
In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Cost-Aware Triage Ranking Algorithms
for Bug Reporting Systems

Jin-woo Park1, Mu-Woong Lee1, Jinhan Kim1, Seung-won Hwang1, Sunghun Kim2
POSTECH, 대한민국1

HKUST, Hong Kong2

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Outline
1. CosTriage: A Cost-Aware Triage Algorithm for Bug

Reporting Systems, Association for the Advancement of
Artificial Intelligence (AAAI), 2011

2. CosTriage+: Cost-Aware Triage Ranking Algorithms for Bug
Reporting Systems (Submitted), Distributed and Parallel
Databases (DPD), 2012

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Bug reporting systems
 Bugs!!
 More than 300 bug reports per day in Mozilla (a big software

project)

 Bug Solving
 One of the important issues in a software development process
 Bug reports are posted, discussed, and assigned to developers

Open sources projects
 Apache
 Eclipse
 Linux kernel
 Mozilla

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Bug reporting systems
 Bug reports
 Has Bug ID, title, description, status, and other meta data
 Assigned to developers and fixed by developers

Challenges
 Bug triage
 Duplicate bug detection
 …

title (summary)

description

bug ID

status

other data

bug fix history (time)

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Bug reporting systems
 Bug Triage
 Assigning a new bug report to a suitable developer
 Bottleneck of bug fixing process
 Labor intensive
 Miss-assignment can lead to slow bug fix

Open
Source
Project

Bug
Reports

Triager

assign

Developers

Can be
automated!!!

Bottleneck of
the bug fixing

process

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Preliminary (Bug triage)
 PureCBR [Anvik06]
 Construct multi-class classifier using a SVM classifier
 Bug reports B are converted into pair <Word vector, Dev> for

training
 Bug Report History  Input Data
 Developers  Classes

training

Classifier’s scores

Assign a new bug to Dev 1

Bug Fix
History

New Bug
Report

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Preliminary (Bug triage)
 PureCBR [Anvik06]
 Good performances
 Problem
 This approach only considers accuracy
 Are developer happy?
  We consider developer’s cost (e.g., interests, bug fix time, and expertise)
  We assume that faster bug fixing time has higher developer cost
  Each developer has different preference for a bug

Bug
Report 1

Bug
Report 2

50 days 2 days

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Preliminary (recommendation)
 Recommender algorithms
 Content-based recommendation (CBR)
 Predicting user’s interests based on item features
 Machine learning methods
 Over-specialization problem

 Collaborative filtering recommendation (CF)
 Predicting user’s interests based on affinity’s interests for items
 User neighborhood
 Sparsity problem

 Hybrid recommendation
 Content-boosted collaborative filtering (CBCF)
 Combining an existing CBR with a CF
 Better performance than either approach alone

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Preliminary (recommendation)
 Recommender algorithms
 Hybrid recommendation
 Content-boosted collaborative filtering (CBCF)
 Combining an existing CBR with a CF
 Better performance than either approach alone

Bug 1 Bug 2 Bug 3 Bug 4 Bug 5

Dev 1 10 ? ? ? ?

Dev 2 ? 8 3 ? ?

Dev 3 ? ? ? 7 ?

Bug
Report 5

Two Phases
 - CBR phase
 - CF Phase

Feature word1 word2 word3

Count 3 2 4

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Preliminary (recommendation)
 Recommender algorithms
 Hybrid recommendation
 Content-boosted collaborative filtering (CBCF)
 Combining an existing CBR with a CF
 Better performance than either approach alone

Bug
Report 5

Bug 1 Bug 2 Bug 3 Bug 4 Bug 5

Dev 1 10 10 10 10 10

Dev 2 3 8 3 8 3

Dev 3 7 7 7 7 7

CBR phase

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Preliminary (recommendation)
 Recommender algorithms
 Hybrid recommendation
 Content-boosted collaborative filtering (CBCF)
 Combining an existing CBR with a CF
 Better performance than either approach alone

Bug
Report 5

CF phase

Existing recommendation approaches are not suitable!

Bug 1 Bug 2 Bug 3 Bug 4 Bug 5

Dev 1 10 9 7 9 8

Dev 2 5 8 3 8 5

Dev 3 7 8 5 7 6

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Goal
 Goal
 Find efficient bug-developer matching
 Optimizing not only accuracy but also cost

 Use modified CBCF approach
 Constructing developer profiles for cost

 Challenge
 Enhancing CBCF approach for sparse data
 Extreme sparseness of the past bug fix history data
 A bug fixed by a developer
 Need to reduce sparseness for enhancing quality of CBCF

Bug fix time from bug fix history

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Merging classifier’s scores and developer’s cost scores.
 The accuracy scores are obtained using PureCBR [Anvik06]
 The developer cost scores are obtained from “de-sparsified” bug

fix history.
 Two scores are then merged for prediction

Overview

New Bug
Report

Developer profiles

Bug classifier
<SVM>

Cost

Accuracy

Cost score

Accuracy score

Aggregation
Recommended

Developer

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage (Cost Estimation)
 CosTriage: A Cost-aware Triage Algorithm for bug

reporting system
 Challenge to estimate the developer cost?
 How to reduce the sparseness problem?

