
Moonzoo Kim
Provable Software Lab

KAIST, South Korea

Automated Analysis of Industrial
Embedded Software

1/31/2012

Thanks to Hotae Kim and Yoonkyu Jang

Samsung Electronics, South Korea

/25

Strong IT Industry in South Korea

2 Automated Analysis of Industrial Embedded Software Moonzoo Kim

/25

Embedded Software in Two Different Classes

3

Consumer

Electronics

Safety

Critical

Systems

Examples Smartphones,

flash memory

platforms

Nuclear

reactors,

avionics, cars

Market

competition

High Low

Life cycle Short Long

Development

time

Short Long

Model-based

development

None Yes

Important

value

Time-to-market Safety

Automated Analysis of Industrial Embedded Software Moonzoo Kim

/25

Personal Research Roadmap

Model
Checking

Software
Model

Checking

Runtime
Verification

 Past: RV (dynamic) && MC (static)

 Current: Extended Concolic Testing

 Future: Concolic Testing with Intelligence

Machine
Learning

User
Assistance

Statistic
Inference

Better
Industrial
Application

FMSD‟04 Spin‟08 ASE „08

 TSE‟11

Concolic
Testing

Distributed
Concolic
Testing

Hybrid
Algorithm

(i.e., w/
Genetic Alg)

ICST12a

FACJ‟12

FSE‟11a

ICST‟12b

FSE‟11b

ICTAC‟10

ISSRE ‟11

FSE‟10

4 Automated Analysis of Industrial Embedded Software Moonzoo Kim

/25

OneNAND® Flash Memory Devices

Low Level (LLD)
Device Driver

Block
Management (BML)

Sector
Translation (STL)

Demand
Paging

Manager
(DPM)

OS
Adapt-
ation

Module

Unified
Storage
Platform

App1 App2 App3

Source:
Software Center
of Samsung
Electronics ‘06  Characteristics of OneNAND® flash mem

 Each memory cell can be written limited
number of times only

 Logical-to-physical sector mapping

 Bad block management, wear-leveling, etc

 Concurrent I/O operations

 Synchronization among processes is crucial

 XIP by emulating NOR interface through
demand-paging scheme

 binary execution has a highest priority

 Performance enhancement

 Multi-sector read/write

 Asynchronous operations

 Deferred operation result check

Flash
Translation Layer

File
System

Part I: Experience from SW Model Checking

5

Target system: Samsung Unified Storage
Platform (USP) for OneNAND® flash memory
(around 30K lines of C code)

Automated Analysis of Industrial Embedded Software Moonzoo Kim

/25

Results of Unit Analysis through CBMC and BLAST *TSE’11+

 Demand paging manager (234 LOC)
 Detected a bug of not saving the status of suspended erase

operation

 Concurrency handling
 Confirmed that the BML semaphore was used correctly in all 14

BML functions (150 LOC on average)

 Detected a bug of ignoring BML semaphore exceptions in a call
sequence from STL (2500 LOC on average)

 Multi-sector read operation (MSR) (157 LOC)
 Provided high assurance on the correctness of MSR

 no violation was detected even after exhaustive analysis (at least with a
small number of physical units(~10))

 In addition, we evaluated and compared pros and cons of
CBMC and BLAST empirically

6 Automated Analysis of Industrial Embedded Software Moonzoo Kim

/25

Logical to Physical Sector Mapping

LS 0

LUN 0

LS 0

LS 1

LUN 0

LS 0

LS 1

LS 1

LUN 0

LS 0

LS 1

LS 1

LS 0

LUN 0

PUN 1

LUN 0

Empty

Physical Unit
Write LS 0 Write LS 1 Modify LS 1 Modify LS 0

LUN 0

LS 2

PUN 4

LS 0

LS 1

LS 1

LS 0

PUN 1

Write LS 2

STEP 0 STEP 1 STEP 2 STEP 3 STEP 4 STEP 5

PUN 1 PUN 1 PUN 1 PUN 1

LUN 0 LUN 1 LUN 2 LUN 3 LUN 4 LUN 5 LUN 6

PUN 0

PUN1PUN 2PUN 3 PUN 4

PUN 5

PUN 6

...

