ldentifying Non-Essential
Changes Using Semantic
Code Clone Detection

Yungbum Jung
Programming Language Laboratory

Seoul National University
@ROSAEC Workshop

ojn| I M x| 7|42
2Logh 3 E Hat 37

Mgfstn =2
63] ROSAEC 9]3AF @ Th2

4 [

ICSE 2011

MeCC: Memory Comparison-based Clone Detector”

Heejung Kim', Yungbum Jung’, Sunghun Kims, Kwangkeun Yit

fSeoul National Univers
ki

v, Seo\ll Korea
ki

5The Hong Kong University of Scic

chnology, Hong Kong

hunkim@ese.ust.hk

ABSTRACT

In this paper, we propose a new semantic clone detection
technique by comparing programs’ abstract memory states,
which are computed by a semantic-based static analyzer
Our experimental study using three large-scale open source
projects shows that our technique can detect semantic clones
that existing syntactic- or semantic-based clone detectors
miss. Our technique can help developers identify incons
tent clone changes, find refactoring candidates, and under-
stand software evolution related to semantic clones.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—restructuring, rey engineeringmand

reengineering; F.3.2 [Logics and Meffings of Progrfims):

Semantics of Programming Language-gog s

General Terms
Lar s, Algorithms, Experimentat

Keywords

Clone detection, abstract interpretation, static analysi
‘ware maintenance

1. INTRODUCTION

Detecting code clones is useful for software development
and maintenance tasks including identifying refactoring can-
didates [11], finding potential bugs (16, 15], and

Most clone detectors [13, 19, 24, 9, 22] are based on tex-
tual similarity. For example, CCFinder [19] extracts and
compares textual tokens from source code to determine code
clones. DECKARD [13] compares characteristic vectors ex-
tracted from abstract syntax trees (ASTS)

Although these detectors are good at detecting syntactic
clones, they are not effective to detect semantic clones that
are functionally similar but syntactically diff

A few existing approaches to detect semantic clones (e.g.,
those based on program dependence graphs (PDGs)[22, 9,
25] or by observing program executions via random tes
ing [14]) have limitations. PDGs can be affected by syntac-
tic changes such as replacing statements with a semantically
equivalent procedure call. Hence, the PDG-based clone de-
tcc(ox:‘na: some semantic clones. The clone detectability ol

dum testing-based approaches may depend on the limite
N v up to 60 ~ 70% of software [27.
9 35]
e nll cilles effeetively, we propose a new
clone dctccuon technique:
semantic-based static analyzer to estimate the memory states
at each procedure’s exit point; (2) then we compare the
memory states to determine clones. Since the abstract mem-
ory states have a collection of the memory effects (though
approximated) along the execution paths within procedures,
our technique can effectively detect semantic clones, and our
clone detection ability is independent of syntactic similarity
of clone candidat

We implemented our technique as a clone detection tool,

Memory (‘umpazhon based Clone detector (MeCC), by ex-

ing software evolution [20, 6

*This work was supported by the Engineering Research
Center of Excellence Program of Korea Ministry of Ed-
ucation, Science and Technology (MBST) / National Re-
search Foundation of (Grant 2010-0001717)
This work was partly supponcd by (A) the Brain Korea
21 Project, School of Electrical Engineering and Computer
Science, Sconl National Univorsity, (B) Fasoo.com, and (G
Samsung Electronics.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and unn ! copies
bear this notice and the full citation on the first page. To copy oth
republish, to post on servers or to redistribute to lists, requires prlur sp
permisson and/or a fee.

1, May 21-28, 2011, Honolulu, Hawaii, USA|
Copyrlghl 2011 ACM 978-1-4503-0445-0/11/05 .. $10.00.

tending a tic-based static analyzer[18, 17, 12]. The
extension is to support path-sensitivity and record abstract
‘memory states. Our experiments with three large-scale open
source projects, Python, Apache, and PostgreSQL (Section 4)
show that MeCC can identify semantic clones that other ex-
isting methods miss

nes identified by MeCC can be used for
software developmem and maintenance tasks such as iden-
tifying re candidates, detecting i for
locating potential bugs, and detecting software plagiarism
(as discussed in Section 5.1).

This paper makes the following contributions:

semant

e Abstract memory-based clone detection technique:

We show that using abstract memory states that are
i is effective

o Semantic clone detector MeCC: We implemented
the proposed technique as a tool, MeCC (ttp: //ropas.

