Cost-Aware Triage Ranking Algorithms
for Bug Reporting Systems

Jin-woo Park!, Mu-Woong Lee?, Jinhan Kim?, Seung-won Hwang?, Sunghun Kim?
POSTECH, Cjj$Hol 21
HKUST, Hong Kong?

ST 2

Outline

1. CosTriage: A Cost-Aware Triage Algorithm for Bug
Reporting Systems, Association for the Advancement of
Artificial Intelligence (AAAI), 2011

2. CosTriage+: Cost-Aware Triage Ranking Algorithms for Bug
Reporting Systems (Submitted), Distributed and Parallel
Databases (DPD), 2012

]
~
"
&
g
)
2
Q
3
Q
]
§
IS
S
N
S

POSTE2CH

Bug reporting systems

Bugs!!

B More than 300 bug reports per day in Mozilla (a big software
project)

Bug Solving
B One of the important issues in a software development process
B Bug reports are posted, discussed, and assigned to developers

Q
S
~
%)
g
3
@
2
§
Q
]
Q
A
S
IS
3
N
S

Open sources projects
B Apache

M Eclipse

B Linux kernel

B Mozilla

POSTE2CH

Bug reporting systems

Bug reports
B Has Bug ID, title, description, status, and other meta data
B Assigned to developers and fixed by developers

Challenges
B Bug triage
B Duplicate bug detection

.{;lipse B ..

Bugzilla - Bug 199854 [archives](apillbreaking] Improve arror reporting for archive Last ifis 07 11:52:47 EDT

Home | Mew | Search | [Find | | Reports | Requests | Help | Mew Account | Lag In | Eorgot Password |
Terms of Use | Copyright Agent

bug ID \

Bug 199854)-|[archives][apil[breaking] Improve error reporting for archive handlers |

St : RESOLVED FIXED

> title (summary)

Reported: 2007-08-14 07:28 EDT by Martin Oberbuber
Modified: 2008-05-07 11:52 EDT (History)

status €<— |

Product; Target Management
Component: RSE

Tt _ ™ bug fix history (time)

Platform: all all Hoo Alsad

Q
«
~
"
&
g
)
8
3
3
Q
]
§
IS
S
N
S

Importance: P3 enhancement (vote)
Target Milestone: 3.0 M7
Assigned To: Martin Oberbuber

other data A O : Martin Oberhuber

URL:
wWhiteboard:
Keywords: api

Depends on: SRE3F
Blocks: 199065 230917 223233
Show dependency troo

description Attmchmants

Add an attachment (propesed patch, testcase, etc.}

vou need to log in before you can comment on or make changes to this bug.

Martin Oberhuber 2007-08-14 07:28:18 EOT Description
created as a clone of j9 #1005 ++=
d I1SyatemAre ndlar APls co

++ This bug was Initiall

ns

POSTE2CH

Bug reporting systems [Lab.

Bug Triage
B Assigning a new bug report to a suitable developer

B Bottleneck of bug fixing process
[Labor intensive
[J Miss-assignment can lead to slow bug fix

Bottleneck of
the bug fixing

process

| .
assign
Open
Source Bug ﬁ —
Project Reports

Triager

Q
«
~
"
S
g
)
8
N
Q
3
Q
]
§
IS
S
N
S

Developers

Can be
automated!!!

POSTE2CH

Preliminary (Bug triage)
PureCBR [Anvik06]

B Construct multi-class classifier using a SVM classifier
B Bug reports B are converted into pair <Word vector, Dev> for
training
[J Bug Report History = Input Data
[J Developers = Classes

ﬁ
% Bug Fix
& HistoryJ

i
——d

{_ training

Assign a new bug to Dev 1
SVM Score |Dev 1| Dev2 Dev3
New Bug sl Classifier B KN RN
Report

Classifier’s scores

R
~
%)
S
3
@
2
Q
]
Q
A
S
]
S
S
S

POSTE2CH

Preliminary (Bug triage)
PureCBR [Anvik06]

