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Outline 
1. CosTriage: A Cost-Aware Triage Algorithm for Bug 

Reporting Systems, Association for the Advancement of 
Artificial Intelligence (AAAI), 2011 
 

2. CosTriage+: Cost-Aware Triage Ranking Algorithms for Bug 
Reporting Systems (Submitted), Distributed and Parallel 
Databases (DPD), 2012 
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Bug reporting systems 
 Bugs!! 
 More than 300 bug reports per day in Mozilla (a big software 

project) 
 

 
 Bug Solving 
 One of the important issues in a software development process 
 Bug reports are posted, discussed, and assigned to developers 

 
 

Open sources projects 
 Apache 
 Eclipse 
 Linux kernel 
 Mozilla 
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Bug reporting systems 
 Bug reports 
 Has Bug ID, title, description, status, and other meta data 
 Assigned to developers and fixed by developers 

 
Challenges 
 Bug triage 
 Duplicate bug detection 
 … 

 
 

title (summary) 

description 

bug ID 

status 

other data 

bug fix history (time) 
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Bug reporting systems 
 Bug Triage 
 Assigning a new bug report to a suitable developer 
 Bottleneck of bug fixing process 
 Labor intensive 
 Miss-assignment can lead to slow bug fix 

 
 

Open 
Source 
Project 

Bug 
Reports 

Triager 

assign 

Developers 

Can be 
automated!!! 

Bottleneck of 
the bug fixing 

process 
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Preliminary (Bug triage) 
 PureCBR [Anvik06] 
 Construct multi-class classifier using a SVM classifier 
 Bug reports B are converted into pair <Word vector, Dev> for 

training 
 Bug Report History  Input Data  
 Developers  Classes 

     
 
 

training 

Classifier’s scores 

Assign a new bug to Dev 1 

Bug Fix 
History 

New Bug 
Report 



In
fo

rm
at

io
n 

&
 D

at
ab

as
e 

Sy
st

em
s 

La
b 

Preliminary (Bug triage) 
 PureCBR [Anvik06] 
 Good performances  
 Problem 
 This approach only considers accuracy 
 Are developer happy? 
  We consider developer’s cost (e.g., interests, bug fix time, and expertise) 
  We assume that faster bug fixing time has higher developer cost 
  Each developer has different preference for a bug 
  
 

 
 
 

Bug 
Report 1 

Bug 
Report 2 

50 days 2 days 
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Preliminary (recommendation) 
 Recommender algorithms 
 Content-based recommendation (CBR) 
 Predicting user’s interests based on item features 
 Machine learning methods 
 Over-specialization problem 

 
 

 Collaborative filtering recommendation (CF) 
 Predicting user’s interests based on affinity’s interests for items 
 User neighborhood  
 Sparsity problem 

 
 

 Hybrid recommendation 
 Content-boosted collaborative filtering (CBCF) 
 Combining an existing CBR with a CF 
 Better performance than either approach alone  
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Preliminary (recommendation) 
 Recommender algorithms 
 Hybrid recommendation 
 Content-boosted collaborative filtering (CBCF) 
 Combining an existing CBR with a CF 
 Better performance than either approach alone  

 

Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 

Dev 1 10 ? ? ? ? 

Dev 2 ? 8 3 ? ? 

Dev 3 ? ? ? 7 ? 

Bug 
Report 5 

Two Phases 
 - CBR phase 
 - CF Phase 

Feature word1 word2 word3 

Count 3 2 4 
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Preliminary (recommendation) 
 Recommender algorithms 
 Hybrid recommendation 
 Content-boosted collaborative filtering (CBCF) 
 Combining an existing CBR with a CF 
 Better performance than either approach alone  

 

Bug 
Report 5 

Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 

Dev 1 10 10 10 10 10 

Dev 2 3 8 3 8 3 

Dev 3 7 7 7 7 7 

CBR phase 
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Preliminary (recommendation) 
 Recommender algorithms 
 Hybrid recommendation 
 Content-boosted collaborative filtering (CBCF) 
 Combining an existing CBR with a CF 
 Better performance than either approach alone  

 

Bug 
Report 5 

CF phase  

Existing recommendation approaches are not suitable!  

Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 

Dev 1 10 9 7 9 8 

Dev 2 5 8 3 8 5 

Dev 3 7 8 5 7 6 
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Goal 
 Goal 
 Find efficient bug-developer matching  
 Optimizing not only accuracy but also cost  

 Use modified CBCF approach  
 Constructing developer profiles for cost 

 
 Challenge 
 Enhancing CBCF approach for sparse data 
 Extreme sparseness of the past bug fix history data 
 A bug fixed by a developer 
 Need to reduce sparseness for enhancing quality of CBCF 

 

Bug fix time from bug fix history 
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Merging classifier’s scores and developer’s cost scores. 
 The accuracy scores are obtained using PureCBR [Anvik06] 
 The developer cost scores are obtained from “de-sparsified”  bug 

fix history. 
 Two scores are then merged for prediction 

Overview 

New Bug 
Report 

Developer profiles 

Bug classifier 
<SVM> 

Cost 

Accuracy 

Cost score 

Accuracy score 

Aggregation 
Recommended 

Developer 
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CosTriage (Cost Estimation) 
 CosTriage: A Cost-aware Triage Algorithm for bug 

reporting system 
 Challenge to estimate the developer cost?  
 How to reduce the sparseness problem? 