J—

REEEAE

3rd International Conference on
Software Engineering

Waikiki, Honolulu, Hawaii
May 21-28, 2011

Non-Essential Changes in Version Histories

David Kawrykow and Martin P. Robillard

anada

(dkawry,martm)@cs mcgill.ca

ABSTRACT

Numerous techniques involve mining change data captured in soft-
ware archives to assist engineering efforts, for example to identify
components that tend to evolve together. We observed that impor-
tant changes to software artifacts are sometimes accompanied by
numerous non-essential modifications, such as local variable refac-
torings, or textual differences induced as part of rename refactor-
ing. We developed a tool-supported technique for detecting non-
essential code differenc jon histories of software sys-
tems. We used our techs
24000 change sets gathered from the change hi
long-lived open-source systems. We found that up to 15.5% of
a system’s method updates were due solely to non-essential differ-
ences. We also report on numerous observations on the distribution
of non-essential differences in change historand their potential
impact on change-based analyses.

Keywords I o
Mining software repositories, software chand® analysi® differciem

ing algorithms

1. INTRODUCTION

Source code repository systems have been in use since the 1970
10 keep track of the different versions of a system’s artifacts and,
by extension, of the changes made between versions [22]. Numer-
ous techniques now involve mining change data captured in soft-
ware archives to assist software engincering efforts. For example,
mining change data has been used to measure code decay in aging
systems [5], to predict defects in modules [10, 16], and to detect
non-obvious relationships between code elements [8, 23, 25]. We
refer to approaches operating on change data as change-based ap-
pma(’h«r
al version control systems store changes as line-based tex-
wal delas between commitied code fles. Incontas, change-based
approaches generally aim to operate on more meaningful represen-
tations of change, such as, for example, the individual methods that
were updated as part of a developer comit to the repository. More

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
ot made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish. to post on servers or to redistribute to lsts, requires prior specific
permission andor a fee.

ICSEI L, May 21-28 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0445-0/1 105 ...$10.00.

‘meaningful representations of software changes support more ac-
curate reasoning about software development activity and effort.
Acritical problem for change-based approaches is thus to bridge
this conceptual gap between the low-level deltas stored in version
control systems and the abstractions used to represent software de-
velopment activity. A first step, implemented by most modern
change-based approaches, is to ignore trivial low-level changes,
like those induced by white spaces or other formatting-related mod-
ifications. The general assumption behind this strategy is that these
groups of low-level differences are less likely to yield meaningful
abstractions of the actual development effort behind a code change.
For example, many change-based approaches ignore trivial updates
when determining the set of methods that were modified as part of
acode commit.
As part of our ongoing investigation of software archives, we ob-
rved thill many addmonal Kinds of minor (or non-ssential) code
o I

at the renamed element will also
be lexlmlly modifid: a naive abstraction of these non-essential
rename-induced statement updates can then result in a bloated high-
level representation of the change that appears to span many lines
of code, methods, and files, despite corresponding to a single devel-
oper modification (that is generally a very simple tool-assisted op-
eration). Given the growing importance of change analysis in soft-
ware engineering, our long-term goal is to enable change-based ap-
proaches to incorporate information about the essenriality of code
changes into their analyses
approaches will be able to more precisely select the individual low-
level modifications they use to derive their high-level representa-
tions of development activity or effort.

We investigated the potential impact of non-essential differences
on the abstractions that are typically analyzed by many change-
based approaches. In particular, we sought i) to characterize the
prevalence of non-essential differences in change history, and, ii) to
measure their impact on the code churn and method updates asso-
ciated with code comits, two facets of code change that are con-
sidered in existing empirical studies involving change data [3, 16]
and change task oriented analyses [25].

Analyzing change history to detect the kinds of non-essential di
ferences mentioned above is far from trivial. An automated detec-
tion of non-essential differences requires both a characterization of
structural changes occurring within statements and an analysis of
their impact on the underlying system. In addition, to avoid recon-
structing an entire program snapshot for every committed change,
the impact of changes must be determined given only a change
set, or group of files that were co-comitted by a developer [24].

OH
Lt

N

ATES

FE7F AHQILL?
[Eick et al. 2001]

A FR7gsoFE

=
Zimmermann e

L =
O O

N

ATES

v
O
—
>
O
Vg
)
o

Raw
Material

L}

Extraction

Resource

Processed
Material

Raw
Material

Extraction

Resource

O

1 “|

-
<
h

r

—
-
-
-
o
(S

|

Finished

Product

 —g—
—
-
Processed Inference T 15
Material

. N
Raw Processing g7 &7 E 6
: 7 | i q
Material & &7 0 5
Extraction

Resource

Finished
Product

Praocecced

L 3

e —
—
-
Inference L=
1 q
ARE HH L 5]
oFL 75|T!-% }_EH

oL ©
T Pl
Material &
Extraction oy
Resource T g,

O

Finished
Product

Praocecced

L 3

1o w

g —

—

|

Inference L=
APEEl A FA]

1
1T s35L=
OFL 7397}l= 3
E1d—‘z—EH

Material

Resource

.

