확해왔다.

5

5

Resource

5

Resource

Raw
Material

Extraction

5

Resource

Raw
Material

Extraction

Processed
Material

m
1

m
3

m
2

Processing

5

Resource

Raw
Material

Extraction

Processed
Material

m
1

m
3

m
2

Processing

Finished
Product

{m1, m2}
m3

Inference

5

Resource

Raw
Material

Extraction

Processed
Material

m
1

m
3

m
2

Processing

Finished
Product

{m1, m2}
m3

Inference

잘못된 정보는 원하지
않는 결과를 초래

5

Resource

Raw
Material

Extraction

Processed
Material

m
1

m
3

m
2

Processing

Finished
Product

{m1, m2}
m3

Inference

잘못된 정보는 원하지
않는 결과를 초래

5

Resource

Raw
Material

Extraction

Processed
Material

m
1

m
3

m
2

Processing

Finished
Product

{m1, m2}
m3

Inference

잘못된 정보는 원하지
않는 결과를 초래

5

Resource

Raw
Material

Extraction

Processed
Material

m
1

m
3

m
2

Processing

Finished
Product

{m1, m2}
m3

Inference

잘못된 정보는 원하지
않는 결과를 초래

5

Resource

Raw
Material

Extraction

Processed
Material

m
1

m
3

m
2

Processing

Finished
Product

{m1, m2}
m3

Inference

잘못된 정보는 원하지
않는 결과를 초래

5

Resource

Raw
Material

Extraction

Processed
Material

m
1

m
3

m
2

Processing

Finished
Product

{m1, m2}
m3

Inference
m
3잘못된 정보는 원하지

않는 결과를 초래

5

Resource

Raw
Material

Extraction

Processed
Material

m
1

m
3

m
2

Processing

Finished
Product

{m1, m2}
m3

Inference
m
3

{m1, m2}
m3

{m1, m2}
m3

잘못된 정보는 원하지
않는 결과를 초래

5

Resource

Raw
Material

Extraction

Filtered
Material

Filtering

Processed
Material

m
1

m
3

m
2

Processing

5

Resource

Raw
Material

Extraction

Filtered
Material

Filtering

Processed
Material

m
1

m
3

m
2

Processing

“Trivial” Diffs

뻔한 차이

Version N

Object field = …

void sample() {
 List l = …
 l.add(this.field);
 m(l.size());
 return;
}

Version N+1

void sample()
{
 List l = …
 l.add(this.field);
 m(l.size());
 return;
}

Object field = …

뻔한 차이

Version N

Object field = …

void sample() {
 List l = …
 l.add(this.field);
 m(l.size());
 return;
}

Version N+1

void sample()
{
 List l = …
 l.add(this.field);
 m(l.size());
 return;
}

Object field = …

뻔한 차이

Version N

Object field = …

void sample() {
 List l = …
 l.add(this.field);
 m(l.size());
 return;
}

Version N+1

void sample()
{
 List l = …
 l.add(this.field);
 m(l.size());
 return;
}

Object field = …

7

Resource

Raw
Material

Extraction

Filtered
Material

Filtering

Processed
Material

m
1

m
3

m
2

Processing

“Trivial” Diffs

7

Resource

Raw
Material

Extraction

Filtered
Material

Filtering

Processed
Material

m
1

m
3

m
2

Processing

“Trivial” Diffs
“Non-Essential” Diffs

m
3

Object field = …

void sample()
{
 List l = …
 l.add(this.field);
 m(l.size());
 return;
}

불필요한 변경
Version N Version N+1

Object m_field = …

void sample()
{
 java.util.List list = …
 list.add(m_field);
 int size = list.size();
 m(size);
}

Object field = …

void sample()
{
 List l = …
 l.add(this.field);
 m(l.size());
 return;
}

불필요한 변경
Version N Version N+1

Object m_field = …

void sample()
{
 java.util.List list = …
 list.add(m_field);
 int size = list.size();
 m(size);
}

