
1

WebBlaze: New Security Technologies for the Web

Dawn Song

Computer Science Dept.

UC Berkeley

2

Web: Increasing Complexity

3

Ensuring Security on the Web Is Complex & Tricky

• Does the browser correctly enforce desired security
policy?

• Is third-party content such as malicious ads securely
sandboxed?

• Do browsers & servers have consistent
interpretations/views to enforce security properties?

• Do web applications have security vulnerabilities?

• Do different web protocols interact securely?

4

WebBlaze: New Security Technologies
for the Web

• Does the browser correctly enforce desired security
policy?

– Cross-origin capability leaks: attacks & defense [USENIX 09]

• Is third-party content such as malicious ads securely
sandboxed?

– Preventing Capability Leaks in Secure JavaScript Subsets [NDSS10]

• Do browsers & servers have consistent
interpretations/views to enforce security properties?

– Document Structure Integrity: A Robust Basis for Cross-site
Scripting Defense [NDSS09]

– Content sniffing XSS: attacks & defense [IEEE S&P 09]

• Do applications have security vulnerabilities?

– Symbolic Execution Framework for JavaScript [IEEE S&P10]

• Do different web protocols interact securely?

– Model checking web protocols [CSF 10]

5

Outline

• WebBlaze Overview

• Content sniffing XSS attacks & defense

• New class of vulnerabilities: Client-side Validation
(CSV) Vulnerability

• Kudzu: JavaScript Symbolic Execution Framework for
in-depth crawling & vulnerability scanning of rich web
applications

• Type-based Approach for Context-sensitive Automatic
Sanitization in Web Templating Languages

• Overview on BitBlaze

• Overview on DroidBlaze

• Conclusions

6

Is this a paper or a web page?

%!PS-Adobe-2.0

%%Creator: <script> ... </script>

What happens if IE decides it is HTML?

7

Content Sniffing Algorithm (CSA)

GET /patagonia.gif HTTP/1.1

HTTP/1.1 200 OK

Content-Type: image/gif

GIF89a38jf9w8nf99uf9…

CSA

8

Content Sniffing XSS Attack

HTTP/1.1 200 OK

Content-Type: image/gif

GET /patagonia.gif HTTP/1.1

CSA

http://images.google.com/imgres?imgurl=http://it.edgecombe.edu/homepage/herring/images/wikipedia-logo.png&imgrefurl=http://it.edgecombe.edu/homepage/herring/index.htm&usg=__YPFpXJ9dSberDAPwSo2PcdkNId8=&h=599&w=489&sz=211&hl=en&start=1&tbnid=rSUvt-Bdx72kcM:&tbnh=135&tbnw=110&prev=/images?q=wikipedia+logo&gbv=2&hl=en
http://en.wikipedia.org/wiki/File:HTML.svg

9

Automatically Identifying
Content Sniffing XSS Attacks

• Website content filter modeled as Boolean predicate
on the input (accepted/rejected)

• Browser CSA modeled as multi-class classifier

– One per output MIME type (e.g., text/html or not)

• Query a solver for inputs that are:

1. Accepted by the website‟s content filter

2. Interpreted as HTML by the browser‟s CSA

10

Challenge: Extracting CSA from Close-sourced
Browsers

• IE7, Safari 3.1

• Need automatic techniques to extract model from
program binaries

11

BitBlaze Binary Analysis Infrastructure

• The first infrastructure:

– Novel fusion of static, dynamic, formal analysis methods

» Loop extended symbolic execution

» Grammar-aware symbolic execution

– Identify & cater common needs for security applications

– Whole system analysis (including OS kernel)

– Analyzing packed/encrypted/obfuscated code

Vine:

Static Analysis

Component

TEMU:

Dynamic Analysis

Component

Rudder:

Mixed Execution

Component

BitBlaze Binary Analysis Infrastructure

12

Dissecting

Malware

BitBlaze Binary Analysis Infrastructure

Detecting
Vulnerabilities

Generating

Filters

BitBlaze: Security Solutions via Program Binary Analysis

 Unified platform to accurately analyze security properties of binaries

 Security evaluation & audit of third-party code

 Defense against morphing threats

 Faster & deeper analysis of malware

13

Extracting CSA from Close-sourced Browsers

• IE7, Safari 3.1

• String-enhanced symbolic execution on binary programs

– Build on top of BitBlaze

– Model extractions via program execution space exploration

– Model string operations and constraints explicitly

– Solve string constraints

• Identify real-world vulnerabilities

14

Symbolic Execution: Path Predicate

GET /

HTTP/1.1

Executed instructions

mov(%esi), %al

mov $0x47, %bl

cmp %al, %bl

jnz FAIL

mov 1(%esi), %al

mov $0x45, %bl

cmp %al, %bl

jnz FAIL

…

Intermediate

Representation (IR)