Extraction §° ff"j,q |

y —
7 e P
LSS

O

Finished

Product

Pracoaccad Inference = m m
3 O ~ —rh

R AR EoR a

1
1T 7oL
OFL 797l = =
1o w 2 d}—EH

Material

Resource

Finished

Product
Pracoccad Inference = m m
A2 Z2d g L O]= m
22T BET TOIA 3
oOrL 73L= 3
o v ET, =2 }—EH F
— Mﬁ/‘b‘l{’ 6‘
Material aﬁé” 0 o

.

Extraction 5

Resource .

Finished

Product

Pracoaccad Inference = m m
3 O ~ —rh

R AR EoR a

1
1T 7oL
OFL 797l = =
1o w 2 d}—EH

Material

Resource

Finished
Product

Praoceccad Inference

N §
i iligs

1
=
OFL 737}l= =
BT =2 d}—EH

Material

Resource

Finished
Product

Praoceccad Inference

AP GT| 2] H
2 AL O

1
=
OFL 737}l= =
BT =2 d}—EH

Material

.

Extraction
Resource |

Processed T2
Material ﬁr:
Filtered A
Material §T6_O
Raw ¢
Material 6 60

Extraction

Resource

Processed T3
Material m
3

/\
Filtered Processing @%@2‘% A 5
Material &7 & 0 o
/\
Raw Filtering
Material

Resou

G} i}o]

) -

I-‘——J

Version N Version N+1
Object field = .. void sample ()
{
void sample () { List 1 = ..
List 1 = .. l.add(this.field) ;
l.add(this.field) ; m(l.size())
m(l.size()) return;
return; }

Object field = ..

Version N Version N+1

[Object field = m] void sample ()
{

List 1 = ..
l.add(this.field);
m(l.size()):;

void sample ()
List 1 = ..
l.add(this.field);
m(l.size()) return;

return;

[Object field = ..]

Version N Version N+1

[Object field = m] void sample ()
{

void sample () ,,—”””’ List 1 = ..

List 1 = ..
l.add(this.field);
m(l.size());

l.add(this.field);
m(l.size())
return;

return;

[Object field = ..]

Processed TH15
Material m

/\
Filtered Processing *35' ' Py 5
Material 0 0
/\
Raw Filtering 4
Material

Resou

Processed

Material

Filtered

Material

Raw Filtering g}?’ 7 6
Material / \

B “Trivial” Diffs

1L
Resou X . “Non-Essential” Diffs J

s
27 0 3t 17

-1

Version N Version N+1

Object field = .. Object m field = ..

void sample () void sample ()

{ {
List 1 = .. java.util.List list = ..
l.add(this.field) ; list.add(m field);
m(l.size()) ; int size = list.size();

return; m(size) ;

s
27 0 3t 17

i

Version N Version N+1

Object|field

Object|m field

void sample () void sample ()

{ {
List 1 = .. java.util.List list = ..
l.add(this.field); list.add(m field);
m(l.size()) ; int size = list.size();

return; m(size) ;

s
27 0 3t 17

i

Version N Version N+1

Object|field

Object|m field

void sample () void sample ()

{ {
List 1 = .. java.util.List list = ..
l.add(this.field); list.add(m field);
m(l.size()) ; int size = list.size();
return; m(size) ;

} }

O|F HHZ| mi=of M7= #H4E

s
27 0 3t 17

i

Version N Version N+1

Object|field

Object|m field

void sample () void sample ()

{ {
List 1 = .. java.util.List list = ..
l.add(this.field); list.add(m field);
m(l.size()) ; int size = list.size();
return; m(size) ;

} }
O|F HHZ| mi=of M7= #H4E
C

kel 7|/ = HE

s
27 0 3t 17

i

Version N Version N+1

Object|field

Object|m field

void sample () void sample ()

{ {
List 1 = .. java.util.List list = ..
l.add(this.field) ; list.add(m field);
m(l.size()) ; int size = list.size();
return; m(size) ;

} }

O| & HIFZ| =0l M7= 84 Ztebst Ef el HZE

2bEkst 7|9 = WA

T]
=

ES

»6]—

=!
=

Version N

Object|field

void sample ()

