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Fortress is a programming language 
for scientists and engineers.
Featherweight Fortress with Multiple 
Dispatch and Multiple Inheritance 
(FFMM) illustrates a core calculus for 
Fortress, which has multiple dispatch 
and multiple inheritance.  

• Multiple dispatch:
      Allows method selection among 

overloaded methods at run time 
based on dynamic types of more 
than one method arguments

• Multiple inheritance: 
      Allows a type to have more than 

one super type

 

Ambiguity Problems

Overloading Rules
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Coq (http://coq.inria.fr/) is a formal proof management system. It provides a formal language to write mathematical 
definitions, executable algorithms, and theorems together with an environment for semi-interactive development of 
machine-checked proofs.

Coq

FFMM

• Defined a formal calculus that has symmetric multiple dispatch and symmetric multiple inheritance

• Mechanize the calculus and its type safety using a proof assistant tool, Coq

Motivation

Informal Description Coq Implementation
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Type-checking a trait, for example, includes checking a set of method declarations vis-
ible from the trait:
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It checks a set of method declarations visible from a trait or object Co, visiblep(Co), to
see whether each pair in the set is a valid overloading. The metavariable C ranges over
both trait and object names.

A pair of declarations md and md � is a valid overloading if it satisfies one of the
overloading rules: Exclusion Rule, Subtype Rule, and Meet Rule. The pair is checked by
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Vehicle

Car CampingTrailer

CampingCar

LightOn(Car c)
LightOn(CampingTrailer ct)

collide(Car c, CampingCar cc)
collide(CampingCar cc, Car c)

tow(Vehicle v, Car c)
tow(Car c, Vehicle v)
tow(CampingCar cc1, CampingCar(cc2)

Formal Calculus
The rules determine whether a set of overloaded 
declarations is valid by considering every pair of the 
declarations in the set independently. A pair is valid if 
it satisfies one of the following rules:

Modular Multiple Dispatch with Multiple Inheritance. 
(In Proceddings of the 2007 ACM symposium on applied computing)

If the parameter types of the declaration are not in the 
subtype relation, then the pair is a valid overloading if 
there is a declaration whose parameter type is an 
intersection type of the parameter types of the 
declarations. tow(Vehicle v, Car c)

tow(Car c, Vehicle v)
tow(Car c, Car c)

Meet Rule

Have to check overloaded method declarations statically
to guarantee no ambiguous calls at run time

If the parameter types of the declarations are disjoint 
types, then the pair is a valid overloading.

collide(Car c, Car c)
collide(Car c, Car c, Car c)

Exclusion Rule

If the parameter type of one declaration is a strict 
subtype of the parameter type of the other declaration, 
and the return type of the former is a subtype of the 
return type of the latter, then the pair is a valid 
overloading. LightOn(Car c)

LightOn(CampingCar cc)

Subtype Rule

Syntax of FFMM

Featherweight Fortress with Multiple Dispatch and Multiple Inheritance 1

1 Assumptions
We make several simplifying assumptions about a program being type checked. These assumptions may be easily
checked in a separate phase prior to the type checking phase and simplify the typing rules, as a lexical analysis phase
simplifies a grammar and relieves burden of a parser in ordinary compilers.

• Every trait or object declaration declares a unique name.

• Every trait or object extends at least one trait.

• Extended traits in every trait or object are different.

• Every field has a unique name in its defining object.

• No trait nor object declares Object .

• Type hierarchies are acyclic.

• Every variable in type environments is unique.

2 Syntax of FFMM

T trait name O object name
m method name f field name
x method parameter name

τ ::= T type
| O

e ::= x expression
| self
| O(

−→
e )

| e.f
| e.m(

−→
e )

md ::= m(
−−→
x : τ): τ= e method definition

d ::= trait T extends {−→T }
−→
md end trait or object definition

| objectO(
−−→
f : τ) extends {−→T }

−→
md end

p ::=
−→
d e program

Figure 1: Syntax of FFMM

C ::= T trait or object name
| O

var ::= x variable
| self

Γ ::=
−−−−→
var : τ type environment

Figure 2: Internal symbols that do not appear in concrete syntax

• Represent bipartite graphs using Coq

• Mechanize several theorems in Graph Theory

Motivation

Bipartite Graph

BG empty BG vertex1 BG vertex2 BG edge

Fig. 4. Constructors for Bigraph

– BG vertex2
Constructs a bigraph by adding a vertex y to the second bipartition. The added
vertex y is new and isolated in the resulting bigraph by construction. Since there is
no edge which is incident to y, the resulting bigraph is a bipartite graph.

– BG edge
Constructs a bigraph by adding an edge between existing vertices. By construction,
the added edge xy has its ends in the bipartitions. Moreover, x ∈ V1 and y ∈ V2,
that is, the resulting graph is a bipartite graph.
Note that this definition includes some redundant checks. First, because bipartitions
are disjoint, we do not need to check x �= y. Secondly, because the bigraphs are
undirected graphs, we do not need to check both −→xy /∈ A (¬ a (A ends x y)) and
−→yx /∈ A (¬ a (A ends y x)). It should be sufficient to check only one of them.
While redundant checks increase the number of goals to prove when we construct
an object, at the same time, they increase the number of direct properties deduced
from the object when it resides in hypotheses. Therefore, tuning the balance be-
tween them is a challenging issue.