Object field = …

void sample()
{
 List l = …
 l.add(this.field);
 m(l.size());
 return;
}

불필요한 변경
Version N Version N+1

Object m_field = …

void sample()
{
 java.util.List list = …
 list.add(m_field);
 int size = list.size();
 m(size);
}

이름 바꾸기 때문에 생기는 변경

Object field = …

void sample()
{
 List l = …
 l.add(this.field);
 m(l.size());
 return;
}

불필요한 변경
Version N Version N+1

Object m_field = …

void sample()
{
 java.util.List list = …
 list.add(m_field);
 int size = list.size();
 m(size);
}

이름 바꾸기 때문에 생기는 변경
간단한 키워드 변경

Object field = …

void sample()
{
 List l = …
 l.add(this.field);
 m(l.size());
 return;
}

불필요한 변경
Version N Version N+1

Object m_field = …

void sample()
{
 java.util.List list = …
 list.add(m_field);
 int size = list.size();
 m(size);
}

이름 바꾸기 때문에 생기는 변경
간단한 키워드 변경

간단한 타입 변경

Object field = …

void sample()
{
 List l = …
 l.add(this.field);
 m(l.size());
 return;
}

불필요한 변경
Version N Version N+1

Object m_field = …

void sample()
{
 java.util.List list = …
 list.add(m_field);
 int size = list.size();
 m(size);
}

이름 바꾸기 때문에 생기는 변경
간단한 키워드 변경

간단한 타입 변경
지역 변수 이름 바꾸기

Object field = …

void sample()
{
 List l = …
 l.add(this.field);
 m(l.size());
 return;
}

불필요한 변경
Version N Version N+1

Object m_field = …

void sample()
{
 java.util.List list = …
 list.add(m_field);
 int size = list.size();
 m(size);
}

이름 바꾸기 때문에 생기는 변경
간단한 키워드 변경
임시 변수 도입으로 생기는 변경

간단한 타입 변경
지역 변수 이름 바꾸기

Partial Program
Analysis (PPA)

소프트웨어
히스토리

ChangeDistiller

DiffCat

Partial Program
Analysis (PPA)

소프트웨어
히스토리

ChangeDistiller

V1 V2

DiffCat

Partial Program
Analysis (PPA)

소프트웨어
히스토리

V1

ChangeDistiller

V2

V1 V2

DiffCat

Partial Program
Analysis (PPA)

소프트웨어
히스토리

V1

ChangeDistiller

V2

V1 V2

DiffCat

Partial Program
Analysis (PPA)

소프트웨어
히스토리

V1

ChangeDistiller

V2

V1 V2

DiffCat

Partial Program
Analysis (PPA)

소프트웨어
히스토리

V1

ChangeDistiller

V2

V1 V2

DiffCat

Refactoring Detection
NED Detection

DiffCat

Files Inferred Deltas

v1

v2

DiffCat

1 1st Round Diffs

1

Files Inferred Deltas

v1

v2

diff

DiffCat

R
R
RR

Rename
Refactorings

1 1st Round Diffs

1
2

Files Inferred Deltas

v1

v2

diff

infer

DiffCat

R
R
RR

Rename
Refactorings

1 1st Round Diffs

1
2

3

Files Inferred Deltas

v1

v2 v2*

diff

infer

rollback

DiffCat

R
R
RR

Rename
Refactorings

1 1st Round Diffs

1
2

3

4

2nd Round Diffs

4

Files Inferred Deltas

v1

v2 v2*

diff

infer

rollback

diff

예제
Version N

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(this.field);
 m(l.size());
}

Version N+1

Object m_field = …

void sample() {
 m_field.foo();
 List list = …
 list.add(m_field);
 int size = list.size();
 m(size);
}

예제
Version N

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(this.field);
 m(l.size());
}

Version N+1

Object m_field = …

void sample() {
 m_field.foo();
 List list = …
 list.add(m_field);
 int size = list.size();
 m(size);
}

변경찾기

+

예제
Version N

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(this.field);
 m(l.size());
}