  Using a Topic Modeling

Categorization bugs to reduce the sparseness

Bug fix time from bug fix history

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage
 Categorizing bugs
 Topic Modeling
 Latent Dirichlet Allocation (LDA) [BleiNg03]
 Each topic is represented as a bug type
 The topic distribution of reports determine bug types

 We adopt the divergence measure proposed in [Arun, R. PAKDD ‘10]
 Finding the natural number of topics (# bug types)

 t is the natural number of bug types

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

 Developer profiles modeling
 Developer Profiles
 N-dimensional feature vector
 The element of developer profiles, Pu[i], denotes the developer cost for i th-

type bugs

 Developer Cost
 The average time to fix ith type bugs

CosTriage

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage
 Predicting missing values in profiles
 Using CF for developer profiles
 Similarity measure:

k=1

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage
Obtaining developer’s cost for a new bug report

New Bug
Report

Developer cost for a new bug

Bug type = 1

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage
Merging classifier’s scores and developer’s cost scores.

Accuracy scores [Anvik06] Cost scores (CosTriage)

+ =

Hybrid scores

Bug
Reports

Developer profiles
<Bug types>

Bug classifier
<SVM>

Cost

Accuracy

Cost score

Accuracy score

Aggregation Recommended
Developer

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage
 Limitations of CosTriage
 CosTriage cannot determine the bug types of some bug reports
 The report does not include any topic word identified by LDA model
 4.04% bug reports in Mozilla projects
 CosTriage determines the bug types for the reports randomly.

 CosTriage does not consider temporal characteristic on modeling

developer profiles
 Several studies show that a user’s interests do change over time
 The recent bug fix history is more important than the older history

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage+
Overcoming the limitations of CosTriage
 Code-information-based type prediction approach
 To determine the types of undetermined bug the reports
 Using a set of classes of libraries imported in the code

 Modeling developer profile changes over time
 To reduce the weight of bug fix history with a rate proportional to a period

time
 Using exponential decay model

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage+
Code-information-based type prediction approach

 Using a set of classes or libraries imported in the code
 Set similarity

 Tree similarity (tree edit distance)

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage+
Code-information-based type prediction approach

 Using a set of classes or libraries imported in the code
 Set similarity

 Tree similarity (tree edit distance)

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage+
Code-information-based type prediction approach

 Using a set of classes or libraries imported in the code
 Set similarity

 Tree similarity (tree edit distance)

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage+
Modeling developer profile changes over time
 Exponential decay
 Reducing weight of bug fix history with a rate proportional to a period time
 The quantity N decreases according to the following low:

 Quantifying developer’s cost for i th-type bugs as the weight of bug
history using exponential decay

weight

bug fix time

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Experiments
Subject Systems
 97,910 valid bug reports
 255 active developers
 From four open source projects

Approaches
 PureCBR: State of the art CBR-based approach
 CBCF: Original CBCF
 CosTraige
 CosTraige+

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Experiments
Two research questions

Q1. How much can our approach improve cost (bug fix time) without
sacrificing bug assignment accuracy?

Q2. What are the trade-offs between accuracy and cost (bug fix time)?

Evaluation measures

W is the set of bug reports predicted correctly.
N is the number of bug reports in the test set.

 The real fix time is unknown, we only use the fix time for correctly

matched bugs.

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Experiments
Relative errors of expected bug fix time

 Improvement of bug fix time (Q1)

 CosTriage+ improves the costs efficiently up to 31.49% without
seriously compromising accuracy

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Experiments
Trade-off between accuracy and bug fix time (Q2)

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Experiments
Using code information for type prediction
 558 Mozilla reports (which have code)
 Models
 Random
 n-gram

 E.g., “documents” (“document” in LDA model)
Document → d, do, doc, docu, ocum, cume, umen, ment, ent, nt, t
Documents → d, do, doc, docu, ocum, cume, umen, ment, ents, nts, ts, s

 Code-information-based approach
 Set similarity
 Tree similarity

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Conclusion
We proposed a new bug triaging technique
 Optimize not only accuracy but also cost
 Solve data sparseness problem by using topic modeling

We enhanced the approach
 Enlarging coverage of bug types
 Modeling developer profiles changes over time

Experiments using four real bug report corpora
 Improve the cost without heavy losses of accuracy

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Q & A

 Thank you!

 Do you have any questions?

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Back up
We adopt the divergence measure proposed in [Arun10]
 Finding the natural number of topics (# bug types)

 t is the natural number of bug types

Mozilla Apache

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Back up - Bug features
 Bug features
 Keywords of title and description
 Other meta data

New Bug
Report

Title : Traditional Memory Rendering refactoring request

Description : Request additional refactoring so we can
…

Traditional Rendering.

Remove stopwords

Traditional Memory Rendering refactoring request Request
refactoring … Traditional Rendering

	�Cost-Aware Triage Ranking Algorithms for Bug Reporting Systems
	Outline
	Bug reporting systems
	Bug reporting systems
	Bug reporting systems
	Preliminary (Bug triage)
	Preliminary (Bug triage)
	Preliminary (recommendation)
	Preliminary (recommendation)
	Preliminary (recommendation)
	Preliminary (recommendation)
	Goal
	Overview
	CosTriage (Cost Estimation)
	CosTriage
	CosTriage
	CosTriage
	CosTriage
	CosTriage
	CosTriage
	CosTriage+
	CosTriage+
	CosTriage+
	CosTriage+
	CosTriage+
	Experiments
	Experiments
	Experiments
	Experiments
	Experiments
	Conclusion
	Q & A
	Back up
	Back up - Bug features