B Good performances

B Problem

[This approach only considers accuracy

[J Are developer happy?
- We consider developer’s cost (e.g., interests, bug fix time, and expertise)
- We assume that faster bug fixing time has higher developer cost
— Each developer has different preference for a bug

R
~
%)
S
3
@
2
Q
]
Q
A
S
]
S
S
S

Bug Bug
Report 1 Report 2

50 days 2 days

POSTE2CH

]
~
"
&
g
)
2
Q
3
Q
]
§
IS
S
N
S

Preliminary (recommendation)

Recommender algorithms

B Content-based recommendation (CBR)
[Predicting user’s interests based on item features
[0 Machine learning methods
[J Over-specialization problem

B Collaborative filtering recommendation (CF)
[J Predicting user’s interests based on affinity’s interests for items
[User neighborhood
[Sparsity problem

B Hybrid recommendation
[J Content-boosted collaborative filtering (CBCF)
[J Combining an existing CBR with a CF
[Better performance than either approach alone

POSTE2CH

Preliminary (recommendation)

Recommender algorithms

B Hybrid recommendation
[J Content-boosted collaborative filtering (CBCF)
[0 Combining an existing CBR with a CF
[Better performance than either approach alone

Q
«
~
"
&
g
)
8
N
Q
3
Q
]
§
IS
S
N
S

Two Phases .
- CBR phase 49
- CF Phase Report > Count 3 2 4
—lmmm
Dev 1
Dev 2 ? 8 3 ? ?
Dev 3 ? ? ? 7 ?

POSTE2CH

Preliminary (recommendation)

Recommender algorithms

B Hybrid recommendation
[J Content-boosted collaborative filtering (CBCF)
[0 Combining an existing CBR with a CF
[Better performance than either approach alone

CBR phase
Bug

Report 5

Q
«
~
"
&
g
)
8
N
Q
3
Q
]
§
IS
S
N
S

—lmm

Dev 1 1
Dev 2 3 8 3 2_3 3
Dev 3 7 yA 7 7

POSTE2CH

Preliminary (recommendation)

Recommender algorithms

B Hybrid recommendation
[J Content-boosted collaborative filtering (CBCF)
[0 Combining an existing CBR with a CF
[Better performance than either approach alone

CF phase
Bug

Report 5

Q
«
~
"
&
g
)
8
N
Q
3
Q
]
§
IS
S
N
S

—lmmm

Dev 1
Dev 2 5 8 3 8 5
Dev 3 7 8 5 7 6

Existing recommendation approaches are not suitable!

POSTE2CH

]
~
"
&
g
)
2
{Q
3
Q
]
§
IS
S
N
S

Goal

Goal

B Find efficient bug-developer matching
[J Optimizing not only accuracy but also cost

B Use modified CBCF approach

[Constructing developer profiles for cost

Challenge

B Enhancing CBCF approach for sparse data

B Extreme sparseness of the past bug fix history data
[0 A bug fixed by a developer
[0 Need to reduce sparseness for enhancing quality of CBCF

Bug
Dev By B: B; By bs Bs b7
D1 2.3 37 - - 10.5 -
D, - - 127 -
Dy - 300 - - 29 o
Dy - 7.1

Bug fix time from bug fix history

POSTE2CH

9
q
~
%)
&
5
@
3
<
S
]
Q
A
S
IS
S
'S
S

Overview

Merging classifier’s scores and developer’s cost scores.

B The accuracy scores are obtained using PureCBR [Anvik06]
B The developer cost scores are obtained from “de-sparsified” bug

fix history.

B Two scores are then merged for prediction

Developer profiles

Cost score

Bug classifier
<SVM>

N " » Recommended
sgresation Developer

Accuracy score

POSTE2CH

CosTriage (Cost Estimation)

CosTriage: A Cost-aware Triage Algorithm for bug
reporting system
Challenge to estimate the developer cost?