Version N+1

Object m_field = …

void sample() {
 m_field.foo();
 List list = …
 list.add(m_field);
 int size = list.size();
 m(size);
}

이름바꾸기변경찾기

+

예제
Version N

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(this.field);
 m(l.size());
}

Version N+1

Object m_field = …

void sample() {
 m_field.foo();
 List list = …
 list.add(m_field);
 int size = list.size();
 m(size);
}

예제
Version N

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(this.field);
 m(l.size());
}

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(field);
 int size = l.size();
 m(size);
}

Version N+1*

예제
Version N

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(this.field);
 m(l.size());
}

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(field);
 int size = l.size();
 m(size);
}

Version N+1*

예제
Version N

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(this.field);
 m(l.size());
}

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(field);
 int size = l.size();
 m(size);
}

+

변경찾기

Version N+1*

예제
Version N

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(this.field);
 m(l.size());
}

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(field);
 int size = l.size();
 m(size);
}

+

변경찾기

-

필요없는 this 없애기

Version N+1*

예제
Version N

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(this.field);
 m(l.size());
}

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(field);
 int size = l.size();
 m(size);
}

변경찾기

-

필요없는 this 없애기 임시 변수 사용

Version N+1*

예제
Version N

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(this.field);
 m(l.size());
}

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(field);
 int size = l.size();
 m(size);
}

변경찾기

-

필요없는 this 없애기 임시 변수 사용

Version N+1*

이름변경

예제
Version N

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(this.field);
 m(l.size());
}

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(field);
 int size = l.size();
 m(size);
}

변경찾기

-

필요없는 this 없애기 임시 변수 사용

Version N+1*

이름변경

이름바꾸기 전파

불필요한 메소드 변경이 얼마나 많나?

시스템 전체 함수 불필요한 함수

Ant 17 792 2 759 (15.5%)
Azureus 8 731 229 (2.6%)
Hibernate 15 881 1 153 (7.3%)
JDT-Core 8 837 673 (7.6%)
JDT-UI 9 681 426 (4.4%)
Spring Framewrk 11 047 1 715 (15.5%)
Xerces 8 409 256 (3.0%)
합계 80 378 7 211 (9.0%)

불필요한 메소드 변경이 얼마나 많나?

시스템 전체 함수 불필요한 함수

Ant 17 792 2 759 (15.5%)
Azureus 8 731 229 (2.6%)
Hibernate 15 881 1 153 (7.3%)
JDT-Core 8 837 673 (7.6%)
JDT-UI 9 681 426 (4.4%)
Spring Framewrk 11 047 1 715 (15.5%)
Xerces 8 409 256 (3.0%)
합계 80 378 7 211 (9.0%)

불필요한 메소드 변경이 얼마나 많나?

시스템 전체 함수 불필요한 함수

Ant 17 792 2 759 (15.5%)
Azureus 8 731 229 (2.6%)
Hibernate 15 881 1 153 (7.3%)
JDT-Core 8 837 673 (7.6%)
JDT-UI 9 681 426 (4.4%)
Spring Framewrk 11 047 1 715 (15.5%)
Xerces 8 409 256 (3.0%)
합계 80 378 7 211 (9.0%)

불필요한 변경 제거하면 얼마나 좋나?

Setup Tot Rec True Rec Prec Top 3 Only Err

원래대로 93 576 20 501 0.219 0.442 0.220

불필요한
변경 제거

81 162 19 631 0.242 0.475 0.183

Δ

0.242

0.219
= 1.105

-20.2%+7.5%+10.5%

불필요한 변경 제거하면 얼마나 좋나?

Setup Tot Rec True Rec Prec Top 3 Only Err

원래대로 93 576 20 501 0.219 0.442 0.220

불필요한
변경 제거

81 162 19 631 0.242 0.475 0.183

Δ

0.242

0.219
= 1.105

-4.6% -20.2%+7.5%+10.5%

불필요한 변경 제거하면 얼마나 좋나?