{
List 1 = ..
l.add(this.field) ;

m(l.size()) ;

return;
}
O|& B7| Zol 7= HE
Ztetet 7| fl= #HE

H73

i

Version N+1

Object|m field

void sample ()

{

jJava.util.List list
list.add(m field) ;
list.size() ;

int size
m(size) ;

s
27 0 3t 17

i

Version N Version N+1

Object|field

Object|m field

void sample () void sample ()

{ {
List 1 = .. java.util.List list = ..
l.add(this.field) ; list.add(m field);
m(l.size()) int size = list.size()
return; m(size) ;

} }

Ol & B 7| =0 M7= #HE ZEEESE Bt B4

ket Rl E BHE XS #H 0| & HHY|

o
>
[T
1>
-1

o

0
1l
0=
N
rir
[T
0N

DiffCat

DiffCat

DiffCat

DiffCat

DiffCat

DiffCat

Inferred Deltas

Inferred Deltas

Inferred Deltas

S e et
E R S o0

I Rename 1st Round Diffs

rpoack
TE
2 2") K J

Files Inferred Deltas

Rename 1st Round Diffs
Idlff diff Refactorings

rolﬂ::k II__E ;I_(TB 6 :é

\\/2 vz*/ \ 2nd Round Diffs/

Files Inferred Deltas

o] #]

Version N Version N+1

Object field = .. Object m field = ..

void sample() { void sample () {
field.foo() m field.foo();
List 1 = .. List list = .
l.add(this.field) ; list.add(m field);
m(l.size()): int size = list.size();

} m(size) ;

o] #]

Version N Version N+1

Object field = .. sssssssniObject m field = .

void sample() { void sample () {
field. foo ();llllllIlllllm_field.fOO() ;
List 1 = .. ___.sssssssssilist list = ..
l.add(this.field); =sssssnlist.add(m field);
m(l.size()) int size = list.size();

......... .
} “EEmEim(size);

}

o] #]

Version N Version N+1

Object field = .. lllllllllObjeCt m_field = ...

void sample() { void sample () {
field. foo ();llllllIlllllm_field.fOO() ;
List 1 = .. . esssssss List list = .
l.add(this.field); =sssssnlist.add(m field);
m(l.size()): int size = list.size();

......... .
} "“"rim(size);

o] #]

Version N Version N+1

Object field = .. Object m field = ..

void sample() { void sample () {
field.foo() m field.foo()
List 1 = .. List list = .
l.add(this.field) ; list.add(m field);
m(l.size()): int size = list.size();

} m(size) ;

o] #]

Version N Version N+1*

Object field = .. Object field = ..

void sample () { void sample () {
field.foo() ; field.foo();
List 1 = .. List 1 = ..
l.add(this.field); l.add(field) ;
m(l.size()) int size = 1l.size ()

} m(size) ;

o] #]

Version N Version N+1*

Object field = .. Object field = ..

void sample () { void sample () {
field.foo() ; field.foo() ;
List 1 = .. List 1 = ..
l.add(this.field); l.add(field) ;
m(l.size()) int size = 1l.size ()

} m(size) ;

o] #]

Version N Version N+1*%
Object field = .. Object field = ..
void sample() { void sample () {
field.foo() ; field.foo() ;
List 1 = .. List 1 = ..
l.add (this.field); "=="="="®"®] add(field);
m(l.size());-.,... int size = 1l.size();
} TtEeEaip(size) ;

}

Version N

Object field = ..

void sample () {
field.foo();
List 1 = ..
l.add(this.field) ;

- m(l,size());'-----.

}

o] #]

Version N+1*

Object field = ..

void sample () {
field.foo();

List 1 = ..
l.add(field) ;
int size = l.size();

+
“fEEsnim(size);

}

WA WagE this Qi)

Version N

Object field = ..

void sample () {
field.foo();
List 1 = ..
l.add(this.field) ;
- m(l.size());

}

o] #]

Version N+1*

Object field = ..

void sample () {
field.foo();

List 1 = ..
l.add(field) ;

int size = l.size();
m(size) ;

o] #]

Version N Version N+1*%

Object field = .. sssssssss:0Object field = .

void sample() { void sample () {
field.foo() ; field.foo() ;
List 1 = .. EEEEEEEEEENEEEEN| List 1 = ..
l.add(this.field); l.add(field) ;

-m(l.size()) int size = l.size();
} m(size) ;

o] #]

Version N Version N+1*
Object field = .. sssssssss:0Object field = ..
void sample () ({ void sample () {
List 1 = .. EEEEEEEEEEEEENEN| List 1 = ..
l.add (this.field); l.add (field) ;
- m(l.size()) int size = l.size()
} m(size) ;