AL = INPUT[0]

BL = ‘G’

ZF = (AL == BL)

IF(ZF==0)JMP(FAIL)

AL = INPUT[1]

BL = ‘E’

ZF = (AL == BL)

IF(ZF==0)JMP(FAIL)

…

Path

predicate
(INPUT[0] == „G‟)

^

(INPUT[1] == „E‟)

^

…

Web

Server

15

Model Extraction on Binary Programs

• Symbolic execution for execution space exploration

– Obtain path predicate using symbolic input

– Reverse condition in path predicate

– Generate input that traverses new path

– Iterate

• String-enhanced symbolic execution

• Model: disjunction of path predicates

Mhtml = A v B v D
A

text/html

B

text/html

D

text/html

C

text/

plain

16

IE7/HotCRP Postscript Attack

• HotCRP Postcript signature

strncasecmp(DATA, "%!PS-", 5) == 0

• IE 7 signatures

application/postscript: strncmp(DATA, "%!", 2) == 0

text/html: strcasestr(DATA,"<SCRIPT") != 0

• Attack

%!PS-Adobe-2.0

%%Creator: <script> ... </script>

17

IE7/Wikipedia GIF Attack

• Wikipedia GIF signature

strncasecmp(DATA,“GIF8”,4) == 0)

• IE 7 signatures

image/gif: (strncasecmp(DATA,“GIF87”,5) == 0) ||
(strncasecmp(DATA,“GIF89”,5) == 0)

text/html: strcasestr(DATA,"<SCRIPT") != 0

• Fast path: check GIF signature first

• Attack

GIF88<script> … </script>

18

Results: Models & Attacks

Model Seeds Path

count

%

HTML

paths

Avg. #

Paths per

seed

Avg.

Path gen.

time

Inputs

generate

d

Avg.

Path

depth

Safari

3.1

7 1558 12.4% 222.6 16.8 sec 7166 12.1

IE 7 7 948 8.6% 135.4 26.6 sec 64721 212.1

• Filter = Unix File tool / PHP

• Find inputs

– Accepted by filter

– Interpreted as text/html

• Attacks on 7 MIME types

Model IE 7 Safari

3.1

application/postscript  

audio/x-aiff  

image/gif  

image/tiff  

image/png - 

text/xml  -

video/mpeg  

19

Defenses

1. Don‟t sniff

– Breaks ~1% of HTTP responses

– Works in IE + fails in Firefox = Firefox‟s problem

2. Secure sniffing

1. Avoid privilege escalation

» Prevent Content-Types from obtaining higher
privilege

2. Use prefix-disjoint signatures

» No common prefix with text/html

20

Adoption

• Full adoption by Google Chrome

– Shipped to millions of users in production

• Partial adoption by Internet Explorer 8

– Partially avoid privilege escalation

– Doesn‟t upgrade image/* to text/html

• Standardized

– HTML 5 working group adopts our principles

21

Outline

• WebBlaze Overview

• Content sniffing XSS attacks & defense

• New class of vulnerabilities: Client-side Validation
(CSV) Vulnerability

• Kudzu: JavaScript Symbolic Execution Framework for
in-depth crawling & vulnerability scanning of rich web
applications

• Type-based Approach for Context-sensitive Automatic
Sanitization in Web Templating Languages

• Conclusions

22

Rich Web Applications

• Large, complex Ajax applications

• Rich cross-domain interaction

23

Client-side Validation(CSV) Vulnerabilities

• Most previous security analysis focuses on server side

• A new class of input validation vulnerabilities

• Analogous to server-side bugs

– Unsafe data usage in the client-side JS code

– Different forms of data flow

– Purely client-side, data never sent to server

– Returned from server, then used in client-side code

24

Vulnerability Example (I):
Code Injection

• Code/data mixing

• Dynamic code evaluation

– eval

– DOM methods

• Eval also deserializes objects

– JSON

Data: “alert(„0wned‟);”