Figure 4 illustrates four constructors to construct Bigraph.

3.4 Properties of Bigraphs

The mathematical definition of bipartite graphs as a pair (V1, V2, A) corresponds to the
dependent type Bigraph upon V1, V2, and A. We can define a bigraph by construction:
starting from an empty bigraph, adding a new vertex to one of the bipartitions one by
one, and adding a new edge one by one. Note that because all the added vertices and
edges are new, we do not need to worry about intersection of bipartitions which could
lead to a serious problem.

To prove that the bigraphs defined inductively are indeed bipartite graphs defined
mathematically, we define an axiom of compatible bigraphs as follows:

Definition (Compatible Bigraphs): For any vertex sets V1, V �
1 , V2, and V �

2 ,
and for any edge set A, if
1. V1 ∪ V2 = V �

1 ∪ V �
2 ,

2. V �
1 ∩ V �

2 = ∅,
3. for all vertices x and y, if xy ∈ A then either x ∈ V �

1 ∧ y ∈ V �
2 or

y ∈ V �
1 ∧ x ∈ V �

2 , and

We can construct a bigraph with two sets of 
vertices V1 and V2 and a set of edges A using one 
of the following rules:
1. An empty bigraph is constructed with two 

empty sets of vertices and an empty set of 
edges.

2. With a bigraph upon V1, V2 and A, by adding a 
new vertex x (∉ V1) to V1, a bigraph upon V1 
∪ {x}, V2 and A is constructed.

3. With a bigraph upon V1, V2 and A, by adding a 
new vertex y (∉ V2) to V2, a bigraph upon V1, 
V2 ∪ {y} and A is constructed.

4.With a bigraph upon V1, V2 and A, by adding a 
new edge xy such that x ∈ V1, y ∈ V2 and{xy}
∩ A = ∅, a bigraph upon V1, V2 and A ∪ {xy} 
is constructed.

Inductive Definition

Inductive Bigraph : V set → V set → A set → Type :=

| BG empty : Bigraph V empty V empty A empty
| BG vertex1 :

∀ (v1 v2 : V set) (a : A set) (d : Bigraph v1 v2 a) (x : Vertex),

¬ v1 x→ ¬ v2 x→
Bigraph (V union (V single x) v1) v2 a

| BG vertex2 :

∀ (v1 v2 : V set) (a : A set) (d : Bigraph v1 v2 a) (y : Vertex),

¬ v1 y→ ¬ v2 y→
Bigraph v1 (V union (V single y) v2) a

| BG edge :

∀ (v1 v2 : V set) (a : A set) (d : Bigraph v1 v2 a) (x y : Vertex),

v1 x→ v2 y→ x �= y→
¬ a (A ends x y)→ ¬ a (A ends y x)→
Bigraph v1 v2 (A union (E set x y) a).

Fig. 3. Definition of Bigraph

Definition (Bigraph): We can construct a bigraph with two sets of vertices V1

and V2 and a set of edges A using one of the following rules:

1. An empty bigraph is constructed with two empty sets of vertices and an

empty set of edges.

2. With a bigraph upon V1, V2 and A, by adding a new vertex x (/∈ V1) to V1,

a bigraph upon V1 ∪ {x}, V2 and A is constructed.

3. With a bigraph upon V1, V2 and A, by adding a new vertex y (/∈ V2) to V2,

a bigraph upon V1, V2 ∪ {y} and A is constructed.

4. With a bigraph upon V1, V2 and A, by adding a new edge xy such that

x ∈ V1, y ∈ V2 and {xy} ∩ A = ∅, a bigraph upon V1, V2 and A ∪ {xy}
is constructed.

Now that we have two definitions of bipartite graphs, we should prove that the two

definitions are actually the same. We implement the inductive definition of bigraphs in

COQ in Section 3.3, and prove that the inductive definition indeed satisfies the mathe-

matical definition in Section 3.5.

3.3 Bigraphs in COQ

Figure 3 presents our faithful implementation Bigraph in COQ of the inductively defined

bigraphs. Just the same way as the inductive definition provides four rules to construct

bigraphs, our COQ implementation provides four constructors to construct Bigraph:

– BG empty
An empty bigraph represents the bipartite graph which has two empty bipartitions

and an empty edge set. It is the base case of construction.

– BG vertex1
Constructs a bigraph by adding a vertex x to the first bipartition. The added vertex

x is new and isolated in the resulting bigraph by construction. Since there is no

edge which is incident to x, the resulting bigraph is a bipartite graph.

• Mechanize proofs of the following theorems:

• Implement a new Graph library

What Is Next?

Coq Implementation

König’s theorem: In any bipartite graph, the number of edges in a maximum matching equals the 
number of vertices in a minimum vertex cover.

Equivalencies of König's theorem with seven theorems: the Menger's Theorem, the König’s theorem 
for matrices, the König-Egerváry theorem, the Hall's marriage theorem, the Birkhoff-Von Neumann 
theorem, the Dilworth's theorem, and the Max Flow-Min Cut theorem.