21 9t o 4.5 7o) ojt Bl

=2 2

s I i
Ant 17 792 2 759 (15.59%)
Azureus 8 731 229 (2.6%0)
Hibernate 15 881 1 153 (7.3%0)
JDT-Core 38 837 673 (7.6%)
JDT-UI 9 681 426 (4.49)
Spring Framewrk 11 047 1 715 (15.5%)
Xerces 8 409 256 (3.000)
31| 30 378 7211 (9.0%)

21 9t o 4.5 7o) ojt Bl

=2 2

s I i
Ant 17 792 2 759 (15.59%)
Azureus 8 731 229 (2.6%0)
Hibernate 15 881 1 153 (7.3%0)
JDT-Core 38 837 673 (7.6%)
JDT-UI 9 681 426 (4.49)
Spring Framewrk 11 047 1 715 (15.5%)
Xerces 8 409 256 (3.000)
31| 30 378 7211 (9.0%)

21 9t o 4.5 7o) ojt Bl

=2 2

s I i
Ant 17 792 2 759 (15.59%)
Azureus 8 731 229 (2.6%0)
Hibernate 15 881 1 153 (7.3%0)
JDT-Core 38 837 673 (7.6%)
JDT-UI 9 681 426 (4.49)
Spring Framewrk 11 047 1 715 (15.5%)
Xerces 8 409 256 (3.000)
31| 30 378 7211 (9.0%)

A% §7g A5t Lot FLp?

Tot Rec True Rec | Prec | Top 3 Only Err

93576 20 501 | 0.442 0.220

81 162 19 631 0.475 0.183

A% §7g A5t Lot FLp?

Tot Rec True Rec | Prec Top 3 Only Err

93576 20501 | 0219 | 0.442 0.220

81162 19631 | 0242 | 0475 0.183

+10.5%+7.5% -20.2%

0.242 105
0.219

True Rec |

A% §7g A5t Lot FLp?

Prec | Top 3 Only Err

Setup Tot Rec
Jefjry 2 93576 20501 | 0.219 | 0.442 0.220
381 162 19631 | 0.242 | 0.475 0.183
~13.3% -4.6% |+10.5% +7.5% -20.2%

0.242

= 1.1
0.219 U5

True Rec |

A% §7g A5t Lot FLp?

Prec | Top 3 Only Err

Setup Tot Rec
Jefjry 2 93576 20501 | 0.219 | 0.442 0.220
381 162 19631 | 0.242 | 0.475 0.183
~13.3% -4.6% |+10.5% +7.5% -20.2%

0.242

= 1.1
0.219 U5

sfo| 2l Zojuaf

B 7|42 4T EQ]

24 2]
O
3

O

oln|

MeCC: Memory Comparison-based Clone Detector”

C 1 47

PyObject *PyBool_FromLong (long ok) {

PyObject *result
1f (ok) result

Heejung Kim, Yungbum Jung’, Sunghun Kim¢, Kwangkeun Yit
Seoul National Unive coul, }\orea
{hjkim,dreameye kwang}@ropas.snu.ac.kr
$The Hong Kong University of Science and Technology, Hong Kong
hunkim@cse.ust.hk

Py_True

ABSTRACT

In this paper, we propose a new semantic clone detection
technique by comparing programs’ abstract memory states,
which are computed by a semantic-based static analy
Our experimental study using three large-scale open source
pl‘o_‘c(.tb shows that our technique can detect semantic clones
that, ing syntactic- or semantic-based clone detectors
miss. Our technique can help developers identify incon:
tent clone changes, find refactoring candidates, and under-
stand software evolution related to semantic clones.

Categories and Subject Descriptors

D.2.7 [Software Enginccring]:
and E turing,

stribution, Maintenance,
reverse g, and

reengincering: F.3.2 [Logics and Meanings of Programs:

Semantics of Programming Languages—program analysis

General Terms

Languages, Algorithms, Experimentation

Keywords

Clone detection, abstract interpretation, static analysis, soft-
ware maintenance

1. INTRODUCTION

Detecting code clones is useful for software development
and maintenance tasks including identifying refactoring can-
didates [11], finding potential bugs [16, 15], and understand-
ing software evolution [20.