            Using a Topic Modeling 
 

Categorization bugs to reduce the sparseness 

Bug fix time from bug fix history 
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CosTriage 
 Categorizing bugs 
 Topic Modeling 
 Latent Dirichlet Allocation (LDA) [BleiNg03] 
 Each topic is represented as a bug type 
 The topic distribution of reports determine bug types 

 We adopt the divergence measure proposed in [Arun, R. PAKDD ‘10] 
 Finding the natural number of topics (# bug types) 

 
 

 t is the natural number of bug types 
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 Developer profiles modeling 
 Developer Profiles 
 N-dimensional feature vector  
 The element of developer profiles, Pu[i], denotes the developer cost for i th-

type bugs 
 

 
    
 
 Developer Cost 
 The average time to fix ith type bugs 

 

CosTriage 
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CosTriage 
 Predicting missing values in profiles 
 Using CF for developer profiles  
 Similarity measure: 

 
 

k=1 
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CosTriage 
Obtaining developer’s cost for a new bug report 

 
 

New Bug 
Report 

Developer cost for a new bug 

Bug type = 1 
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CosTriage 
Merging classifier’s scores and developer’s cost scores. 

 
 
 
 
 
 
 
 
 
 

 

Accuracy scores [Anvik06] Cost scores (CosTriage) 
 

+ = 

Hybrid scores 

Bug 
Reports 

Developer profiles 
<Bug types> 

Bug classifier 
<SVM> 

Cost 

Accuracy 

Cost score 

Accuracy score 

Aggregation Recommended 
Developer 
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CosTriage 
 Limitations of CosTriage 
 CosTriage cannot determine the bug types of some bug reports 
 The report does not include any topic word identified by LDA model 
 4.04% bug reports in Mozilla projects 
 CosTriage determines the bug types for the reports randomly. 

 
 CosTriage does not consider temporal characteristic on modeling 

developer profiles 
 Several studies show that a user’s interests  do change over time 
 The recent bug fix history is more important than the older history 
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CosTriage+ 
Overcoming the limitations of CosTriage 
 Code-information-based type prediction approach 
 To determine the types of undetermined bug the reports 
 Using a set of classes of libraries imported in the code 

 
 Modeling developer profile changes over time 
 To reduce the weight of bug fix history with a rate proportional to a period 

time 
 Using exponential decay model 
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CosTriage+ 
Code-information-based type prediction approach 

 
 
 
 
 

 Using a set of classes or libraries imported in the code  
 Set similarity 

 
 
 

 Tree similarity (tree edit distance) 
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CosTriage+ 
Code-information-based type prediction approach 

 
 
 
 
 

 Using a set of classes or libraries imported in the code  
 Set similarity 

 
 
 

 Tree similarity (tree edit distance) 
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CosTriage+ 
Code-information-based type prediction approach 

 
 
 
 
 

 Using a set of classes or libraries imported in the code  
 Set similarity 

 
 
 

 Tree similarity (tree edit distance) 
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CosTriage+ 
Modeling developer profile changes over time 
 Exponential decay 
 Reducing weight of bug fix history with a rate proportional to a period time 
 The quantity N decreases according to the following low: 

 
 
 

 
 

 
 
 
 
 

 Quantifying developer’s cost for i th-type bugs as the weight of bug 
history using exponential decay 
 
 

weight 

bug fix time 
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Experiments 
Subject Systems 
 97,910 valid bug reports 
 255 active developers  
 From four open source projects 

 
 
 
 
 
 
 

Approaches 
 PureCBR: State of the art CBR-based approach 
 CBCF: Original CBCF 
 CosTraige 
 CosTraige+ 



In
fo

rm
at

io
n 

&
 D

at
ab

as
e 

Sy
st

em
s 

La
b 

Experiments 
Two research questions 

Q1. How much can our approach improve cost (bug fix time) without 
sacrificing bug assignment accuracy? 

 
Q2. What are the trade-offs between accuracy and cost (bug fix time)? 

 
 

Evaluation measures 
 

 
 
 

 
 
W is the set of bug reports predicted correctly. 
N is the number of bug reports in the test set. 

 
 The real fix time is unknown, we only use the fix time for correctly 

matched bugs. 
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Experiments 
Relative errors of expected bug fix time  

 
 
 
 

 Improvement of bug fix time (Q1) 
 
 
 
 
 
 
 
 
 

 CosTriage+ improves the costs efficiently up to  31.49% without 
seriously compromising accuracy 
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Experiments 
Trade-off between accuracy and bug fix time (Q2) 
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Experiments 
Using code information for type prediction 
 558 Mozilla reports (which have code) 
 Models 
 Random 
 n-gram 

 E.g., “documents” (“document” in LDA model) 
Document → d, do, doc, docu, ocum, cume, umen, ment, ent, nt, t 
Documents → d, do, doc, docu, ocum, cume, umen, ment, ents, nts, ts, s 

 Code-information-based approach 
 Set similarity 
 Tree similarity 
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Conclusion 
We proposed a new bug triaging technique 
 Optimize not only accuracy but also cost 
 Solve data sparseness problem by using topic modeling 

 
We enhanced the approach 
 Enlarging coverage of bug types  
 Modeling developer profiles changes over time 

 
Experiments using four real bug report corpora 
 Improve the cost without heavy losses of accuracy 
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Q & A 

 
 
 
 
 

 
 
 
 

 Thank you! 
 
 

 Do you have any questions? 
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Back up 
We adopt the divergence measure proposed in [Arun10] 
 Finding the natural number of topics (# bug types) 

 
 
 
 t is the natural number of bug types 

Mozilla Apache 
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Back up - Bug features 
 Bug features 
 Keywords of title and description 
 Other meta data 

New Bug 
Report 

Title : Traditional Memory Rendering refactoring request 

Description : Request additional refactoring so we can  
…  

Traditional Rendering. 

Remove stopwords 

Traditional Memory Rendering refactoring request Request 
refactoring …  Traditional Rendering 
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