...

1:N mapping from a LUN to PUNs

Sector mapping

Sector Allocation Map (SAM)

Logical offset

0

1

2

SAM1

SAM4

LUN 0

LS 2

PUN 4

LS 0

LS 1

LS 1

LS 0

PUN 1

3

Physical offset

3

2

Logical offset

0

1

2

3

Physical offset

0

 In flash memory, logical
data are distributed over
physical sectors.

7 Automated Analysis of Industrial Embedded Software Moonzoo Kim

/25

Multi-sector Read Operation (MSR)

8

 MSR reads adjacent multiple physical sectors once in order to
improve read speed

 MSR is 157 lines long, but highly complex due to its 4 level loops

 4 parameters to specify logical data to read (from, to, how long, read flag)

 The requirement property is to check

 after_MSR -> (∀i. logical_sectors[i] == buf[i])

 We built a verification environment model for MSR

1 0

1 1

2

3

E

A B F

C

D

3 3

0 2

3

1

Sector 0

Sector 1

Sector 2

Sector 3

PU0~PU4

a) A distribution of “ABCDEF”

B

D

F

A C E

PU0~PU4 SAM0~SAM4 SAM0~SAM4

b) Another distribution of “ABCDEF” c) Invalid distribution of “ABCDEF”

 0

 1

 2

 3

E

A B F

C

D

PU0~PU4 SAM0~SAM4

Automated Analysis of Industrial Embedded Software Moonzoo Kim

/25

Exponential Increase of Distribution Cases

9

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

1.00E+13

1.00E+14

5 10 15 20

#
 o

f
p

o
ss

ib
le

 c
a
se

s

A number of physical units

Possible cases

5

6

7

8

9

/25

Environment Modeling

1. One PU is mapped to at most one LU

2. Valid correspondence between SAMs and PUs:

 If the i th LS is written in the k th sector of the j th PU, then the i th offset of the j th
SAM is valid and indicates the k’th PS ,

 Ex> 3rd LS (‘C’) is in the 3rd sector of the 2nd PU, then SAM1[2] ==2

 i=2 k=2 j=1

3. For one LS, there exists only one PS that contains the value of the LS:

 The PS number of the i th LS must be written in only one of the (i mod 4) th offsets
of the SAM tables for the PUs mapped to the corresponding LU.

1 0

1 1

2

3

E

A B F

C

D

Sector 0

Sector 1

Sector 2

Sector 3

PU0~PU4 SAM0~SAM4

Automated Analysis of Industrial Embedded Software Moonzoo Kim

/25

Loop Structure of MSR

11

01:curLU = LU0;

02:while(curLU != NULL) {

03: readScts = # of sectors to read in the current LU

04: while(readScts > 0) {

05: curPU = LU->firstPU;

06: while(curPU != NULL) {

07: while(...) {

08: conScts = # of consecutive PS’s to read in curPU

09: offset = the starting offset of these consecutive PS’s in curPU

10: }

11: BML_READ(curPU, offset, conScts);

12: readScts = readScts - conScts;

13: curPU = curPU->next;

14: }

15: }

16: curLU = curLU->next;

17:}

Loop1: iterates over LUs

Loop2: iterates until the current LU is read completely

Loop3: iterates over PUs linked to the current LU

Loop4: identify consecutive PS‟s in the current PU

/25

Model Checking Results of MSR *Spin’08, TSE’11+

 Verification of MSR by using NuSMV, Spin, and CBMC

 No violation was detected within |LS|<=8, |PU| <=10

 1010 configurations were exhaustively analyzed for |LS|=8, |PU|=10

12

10

100

1000

10000

100000

5 6 7 8 9 10

S
e
c
o

n
d

s

A number of physical units

Time complexity LS = 6

Spin

NuSMV

CBMC

10

100

1000

10000

100000

5 6 7 8 9 10

M
e
g
a
b

y
te

s

A number of physical units

Space complexity LS = 6

Spin

NuSMV

CBMC

Automated Analysis of Industrial Embedded Software Moonzoo Kim

/25

Feedbacks from Samsung Electronics

13

1. Current SW development of Samsung is not ready to apply unit testing

 Tight project deadline does not allow defining detailed asserts and environment
models