……

……

eval (.. + event.data);

Receiver

facebook.com

25

Vulnerability Example (II):
Application Command Injection

• Application-specific commands

• Example: Chat application

Application

JavaScript

Application

Server

http://chat.com?cmd=joinroom&room=nba

&cmd=addbuddy&user=evil

“..=nba&cmd=addbuddy&user=evil”

http://chat.com/roomname=nba

http://chat.com?cmd=joinroom&room=nbaXMLHttpReq.open (url)

Join this room

Injected Command

26

Vulnerability Example (III):
Cookie Sink Vulnerabilities

• Cookies

– Store session ids, user‟s history and preferences

– Have their own control format, using attributes

• Can be read/written in JavaScript

• Attacks

– Session fixation

– History and preference data manipulation

– Cookie attribute manipulation, changes

27

Outline

• WebBlaze Overview

• Content sniffing XSS attacks & defense

• New class of vulnerabilities: Client-side Validation
(CSV) Vulnerability

• Kudzu: JavaScript Symbolic Execution Framework for
in-depth crawling & vulnerability scanning of rich web
applications

• Conclusions

28

Problem Definition

• Two challenges

• #1: Automatic exploration of the execution space

• #2: Automatically check if data is sanitized sufficiently

– Can‟t distinguish parsing ops. from custom validation checks

– Can‟t assume validation, false negatives vs. false positives.

Automatically Find Code-Injection
Vulnerabilities in JS Applications

29

Our Contributions
• Existing Approaches

– Static Analysis [Gatekeeper’09, StagedInfoFlow ‘09]

– Taint-enhanced blackbox fuzzing [Flax’10]

• Drawbacks

– Either assumes an external test suite to explore paths [Flax’10]

– Or, does not generate an exploit instance, can have FPs
[Gatekeeper’09, StagedInfoFlow ‘09]

• Our Contributions

– A Symbolic Analysis approach

– Kudzu: An end-to-end symbolic execution tool for JavaScript

– Identify a sufficiently expressive “theory of strings”

– Kaluza: A new expressive, efficient decision procedure

» Supports strings, integers and booleans as first-class input
variables

30

Kudzu: Approach and Design
• Input space has 2 components

– Event Space: GUI explorer

– Value Space: Dynamic Symbolic Execution

• Checking sufficiency of validation checks

– Symbolic analysis of validation operations on code-evaluated data

GUI

EXPLORER

DYNAMIC

SYMBOLIC

INTERPRETER

CHECKING SUFFICIENCY

OF VALIDATION

KALUZA

DECISION

PROCEDURE

NEW INPUT FEEDBACK

APPLICATION-AGNOSTIC

APPLICATION-SPECIFIC

31

Dynamic Symbolic Interpreter for JavaScript

Symbolic ExecutionConcrete Execution

Program

Symbolic

Formula

Initial

Input

• Employed for Value Space Exploration

'f
f KALUZA

DECISION

PROCEDURE

New

Input

32

Checking Sufficiency of Validation Checks

• To eliminate false positives

INITIAL

INPUT

CODE

EVALUATION

CONSTRUCT

AttackI

fI

Attack Grammar

Specification

INTERSECTION

EMPTY

KALUZA

DECISION

PROCEDURE

33

GUI Exploration

• Events: State of GUI elements, mouse and link clicks

• Event Sequence: A sequence of state-altering GUI actions

• Event Space Exploration using a GUI explorer

• Practically enhances coverage benefits

– Example:

– 1 Gadget Vulnerability: reachable with a sequence of events
executed: dropdown box value is changed, delete hit

34

Empirical Motivation for A Theory of Strings

– Combined string and integer solver

– Regular Expression based
operations are 1/3rd of the match,
split, test, replace

operations (9%)

– Multiple string variables

replace /

decodeURI /

encodeURI

(8%)

split /

match /

test

(1%)

substring / charAt /

charcodeAt

(5%)

concat

(8%)

indexOf/

lastIndexOf /

strlen

(78%)

/\\(?:["\\\/bfnrt]|u[0-9a-fA-F]{4})/

33% regexes have Capture Groups

35

• Practical Requirements to support

Concatenation (Word Equations)