Setup Tot Rec True Rec Prec Top 3 Only Err

원래대로 93 576 20 501 0.219 0.442 0.220

불필요한
변경 제거

81 162 19 631 0.242 0.475 0.183

Δ -13.3%

0.242

0.219
= 1.105

-4.6% -20.2%+7.5%+10.5%

불필요한 변경 제거하면 얼마나 좋나?

Setup Tot Rec True Rec Prec Top 3 Only Err

원래대로 93 576 20 501 0.219 0.442 0.220

불필요한
변경 제거

81 162 19 631 0.242 0.475 0.183

Δ -13.3%

0.242

0.219
= 1.105

정적 분석 기술로 소프트웨어
공학의 문제를 풀어보자!

의미 코드 쌍 찾기
MeCC: Memory Comparison-based Clone Detector∗

Heejung Kim†, Yungbum Jung†, Sunghun Kim§, Kwangkeun Yi†

†Seoul National University, Seoul, Korea
{hjkim,dreameye,kwang}@ropas.snu.ac.kr

§The Hong Kong University of Science and Technology, Hong Kong
hunkim@cse.ust.hk

ABSTRACT

In this paper, we propose a new semantic clone detection
technique by comparing programs’ abstract memory states,
which are computed by a semantic-based static analyzer.
Our experimental study using three large-scale open source
projects shows that our technique can detect semantic clones
that existing syntactic- or semantic-based clone detectors
miss. Our technique can help developers identify inconsis-
tent clone changes, find refactoring candidates, and under-
stand software evolution related to semantic clones.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, reverse engineering, and
reengineering ; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—program analysis

General Terms

Languages, Algorithms, Experimentation

Keywords

Clone detection, abstract interpretation, static analysis, soft-
ware maintenance

1. INTRODUCTION

Detecting code clones is useful for software development
and maintenance tasks including identifying refactoring can-
didates [11], finding potential bugs [16, 15], and understand-
ing software evolution [20, 6].

∗This work was supported by the Engineering Research
Center of Excellence Program of Korea Ministry of Ed-
ucation, Science and Technology (MEST) / National Re-
search Foundation of Korea (NRF) (Grant 2010-0001717).
This work was partly supported by (A) the Brain Korea
21 Project, School of Electrical Engineering and Computer
Science, Seoul National University, (B) Fasoo.com, and (C)
Samsung Electronics.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ICSE ’11, May 21–28, 2011, Honolulu, Hawaii, USA

Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

Most clone detectors [13, 19, 24, 9, 22] are based on tex-
tual similarity. For example, CCFinder [19] extracts and
compares textual tokens from source code to determine code
clones. Deckard [13] compares characteristic vectors ex-
tracted from abstract syntax trees (ASTs).

Although these detectors are good at detecting syntactic
clones, they are not effective to detect semantic clones that
are functionally similar but syntactically different.

A few existing approaches to detect semantic clones (e.g.,
those based on program dependence graphs (PDGs)[22, 9,
25] or by observing program executions via random test-
ing [14]) have limitations. PDGs can be affected by syntac-
tic changes such as replacing statements with a semantically
equivalent procedure call. Hence, the PDG-based clone de-
tectors miss some semantic clones. The clone detectability of
random testing-based approaches may depend on the limited
test coverage, covering only up to 60 ∼ 70% of software [27,
28, 35].

To detect semantic clones effectively, we propose a new
clone detection technique: (1) we first use a path-sensitive
semantic-based static analyzer to estimate the memory states
at each procedure’s exit point; (2) then we compare the
memory states to determine clones. Since the abstract mem-
ory states have a collection of the memory effects (though
approximated) along the execution paths within procedures,
our technique can effectively detect semantic clones, and our
clone detection ability is independent of syntactic similarity
of clone candidates.

We implemented our technique as a clone detection tool,
Memory Comparison-based Clone detector (MeCC), by ex-
tending a semantic-based static analyzer[18, 17, 12]. The
extension is to support path-sensitivity and record abstract
memory states. Our experiments with three large-scale open
source projects, Python, Apache, and PostgreSQL (Section 4)
show that MeCC can identify semantic clones that other ex-
isting methods miss.