For compatibility with the Sets library in the Coq standard library

Mathematical Representation
• Definition

A graph G is called bipartite 
if it is possible to partition the 
vertex set of G into two 
subsets, say V1 and V2, so that 
every edge of G joins a vertex 
of V1 with a vertex of V2, and 
no vertex joins another vertex 
of its own set.

• Example

Fig. 2. Example Bipartite Graph

1. Let G be a graph whose vertex set represents the people at the party.
2. Let V1 be the set of men at the party and V2 be the set of women at the party.
3. Every edge of G joins two vertices if and only if the corresponding couple are

compatible dancing partners.
4. It is possible for all women to dance if and only if G contains a subgraph F such

that every vertex of F has exactly one edge incident to it and the number of edges
in F equals the number of women.

Bipartite graphs have various applications. A Petri net [16] is a mathematical mod-
eling language for describing distributed systems widely used in computer science,
and it is a directed bipartite graph. Miklós Laczkovich solved Tarski’s 1925 circle-
squaring problem [19] in 1990 using the existence of matchings in certain infinite bi-
partite graphs [15]. Modern coding theory extensively uses bipartite graphs due to a
close connection between bipartite graphs and parity check matrices for low density
parity check codes [17].

3.2 Bipartite Graphs Defined Inductively: Bigraphs

COQ is based on a Calculus of Constructions with Inductive Definitions [9]. Until COQ
version V7, the underlying calculus of COQ was the Calculus of (Co)Inductive Con-
structions (CIC). It relies on the Curry-Howard isomorphism: a formula (statement) in
the logic is represented as a type in the λ-calculus, and a proof of a formula A is a term
of type A. CIC is an extension of the Calculus of Constructions (CC), the most expres-
sive calculus in Barendregt’s λ-cube, which provides polymorphism, dependent types,
and highly-expressive (co)inductive types. CIC extends CC with inductive definitions
and recursion operators. From COQ version V8.0, the underlying calculus is a weaker
calculus, the Predicative Calculus of (Co)Inductive Constructions (PCIC) where the
sort Set satisfies predicative rules.

To take advantage of COQ’s inductive definitions, we redefine bipartite graphs de-
fined in Section 3.1 using inductive definitions and we call them bigraphs:

Definition validmeet’ (mn: mname) (tys : list typ) (ty : typ) (mS : mSet) : Prop :=

exists2 mdt, mdt \in mS &
((tys = (getartys mdt)) ∧ (ty = (snd mdt)) ∧ (mn = (getmname mdt))).

Inductive valid (mdt1 mdt2 : mdttype) (mS : mSet) : Prop :=

| valid same :

(getmid mdt1) = (getmid mdt2)→
(snd mdt1) = (snd mdt2)→
valid mdt1 mdt2 mS

| valid diff name :

(getmname mdt1) �= (getmname mdt2)→
valid mdt1 mdt2 mS

| valid exc :

(getmid mdt1) �= (getmid mdt2) ∨ (snd mdt1) �= (snd mdt2)→
(getmname mdt1) = (getmname mdt2)→
(getenvlen mdt1) �= (getenvlen mdt2)→
valid mdt1 mdt2 mS

| valid sub ty r :

(getmid mdt1) �= (getmid mdt2) ∨ (snd mdt1) �= (snd mdt2)→
(getartys mdt1) �= (getartys mdt2) ∨ (snd mdt1) �= (snd mdt2)→
(getmname mdt1) = (getmname mdt2)→
(getenvlen mdt1) = (getenvlen mdt2)→
sub tys (getartys mdt2) (getartys mdt1) →
sub ty (getrty mdt2) (getrty mdt1) →
sub ty (snd mdt2) (snd mdt1) →
valid mdt1 mdt2 mS

| valid sub ty l :

(getmid mdt1) �= (getmid mdt2) ∨ (snd mdt1) �= (snd mdt2)→
(getartys mdt1) �= (getartys mdt2) ∨ (snd mdt1) �= (snd mdt2)→
(getmname mdt1) = (getmname mdt2)→
(getenvlen mdt1) = (getenvlen mdt2)→
sub tys (getartys mdt1) (getartys mdt2) →
sub ty (getrty mdt1) (getrty mdt2) →
sub ty (snd mdt1) (snd mdt2) →
valid mdt1 mdt2 mS

| valid meet : ∀ tys ty,

(getmid mdt1) �= (getmid mdt2) ∨ (snd mdt1) �= (snd mdt2)→
(getartys mdt1) �= (getartys mdt2) ∨ (snd mdt1) �= (snd mdt2)→
(getmname mdt1) = (getmname mdt2)→
(getenvlen mdt1) = (getenvlen mdt2)→
˜(sub tys (getartys mdt1) (getartys mdt2))→
˜(sub tys (getartys mdt2) (getartys mdt1))→
is tys (getartys mdt1) (getartys mdt2) tys →
is ty (snd mdt1) (snd mdt2) ty →
validmeet’ (getmname mdt1) tys ty mS→
valid mdt1 mdt2 mS.

Fig. 6. Overloading rules in COQ