*This work was supported by the]"ngmcmmg Research
Center of Excellence Program of Korea Ministry of Ed-
ucation, Scionce and Tedmu]uuv (MEST) / National Re-
scarch Foundation of Korea (NRF) (Grant 2010-0001717)
This work was partly mpporced by (A) the Brain Korea
21 Project, School of Electrical Engincering and Computor
Science, Seoul National University, (B) Fasoo.com, and (C)
Samsung Electronics.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
ibuted for profit or commercial advantage and that copies
and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE” 11, May 21-28, 2011, Honolulu, Hawaii, USA

Copyright 2011 ACM 978-1-4503-0445-0/11/05 .. $10.00.

Most clone detectors [13, 19, 24, 9, 22] are based on tex-
tual similarity. For example, CCFinder [19] extracts and
compares textual tokens from source code to determine code
clones. DECKARD [13] compares characteristic vectors ex-
tracted from abstract syntax trees (ASTs).

Although these detectors are good at detecting syntactic
clones, they are not effective to detect semantic clones that
are functionally similar but syntactically different.

few existing approaches to detect semantic clones (e.g.,
those based on program dependence graphs (PDGs)[22, 9,
25] or by observing program executions via random test-
ing [14]) have limitations. PDGs can be affected by syntac-
tic changes such as replacing statements with a semantically
equivalent procedure call. Hence, the PDG-based clone de-
tectors miss some semantic clones. The clone detectability of
random testing-based approaches may depend on the limited
ing only up to 60 ~ 70% of software [27,

To detect semantic clones effectively, we propose a new
clone detection technique: (1) we use a path-sensitive
semantic-based static analyzer to estimate the memory states
at each procedure’s exit point; (2) then we compare the
memory states to determine clones. Since the abstract mem-
ory states have a collection of the memory effects (though
approximated) along the execution paths within procedures,
our technique can effectively detect semantic clones, and our
clone detection ability is independent of syntactic similarity
of clone candidates.

We implemented our technique as a clone detection tool,
Memory Comparison-based Clone detector (MeCC), by ex-
tending a semantic-based static analyzer[18, 17, 12]. The
extension is to support path-sensitivity and record abstract
memory states. Our experiments with three large-scale open
source projects, Python, Apache, and PostgreSQL (Section 4)
show that MeCC can identify semantic clones that other ex-
ting methods miss.

The semantic clones identified by MeCC can be used for
development and maintenance tasks suc

This paper makes the following contributions:

 Abstract memory-based clone detection technique:

We show that using abstract memory states that are
computed by semantic-based static analysis is effective
to detect semantic clones.

* Semantic clone detector MeCC: We implemented

the proposed technique as a tool, MeCC (http://ropas.

static PyObject *get_pybool (int istrue)

{

else result

Py_INCREF(result);

return result

PyObject *result
i1strue? Py_True

Py_INCREF(result)
return result

Py_

Py_False

False

. *set_access_name(cmd_parms *cmd, void *dummy, const char *arg){
void *sconf = cmd->server->module_config;
core_server_config *conf =
ap_get_module_config(sconf, &core_module);
const char *err = ap_check_cmd_context(sconf ,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
1f (Cerr !'= NULL) {
return err;
}
conf->access_name = apr_pstrdup(cmd->pool,arg);
return NULL;

. *set_protocol(cmd_parms *cmd, void *dummy, const char *arg){

const char *err = ap_check_cmd_context(cmd,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
core_server_config *conf =

ap_get_module_config(cmd->server->module_config, &core_module);
char *proto;

if (Cerr '= NULL) {
return err;

}

proto = apr_pstrdup(cmd->pool,arg);
ap_str_tolower(proto);
conf->protocol = proto;

return NULL;

. *set_access_name(cmd_parms *cmd, void *dummy, const char *arg){
void *sconf = cmd->server->module_config;
core_server_config *conf =
ap_get_module_config(sconf, &core_module);
const char *err = ap_check_cmd_context(sconf ,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
1f (Cerr != NULL) {
return err;
¥
conf->access_name = apr_pstrdup(cmd->pool,arg);
return NULL;

statement
reordering

. *set_protocol(cmd_parms *cmd, void *dummy, const char *arg){

const char *err = ap_check_cmd_context(cmd,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
core_server_config *conf =

ap_get_module_config(cmd->server->module_config, &core_module);
char *proto;

if (err '= NULL) {
return err;
}
proto = apr_pstrdup(cmd->pool,arg);
ap_str_tolower(proto);

conf->protocol = proto;
return NULL;