The semantic clones identified by MeCC can be used for
software development and maintenance tasks such as iden-
tifying refactoring candidates, detecting inconsistencies for
locating potential bugs, and detecting software plagiarism
(as discussed in Section 5.1).

This paper makes the following contributions:

• Abstract memory-based clone detection technique:
We show that using abstract memory states that are
computed by semantic-based static analysis is effective
to detect semantic clones.

• Semantic clone detector MeCC: We implemented
the proposed technique as a tool, MeCC (http://ropas.

PyObject *PyBool_FromLong (long ok) {
 PyObject *result;
 if (ok) result = Py_True;
 else result = Py_False;
 Py_INCREF(result);
 return result;
}

static PyObject *get_pybool (int istrue)
{
 PyObject *result =
 istrue? Py_True: Py_False;

 Py_INCREF(result);
 return result;
}

... *set_access_name(cmd_parms *cmd, void *dummy, const char *arg){
 void *sconf = cmd->server->module_config;
 core_server_config *conf =

ap_get_module_config(sconf, &core_module);
 const char *err = ap_check_cmd_context(sconf,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
 if (err != NULL) {

 return err;
}
conf->access_name = apr_pstrdup(cmd->pool,arg);
return NULL;

}

... *set_protocol(cmd_parms *cmd, void *dummy, const char *arg){
 const char *err = ap_check_cmd_context(cmd,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
 core_server_config *conf =

ap_get_module_config(cmd->server->module_config, &core_module);
 char *proto;

 if (err != NULL) {
 return err;
}
proto = apr_pstrdup(cmd->pool,arg);
ap_str_tolower(proto);
conf->protocol = proto;
return NULL;

} 17

... *set_protocol(cmd_parms *cmd, void *dummy, const char *arg){
 const char *err = ap_check_cmd_context(cmd,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
 core_server_config *conf =

ap_get_module_config(cmd->server->module_config, &core_module);
 char *proto;

 if (err != NULL) {
 return err;
}
proto = apr_pstrdup(cmd->pool,arg);
ap_str_tolower(proto);
conf->protocol = proto;
return NULL;

}

... *set_access_name(cmd_parms *cmd, void *dummy, const char *arg){
 void *sconf = cmd->server->module_config;
 core_server_config *conf =

ap_get_module_config(sconf, &core_module);
 const char *err = ap_check_cmd_context(sconf,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
 if (err != NULL) {

 return err;
}
conf->access_name = apr_pstrdup(cmd->pool,arg);
return NULL;

}

statement
reordering

18

�

... *set_access_name(cmd_parms *cmd, void *dummy, const char *arg){
 void *sconf = cmd->server->module_config;
 core_server_config *conf =

ap_get_module_config(sconf, &core_module);
 const char *err = ap_check_cmd_context(sconf,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
 if (err != NULL) {

 return err;
}
conf->access_name = apr_pstrdup(cmd->pool,arg);
return NULL;

}

... *set_protocol(cmd_parms *cmd, void *dummy, const char *arg){
 const char *err = ap_check_cmd_context(cmd,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
 core_server_config *conf =

ap_get_module_config(cmd->server->module_config, &core_module);
 char *proto;

 if (err != NULL) {
 return err;
}
proto = apr_pstrdup(cmd->pool,arg);
ap_str_tolower(proto);
conf->protocol = proto;
return NULL;

}

 intermediate
variables

statement
reordering

19

... *set_access_name(cmd_parms *cmd, void *dummy, const char *arg){
 void *sconf = cmd->server->module_config;
 core_server_config *conf =

ap_get_module_config(sconf, &core_module);
 const char *err = ap_check_cmd_context(sconf,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
 if (err != NULL) {

 return err;
}
conf->access_name = apr_pstrdup(cmd->pool,arg);
return NULL;