Regular Language Membership

String Length

Equality

Multiple String Variables

Boolean and Integer Logic

A Sufficiently Expressive Theory for JS

[DPRLE’09] [HAMPI’09]
















 





[PEX’09]













Existing solvers not sufficiently expressive

36

• Input: A boolean combination of constraints over multiple
integer and variable-length string variables

• Decidability vs Expressiveness

– Equality between reg language

variables undecidable [STOC’81]

– Full generality of replace

in word constraints undecidable

[TACAS’09]

Kaluza: A New Solver Decision Procedure

JavaScript

Language

Operations

Kaluza

Core

Constraints

STRING

SOLVING

APPROACHES

LANGUAGE

EQUATIONS

WORD

CONSTRAINTS

Insight: JS to Kaluza Reduction uses Dynamic Information

37

Kudzu System Evaluation

• 18 Live Applications

– 13 iGoogle gadgets

– 5 AJAX application

» Social networking: Academia, Plaxo

» Chat applications: AjaxIM, Facebook Chat,

» Utilities: parseURI

• Setup

– Untrusted sources

» All cross-domain channels

» Text boxes

– Critical sinks

» Code evaluation constructs

38

11 Vulnerabilities found out of 18 apps

Academia 1

AJAXim 1

Facebook 0

Plaxo 1

ParseURI 1

AskAWord 1

BlockNotes 1

Birthday Reminder 0

Calorie Watcher 0

Expenses Manager 0

Listy 1

NotesLP 0

SimpleCalculator 1

Progress Bar 0

ToDo 1

TVGuide 1

WordMonkey 1

ZipCodeGas 0

39

Results: Code Coverage

29% code coverage increase in 6 hours

Initial Discovered

Initial Executed

Total Discovered

Total Executed

40

Results: Code Coverage

29% code coverage increase in 6 hours

0

10

20

30

40

50

60

70

80

90

100

Coverage Increase

Initial Coverage

C
o

d
e

 C
o

v
e

ra
g

e
 (

in
 %

)

41

Summary

• Kudzu: An End-to-end Symbolic Execution Tool for JS

– Separates the input space analysis into 2 components

• Identified a theory of strings expressive enough for JS

• Kaluza: A new decision procedure for the theory

• Demonstrated capabilities on 18 live web applications

• Found 11 vulnerabilities with no given initial test harness

• 2 new vulnerabilities

42

Outline

• WebBlaze Overview

• Content sniffing XSS attacks & defense

• New class of vulnerabilities: Client-side Validation
(CSV) Vulnerability

• Kudzu: JavaScript Symbolic Execution Framework for
in-depth crawling & vulnerability scanning of rich web
applications

• Conclusions

43

Type-based Approach for Context-sensitive Automatic
Sanitization in Web Templating Languages

• Can we prevent XSS attacks by construction?

• Goal: automatic sanitization in web templating languages

• Challenges:

– Context-sensitive

– Support complex language constructs (e.g., if-else, loops)

– Backwards compatibility with existing code

» Co-exist with existing sanitization code

– Low performance over head

44

Type-Qualifier based Approach

• Context type qualifier

– Representing context where untrusted input can be safely
embedded

• Type inference during compilation

• Automatically insert sanitization routine and runtime
instrumentation based on type inference

• Deployed in Google Closure Template

– Gmail, GoogleDocs

• Efficient: 3-9.6% overhead on CPU intensitve benchmarks

45

WebBlaze: New Security Technologies for the Web

• Does the browser correctly enforce desired security
policy?

– Cross-origin capability leaks: attacks & defense [USENIX 09]

• Is third-party content such as malicious ads securely
sandboxed?

– Preventing Capability Leaks in Secure JavaScript Subsets [NDSS10]

• Do browsers & servers have consistent
interpretations/views to enforce security properties?

– Document Structure Integrity: A Robust Basis for Cross-site
Scripting Defense [NDSS09]

– Content sniffing XSS: attacks & defense [IEEE S&P 09]

• Do applications have security vulnerabilities?

– Symbolic Execution Framework for JavaScript [IEEE S&P10]

– Type-based Context-sensitive Auto-sanitization in web frameworks

• Do different web protocols interact securely?