0

. *set_access_name(cmd_parms *cmd, void *dummy, const char *arg){

void *sconf = cmd->server->module_config;
core_server_config *conf =

ap_get_module_config(sconf, &core_module);
const char *err = ap_check_cmd_context(sconf ,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
1f (Cerr !'= NULL) {
return err;
¥
conf->access_name = apr_pstrdup(cmd->pool,arg);
return NULL;

statement intermediate
reordering variables

. *set_protocol(cmd_parms *cmd, void *dummy, const char *arg){

const char *err = ap_check_cmd_context(cmd,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
core_server_config *conf =

ap_get_module_config(cmd->server->module_config, &core_module);
char *proto;

if (Cerr !'= NULL) {
return err;
}
proto = apr_pstrdup(cmd->pool,arg);
ap_str_tolower(proto);

conf->protocol = proto;
return NULL;

. *set_access_name(cmd_parms *cmd, void *dummy, const char *arg){
void *sconf = cmd->server->module_config;
core_server_config *conf =
ap_get_module_config(sconf, &core_module);
const char *err = ap_check_cmd_context(sconf ,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
1f (Cerr !'= NULL) {
return err;
¥
conf->access_name = apr_pstrdup(cmd->pool,arg);
return NULL;

statement intermediate statement
reordering variables splitting

. *set_protocol(cmd_parms *cmd, void *dummy, const char *arg){

const char *err = ap_check_cmd_context(cmd,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
core_server_config *conf =

ap_get_module_config(cmd->server->module_config, &core_module);
char *proto;

if (Cerr !'= NULL) {
return err;
¥
proto = apr_pstrdup(cmd->pool,arg);
ap_str_tolower(proto);

conf->protocol = proto;
return NULL;

20

. *set_access_name(cmd_parms *cmd, void *dummy, const char *arg){
void *sconf = cmd->server->module_config;
core_server_config *conf =
ap_get_module_config(sconf, &core_module);
const char *err = ap_check_cmd_context(sconf ,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
1f (Cerr != NULL) {
return err;

}

conf->access_name = apr_pstrdup(cmd->pool,arg);
return NULL;

statement intermediate statement
reordering variables splitting

. *set_protocol(cmd_parms *cmd, void *dummy, const char *arg){

const char *err = ap_check_cmd_context(cmd,NOT_IN_DIR_LOC_FILE | NOT_IN_LIMIT);
core_server_config *conf =

ap_get_module_config(cmd->server->module_config, &core_module);
char *proto;

if (Cerr '= NULL) {
return err;
¥
proto = apr_pstrdup(cmd->pool,arg);
ap_str_tolower(proto);

conf->protocol = proto;
return NULL;

21

=583 H75 of|A]

T 1
Version N Version N+1
Object field = .. Object m field = ..
void sample () ({ void sample () {
field.foo(); m field.foo();
List 1 = .. List list = ..
l.add(this.field) list.add(m field);
m(l.size()) int size = list.size();

} m(size) ;

=5 8% B4 AA

Version N Version N+1

Object field = .. Object m field = ..

void sample () ({ void sample () {
field.foo(); m field.foo();
List 1 = .. List list = ..
l.add(this.field) list.add(m field);
m(l.size()) int size = list.size();

m(size) ;

B7lolk ThE 4 gl ohk e e i

=5 8% B4 AA

Version N Version N+1
Object field = .. Object m field = ..
void sample () ({ void sample () {
field.foo(); m field.foo();
List 1 = .. List list = ..
l.add(this.field) list.add(m field);
m(l.size()) int size = list.size();
} m(size);

B7lolk ThE 4 gl ohk e e i

oln] 3 E AF (semantic code clone)

B S
b MQP) B S ok
- o K T %
H_O o & i

il
=

Al
=

‘DJ]:H}\]-

O

Projects KLOC| Procedures| Application
Python 435 7,657| interpreter
Apache 343 9,483| web server
PostgreSQL 937 10,469 database

Z2FO O
AS AP RS

Total 623
code clones

6% 2%

@ Type-| © Type-2
© Type-3 @ Type-4

C. K. Roy and J. R. Cordy. A survey on software clone detection research. SCHOOL OF COMPUTING TR 2007-541, QUEEN’S UNIVERSITY, 115, 2007.