}

 intermediate
variables

 statement
splitting

statement
reordering

20

... *set_protocol(cmd_parms *cmd, void *dummy, const char *arg){
 const char *err = ap_check_cmd_context(cmd,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
 core_server_config *conf =

ap_get_module_config(cmd->server->module_config, &core_module);
 char *proto;

 if (err != NULL) {
 return err;
}
proto = apr_pstrdup(cmd->pool,arg);
ap_str_tolower(proto);
conf->protocol = proto;
return NULL;

}

... *set_access_name(cmd_parms *cmd, void *dummy, const char *arg){
 void *sconf = cmd->server->module_config;
 core_server_config *conf =

ap_get_module_config(sconf, &core_module);
 const char *err = ap_check_cmd_context(sconf,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
 if (err != NULL) {

 return err;
}
conf->access_name = apr_pstrdup(cmd->pool,arg);
return NULL;

}

... *set_protocol(cmd_parms *cmd, void *dummy, const char *arg){
 const char *err = ap_check_cmd_context(cmd,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
 core_server_config *conf =

ap_get_module_config(cmd->server->module_config, &core_module);
 char *proto;

 if (err != NULL) {
 return err;
}
proto = apr_pstrdup(cmd->pool,arg);
ap_str_tolower(proto);
conf->protocol = proto;
return NULL;

} 21

 intermediate
variables

 statement
splitting

statement
reordering

Version N

불필요한 변경 예제

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(this.field);
 m(l.size());
}

Version N+1

Object m_field = …

void sample() {
 m_field.foo();
 List list = …
 list.add(m_field);
 int size = list.size();
 m(size);
}

Version N

불필요한 변경 예제

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(this.field);
 m(l.size());
}

Version N+1

Object m_field = …

void sample() {
 m_field.foo();
 List list = …
 list.add(m_field);
 int size = list.size();
 m(size);
}

보기에는 다를 수 있는데 하는 일은 같은 함수

Version N

불필요한 변경 예제

Object field = …

void sample() {
 field.foo();
 List l = …
 l.add(this.field);
 m(l.size());
}

Version N+1

Object m_field = …

void sample() {
 m_field.foo();
 List list = …
 list.add(m_field);
 int size = list.size();
 m(size);
}

보기에는 다를 수 있는데 하는 일은 같은 함수

의미 코드 쌍 (semantic code clone)

프로그램

함수들

메모리 비교

비슷한 것끼리
묶기

요약 메모리

유사도

S(M,M�)

P1

P3 P4

P2

P1

P3

P2

P4

유사 코드 쌍

�P

정적 분석기
F(�P) = �M

유사 코드 쌍 찾는 방법

실험 대상

Projects KLOC Procedures Application

Python 435 7,657 interpreter

Apache 343 9,483 web server

PostgreSQL 937 10,469 database

찾은 유사 코드 쌍
Total 623

code clones6%

39%
53%

2%

Type-1 Type-2
Type-3 Type-4

C. K. Roy and J. R. Cordy. A survey on software clone detection research. SCHOOL OF COMPUTING TR 2007-541, QUEENʼS UNIVERSITY, 115, 2007.

다른 도구들과 비교
CCfinder

PDG-based

DECKARD

MeCC

0 75 150 225 300

DECKARD
characteristic vectors

PDG-based
program

dependency graphs

26

CCfinder

PDG-based

DECKARD

MeCC

0 10 20 30 40
Type-4

CCfinder
textual tokens

Type-3

다른 도구들과 비교
CCfinder

PDG-based

DECKARD

MeCC

0 75 150 225 300

DECKARD
characteristic vectors

PDG-based
program

dependency graphs

26

CCfinder

PDG-based

DECKARD

MeCC

0 10 20 30 40
Type-4

CCfinder
textual tokens

Type-3

문제점?

•DiffCat은 자바프로그램만, MeCC은 C 프
로그램만 지원

•MeCC은 함수 단위로만 유사 코드 쌍을 찾
음

27

문제점?