– Model checking web protocols [CSF 10]

46

Dissecting

Malware

BitBlaze Binary Analysis Infrastructure

Detecting
Vulnerabilities

Generating

Filters

BitBlaze: Computer Security via Program Binary Analysis

 Unified platform to accurately analyze security properties of binaries

 Security evaluation & audit of third-party code

 Defense against morphing threats

 Faster & deeper analysis of malware

47

BitBlaze Binary Analysis Infrastructure: Architecture

• The first infrastructure:

– Novel fusion of static, dynamic, formal analysis methods

» New symbolic reasoning techniques

– Whole system analysis (including OS kernel)

– Analyzing packed/encrypted/obfuscated code

Vine:

Static Analysis

Component

TEMU:

Dynamic Analysis

Component

BitFuzz/FuzzBall:

Symbolic Exploration

Component

BitBlaze Binary Analysis Infrastructure

48

BitBlaze in Action (I): Vulnerability Discovery

• Loop extended symbolic execution [ISSTA09]

• Decomposition-&-re-stitching symbolic execution [CCS10]

• Finding vulnerabilities in malware

• Statically-Directed Dynamic Automated Test Generation [ISSTA11]

• Dynamic-static-dynamic approach

• Model-inference Assisted Concolic Execution [USENIX Security 11]

• On-the-spot symbolic execution

• Finding bugs in binary emulators

49

BitBlaze in Action (II): Vulnerability Diagnosis & Defense

• Differential Slicing: Identifying Causal Execution
Differences for Security Applications [IEEE S&P 11]

• Automatic Patch-Based Exploit Generation is Possible:
Techniques and Implications [IEEE S&P 08]

• Automatic Generation of Vulnerability Signatures [IEEE
S&P 06, CSF 07, RAID09]

50

BitBlaze in Action (III): Model Extraction

• Secure Content Sniffing for Web Browsers [IEEE S&P 09]

• Inference and Analysis of Formal Models of Botnet
Command and Control Protocols [CCS 07, 09, 10]

51

BitBlaze in Action (IV): In-depth Malware Analysis

• High volume of new malware needs automatic malware analysis

• Given a piece of suspicious code sample,

– What malicious behaviors will it have?

– How to classify it?

» Key logger, BHO Spyware, Backdoor, Rootkit

– What mechanisms does it use?

» How does it steal information?

» How does it hook?

– Who does it communicate with? Where does it send information to?

– Does its communication exhibit certain patterns?

– Does it contain trigger-based behavior?

» Time bombs

» Botnet commands

• BitBlaze Malware Analysis Engine: a unified framework for in-depth
malware analysis

52

BitBlaze Summary

• New techniques on binary analysis for security applications

– Scale to large real-world programs

– Fusion of static, dynamic analysis & symbolic reasoning

– New problem formulation & approaches for security problems

• Unified framework for broad spectrum of security problems

• Partially open source

– Empower further development worldwide

53

Android App Security

• Billions of android app downloads

• Android market

– $25 signup

– Anyone can publish

– Anonymous sign-up possible

• Third-party market

• How to check & ensure that an android app is secure to
download?

54

Security Issues of Android Apps

• Malicious app

– Exploit vulnerabilities in Android kernel & platform

– Exploit vulnerabilities in other apps

– Stealing users‟ data

– Paid SMS

– Botnets: download malicious payload & launch other malicious
activities

• Vulnerable app

– Fail to protect its own data

– SQL injection attacks

– Confused deputy attacks: allow other apps to use its permission

55

Automatic Analysis of Android Apps

• Does the app have vulnerabilities?

• Is the app malicious?

• Interesting behaviors of app

– Network behaviors: where does it communicate to?

– SMS

– Location info

– Download code to execute

– Interact with other apps

– Exploit vulnerabilities in kernel or platform

56

DroidBlaze: Automatic Analysis
Infrastructure for Android Apps

• Combining static & dynamic analysis

• Automatic exploration of program execution space

– Identifying trigger-based behavior

• Similarity and clustering analysis

• Behavioral and semantic analysis

• Current results

– Over permission analysis

– In-app billing vulnerability analysis

– Malware detection

57

Conclusion

• WebBlaze: New Technologies for Enhancing Web Security

• BitBlaze: Binary Analysis for Computer Security

• DroidBlaze: Automatic Security Analysis for Android Apps

58

bitblaze.cs.berkeley.edu

webblaze.cs.berkeley.edu

dawnsong@cs.berkeley.edu