CCfinder

PDG-based

DECKARD

CCfinder
PDG-based
DECKARD

°te E3E3tua

6
P

75

10

150

20

225

30

CCfinder

textual tokens

PDG-based

program
300 dependency graphs

DECKARD
characteristic vectors

W Type3 M Type-4

26

40

CCfinder

PDG-based

DECKARD

MeCC

CCfinder
PDG-based
DECKARD

MeCC

che £ 3Eate]a

150

20

|

225

30

300

40

CCfinder

textual tokens

PDG-based

program
dependency graphs

DECKARD
characteristic vectors

W Type-3 B Type-4

26

A7

o DiffCat-2 A} 2 T80t MeCCL C T
2 D2k 2]

* MeCCZ o TH9|2RF A RE = A

||

27

A7

o DiffCat-2 A} 2 T80t MeCCL C T
2 D2k 2]

* MeCCZ o TH9|2RF A RE = A

||

AHa} 24471 2o MeCC B
A8 7 3

27

p
O

Non-Essential Changes in Version Histories

David Kawrykow and Martin P. Robillard
McGill University
Montréal, Canada
{dkawry,martin}@cs.mcgill.ca

ABSTRACT

Numerous techniques involve mining change data captured in soft-
ware archives to assist engineering efforts, for example to identify
components that tend to evolve together. We observed that impor-
tant changes to software artifacts are i ied by

meaningful representations of software changes support more ac-
curate reasoning about software development activity and effort.
A critical problem for change-based approaches is thus to bridge
this conceptual gap between the low-level deltas stored in version
control systems and the abstractions used to represent software de-

numerous non-essential modifications, such as local variable refac-
torings, or textual differences induced as part of rename refactor-
ing. We developed a tool-supported technique for detecting non-
essential code differences in the revision histories of software sys-
tems. We used our technique to investigate code changes in over
24000 change sets gathered from the change histories of seven
long-lived open-source systems. We found that up to 15.5% of
a system’s method updates were due solely to non-essential differ-
ences. We also report on numerous observations on the distribution
of non-essential differences in change history and their potential
impact on change-based analyses.

Keywords
Mining software repositories, software change analysis, differenc-
ing algorithms

1. INTRODUCTION

Source code repository systems have been in use since the 1970s
to keep track of the different versions of a system’s artifacts and,
by extension, of the changes made between versions [22]. Numer-
ous techniques now involve mining change data captured in soft-
ware archives to assist software engineering efforts. For example,
mining change data has been used to measure code decay in aging
systems [5], to predict defects in modules [10, 16], and to detect
non-obvious relationships between code elements [8, 23, 25]. We
refer to approaches operating on change d change-based ap-
proaches.
Typical version control systems store changes as line-based tex-
d

D activity. A first step, implemented by most modern
change-based approaches, is to ignore trivial low-level changes,
like those induced by white spaces or other formatting-related mod-
ifications. The general assumption behind this strategy is that these
groups of low-level differences are less likely to yield meaningful
abstractions of the actual development effort behind a code change.
For example, many change-based approaches ignore trivial updates
when determining the set of methods that were modified as part of
a code commit.

As part of our ongoing investigation of software archives, we ob-
served that many additional kinds of minor (or non-essential) code
changes can also cause change-based approaches to infer inaccu-
rate high-level ions of software P effort. For
example, every time a developer performs a rename refactoring, all
methods that include references to the renamed element will also
be textually modified; a naive abstraction of these non-essential
rename-induced statement updates can then result in a bloated high-
level representation of the change that appears to span many lines
of code, methods, and files, despite corresponding to a single devel-
oper modification (that is generally a very simple tool-assisted op-
eration). Given the growing importance of change analysis in soft-
ware engineering, our long-term goal is to enable change-based ap-
proaches to incorporate information about the essentiality of code
changes into their analyses. With this information, change-based
approaches will be able to more precisely select the individual low-
level modifications they use to derive their high-level representa-
tions of development activity or effort.

‘We investigated the potential impact of non-essential differences
on the abstractions that are typically analyzed by many change-
based approaches. In particular, we sought i) to characterize the

tual deltas between committed code files. In contrast, change-bas

approaches generally aim to operate on more meaningful represen-
tations of change, such as, for example, the individual methods that
were updated as part of a developer commit to the repository. More

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copics are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSEI11, May 21-28 2011, Waikil
Copyright 2011 ACM 978-1-45

Honolulu, HI,
3-0445-0/11/05 ..

SA
10.00.

p of ial in change history, and, i) to
measure their impact on the code churn and method updates asso-
ciated with code commits, two facets of code change that are con-
sidered in existing empirical studies involving change data [, 16]
and change task oriented analyses [25].

Analyzing change history to detect the kinds of non-essential dif-
ferences mentioned above is far from trivial. An automated detec-
tion of ssential di requires both a characterization of
structural changes occurring within statements and an analysis of
their impact on the underlying system. In addition, to avoid recon-
structing an entire program snapshot for every committed change,
the impact of changes must be determined given only a change
set, or group of files that were co-committed by a developer [24].

At

Non-Essential
Changes in Version
Histories

avid Kawrvkow
artin Robillard

T McGill

ICSE2011.03/05/2011