2. Needs large scalability even at the cost of accuracy

 Rigorous automated tools for small unit (i.e., SW model checker) is of limited
practical value

3. Many embedded SW components have dependency on external libraries

 Pure analysis methods on source code only are of limited value

4. It is desirable to generate test cases as a result of the analysis.

 Current SW V&V practice operates on test cases



Automated Analysis of Industrial Embedded Software Moonzoo Kim

Main challenge :
• IT industry is not mature enough to conduct unit testing

/25

Background on Concolic Testing

14

 Concrete runtime execution guides symbolic path analysis
 a.k.a. dynamic symbolic execution (DSE), white-box fuzzing

 Automated test case (TC) generation technique
 Applicable to a large target program (no memory bottleneck)

 Applicable to testing stages seamlessly

 External binary library can be handled (partially)

 Explicit path model checker
 All possible execution paths are explored based on the generated TCs

 Anytime algorithm
 User can get partial analysis result (i.e., TCs) anytime

 Analysis of each path is independent from each other

 Parallelization for linear speed up

 Ex. Scalable Concolic testing for Reliability (SCORE) framework [ICST’12a+

Automated Analysis of Industrial Embedded Software Moonzoo Kim

/25

Hierarchy of SW Coverages

15/60

Simple Round Trip
Coverage

SRTC
Node

Coverage

NC

Edge
Coverage

EC

Edge-Pair
Coverage

EPC

Prime Path Coverage

PPC

Complete Path
Coverage

CPC

Complete Round Trip
Coverage

CRTC

All-DU-Paths
Coverage

ADUP

All-uses Coverage

AUC

All-defs Coverage

ADC

Complete Value
Coverage

CVC
 Model checking

Concolic testing

/25

Concolic Testing Example

 Random testing
 Probability of reaching Error() is extremely low

 Concolic testing generates the following
4 test cases
 (0,0,0): initial random input

 Obtained symbolic path formula (SPF) φ: a!=1

 Next SPF ψ generated from φ: !(a!=1)

 (1,0,0): a solution of ψ (i.e. !(a!=1))

 SPF φ: a==1 && b!=2

 Next SPF ψ: a==1 && !(b!=2)

 (1,2,0)

 SPF φ: a==1 && (b==2) && (c!=3*a +b)

 Next SPF ψ: a==1 && (b==2) && !(c!=3*a +b)

 (1,2,5)

 Covered all paths and

// Test input a, b, c

void f(int a, int b, int c) {

 if (a == 1) {

 if (b == 2) {

 if (c == 3*a + b) {

 target();

} } } }

a==1 a!=1

b==2 b!=2

c==

3*a+b
c!=3*a+b

(0,0,0)

(1,0,0)

(1,2,0) (1,2,5)

target()
reached

16 Automated Analysis of Industrial Embedded Software Moonzoo Kim

/25 17

 Unit-level testing

1. Busybox ls (1100 LOC)

 98% of branches covered and 4 bugs detected

2. Samsung security library (2300 LOC)

 73% of branches covered and a memory violation bug detected

 System level testing

1. Samsung Linux Platform (SLP) file manager

 detected an infinite loop bug

2. 10 Busybox utilities

 Covered 80% of the branches with 40,000 TCs in 1 hour

 A buffer overflow bug in grep was detected

3. Libexif

 300,000 TCs in 4 hours

 1 out-of-bound memory access bug, 1 null pointer dereferences, and 4 divide-by-0

bugs were detected

Automated Analysis of Industrial Embedded Software

Part II: Experience from Concolic Testing using CREST

 Target system: Samsung Smartphone Platform

Moonzoo Kim

/25

LibEXIF (Exchangeable
Image File Format)

 libexif contains 238 functions in C (14KLOC)

 An IFD consists of

 a 2 byte counter to indicate a number of tags in the
IFD, tag arrays, 4 byte offset to the next IFD.