•DiffCat은 자바프로그램만, MeCC은 C 프
로그램만 지원

•MeCC은 함수 단위로만 유사 코드 쌍을 찾
음

27

자바 분석기 위에 MeCC 방법을
적용하는 구현 중

참고 자료
Non-Essential Changes in Version Histories

David Kawrykow and Martin P. Robillard
McGill University
Montréal, Canada

{dkawry,martin}@cs.mcgill.ca

ABSTRACT
Numerous techniques involve mining change data captured in soft-
ware archives to assist engineering efforts, for example to identify
components that tend to evolve together. We observed that impor-
tant changes to software artifacts are sometimes accompanied by
numerous non-essential modifications, such as local variable refac-
torings, or textual differences induced as part of rename refactor-
ing. We developed a tool-supported technique for detecting non-
essential code differences in the revision histories of software sys-
tems. We used our technique to investigate code changes in over
24 000 change sets gathered from the change histories of seven
long-lived open-source systems. We found that up to 15.5% of
a system’s method updates were due solely to non-essential differ-
ences. We also report on numerous observations on the distribution
of non-essential differences in change history and their potential
impact on change-based analyses.

Keywords
Mining software repositories, software change analysis, differenc-
ing algorithms

1. INTRODUCTION
Source code repository systems have been in use since the 1970s

to keep track of the different versions of a system’s artifacts and,
by extension, of the changes made between versions [22]. Numer-
ous techniques now involve mining change data captured in soft-
ware archives to assist software engineering efforts. For example,
mining change data has been used to measure code decay in aging
systems [5], to predict defects in modules [10, 16], and to detect
non-obvious relationships between code elements [8, 23, 25]. We
refer to approaches operating on change data as change-based ap-
proaches.

Typical version control systems store changes as line-based tex-
tual deltas between committed code files. In contrast, change-based
approaches generally aim to operate on more meaningful represen-
tations of change, such as, for example, the individual methods that
were updated as part of a developer commit to the repository. More

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE11, May 21-28 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

meaningful representations of software changes support more ac-
curate reasoning about software development activity and effort.

A critical problem for change-based approaches is thus to bridge
this conceptual gap between the low-level deltas stored in version
control systems and the abstractions used to represent software de-
velopment activity. A first step, implemented by most modern
change-based approaches, is to ignore trivial low-level changes,
like those induced by white spaces or other formatting-related mod-
ifications. The general assumption behind this strategy is that these
groups of low-level differences are less likely to yield meaningful
abstractions of the actual development effort behind a code change.
For example, many change-based approaches ignore trivial updates
when determining the set of methods that were modified as part of
a code commit.

As part of our ongoing investigation of software archives, we ob-
served that many additional kinds of minor (or non-essential) code
changes can also cause change-based approaches to infer inaccu-
rate high-level representations of software development effort. For
example, every time a developer performs a rename refactoring, all
methods that include references to the renamed element will also
be textually modified; a naive abstraction of these non-essential
rename-induced statement updates can then result in a bloated high-
level representation of the change that appears to span many lines
of code, methods, and files, despite corresponding to a single devel-
oper modification (that is generally a very simple tool-assisted op-
eration). Given the growing importance of change analysis in soft-
ware engineering, our long-term goal is to enable change-based ap-
proaches to incorporate information about the essentiality of code
changes into their analyses. With this information, change-based
approaches will be able to more precisely select the individual low-
level modifications they use to derive their high-level representa-
tions of development activity or effort.

We investigated the potential impact of non-essential differences
on the abstractions that are typically analyzed by many change-
based approaches. In particular, we sought i) to characterize the
prevalence of non-essential differences in change history, and, ii) to
measure their impact on the code churn and method updates asso-
ciated with code commits, two facets of code change that are con-
sidered in existing empirical studies involving change data [5, 16]
and change task oriented analyses [25].

Analyzing change history to detect the kinds of non-essential dif-
ferences mentioned above is far from trivial. An automated detec-
tion of non-essential differences requires both a characterization of
structural changes occurring within statements and an analysis of
their impact on the underlying system. In addition, to avoid recon-
structing an entire program snapshot for every committed change,
the impact of changes must be determined given only a change
set, or group of files that were co-committed by a developer [24].

1