 Each tag consists of

 tag id (2 bytes), type (2 bytes), count (i.e., a number of
values) (4 bytes), value (or offset to the value if the
value is larger than 4 bytes) (4 bytes).

 Manufacturer note tag is used for manufacturers
of EXIF writers to record any desired information

 Camera manufactures define a large number of their
own maker note tags

 maker note tags are not specified in the official EXIF
specification.

 Ex. Canon defines more than 400 maker note tags.

Moonzoo Kim
Provable SW
Lab

/25

Testing Strategies

Moonzoo Kim
Provable SW Lab

 Open source oriented approach
 Focusing on runtime failure bugs only

 Null-pointer dereference, divide-by-0, out-of-bound memory accesses

 Baseline concolic testing
 Input EXIF tag size fixed at 244 bytes

 Full symbolic

 Focus on the maker note tags w/ concrete image files.
 5 among 10 largest functions are for maker notes

 These 5 functions takes 27% of total branches

 Compare two popular Concolic testing tools
 CREST-BV and KLEE

 Comparison with Coverity Prevent

/25

Testing Result 1

Moonzoo Kim
Provable SW Lab

 20/92

 Out-of-bound memory access bug detected
 exif_data_load_data () of exif-data.c as follows (line 2):

1:if (offset + 6 + 2 > ds) { return; }

2:n = exif_get_short(d+6+offset, ...)

/25

Testing Result 2

Moonzoo Kim
Provable SW Lab

 21/92

 KLEE detected 1 null-pointer-dereference

 CREST-BV detected 4 divide-by-0 bugs in addition

/25 Moonzoo Kim

 Null-pointer-dereference bug

 Divide-by-0 bug

1:for(i=0;i<sizeof(table)/sizeof(table[0]);i++)

2: //t is a maker note tag read from an image

3: if (table[i].tag==t) {

4: //Null-pointer dereference occurs!!!

5: if(!*table[i].description)

6: return "";

1:vr=exif_get_rational(...);

2://Added for concolic testing

3:assert(vr.denominator!=0);

4:a = vr.numerator / vr.denominator

/25

Testing Result 3

Moonzoo Kim
Provable SW Lab

 Comparison with Coverity Prevent

 Prevent detected the following null-pointer dereference bug,
which KLEE/CREST-BV did not detect

 because test-mnote.c does not call the buggy function.

 However, no bugs detected by concolic testing was
detected by Prevent

 Not surprising

 (Prevent spent only 5 minutes to analyze libexif)

1:if(!loader||(loader->data_format ...) {

2: exif_log(loader->log, ...);

/25

Lessons Learned from Real-world Application

Moonzoo Kim
Provable SW Lab

 Practicality of Concolic testing

 1 null-pointer dereference, 1 out-of-bound memory access, and
4 divide-by-0 in reasonable time

 Note that

 libexif is very popular OSS tampered by millions of users

 we did not have background on LIBEXIF!!!

 Importance of Testing Methodology/Strategy

 Still state space explosion is a big obstacle

 Average length of symbolic path formula = 300

=> In theory, there exist 2300 test cases to test

/25

Conclusion and Future Work

25

 Formal verification techniques really work in IT industry !

 Model checking and concolic testing detected hidden bugs in industrial
embedded software

 To alleviate the limitations of concolic testing

 External function summaries through dynamic invariance generation

 Develop a new search strategy for fast branch coverage

 Data mining on a huge set of runtime execution information

 (semi) Automated oracle generation through dynamic invariant generation

 Automated debugging

 Technical papers can be downloaded at http://pswlab.kaist.ac.kr

Automated Analysis of Industrial Embedded Software Moonzoo Kim

http://pswlab.kaist.ac.kr/