B How to reduce the sparseness problem?
- Using a Topic Modeling

Bug
Dev By B: B; By B bs By
D1 2.3 37 - 10.5
D, S L 127
Dy - - 300 - - 29 -
Dy - 7.1

]
~
"
&
g
)
2
{Q
3
Q
]
§
IS
S
N
S

Bug fix time from bug fix history

"
Bug Types
Dev 1 (B1,B3,B54) 2(B2,Bs5,Bs, Br)
Dy 2.3 7.1
Do 12.7
Dy 0.0 T 200
Dy - 7.1

Categorization bugs to reduce the sparseness

POSTE2CH

CosTriage

Categorizing bugs

B Topic Modeling
[J Latent Dirichlet Allocation (LDA) [BleiNg03]
] Each topic is represented as a bug type
[The topic distribution of reports determine bug types
B We adopt the divergence measure proposed in [Arun, R. PAKDD ‘10]
[Finding the natural number of topics (# bug types)

T = argmin KL _Divergence(t)
t

tis the natural number of bug types

Table 1: An LDA model of bug reports for Mozilla. 7 = 7. Top-10 representative words with the highest probabilities.

]
~
"
&
g
)
2
{Q
3
Q
]
§
IS
S
N
S

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7

C 0.058 mozilla 0.047 s 0.028 window 0.023 html 0.026 windows 0.042 bug 0.036

line 0.058 firefox 0.024 error 0.018 page 0.019 text 0.018 mozilla 0.042 bugzilla 0.012
“cpp 0.040 "add 0.014 mozilla 0018 click 0.016 table 0013 ‘gecko 0.029 cgi 0.009°

int 0.032 wversion 0.010 file 0.014 menu 0.014 document 0.011 rv 0.028 code 0.008
“mozilla 0.032 update 0.010 test 0.011 "buiton 0.013" image 0.010 resuits 0025 id 0.008

SIC 0.026 thunderbird 0.010 function 0.011 open 0.013 style 0.010 user 0.023 bugs 0.008
Cconst 0.023 ‘file” 0.008 ns 0.010 ‘text 0.012 content ~ 0.009 build 0.020 time 0.007°

unsigned 0.020 files 0.008 ¢ 0.010 dialog 0.010 page 0.009 message 0.019 patch 0.007
“bytes 0.019 "added ~ 0.007 chrome ~ 0.009 select 0.009 type 1 0009 ot 0.019 set 0.005

builds 0.018 1nstall 0.007 content 0.009 search 0.009 id 0.009 firefox 0.018 fix 0.005

POSTE2CH

CosTriage

Developer profiles modeling

B Developer Profiles
[0 N-dimensional feature vector

[The element of developer profiles, Puli], denotes the developer cost for i th-
type bugs

Pu = (I)u[l] s Pul2]: " " -pu[T]>

B Developer Cost
[1 The average time to fix it" type bugs

]
~
"
&
g
)
2
{Q
3
Q
]
§
IS
S
N
S

Bug types
Dev I 2 3 4 5 6 7
D1 773 L.71 859 1428 754 544 8.45
Do 8.18 - 3.50 .75 400 1290 13.18
-~ Ds 1136 - 6050 2350 - 2,67 1920
Dy - - - - - 22,40 20.75

POSTE2CH

]
~
"
&
g
)
2
{Q
3
Q
]
§
IS
S
N
S

CosTriage

B Using CF for developer profiles
[Similarity measure:

Predicting missing values in profiles

P-u * Ptr
S pu:pv = T s AW Pu-; pt-‘
P Po) = 1,y > <P)
Bug types
Dev | 2 3 4

Bug types

Dev I 2 3 1 5 6
Dy 773 171 859 1428 754 544
Dy 818 640 350 L75 400 1290

D3 1156 2722 6050 2350 4052 267 1920
Dy 1318 1299 1097 1141 1514 2240

POSTE2CH

CosTriage

Obtaining developer’s cost for a new bug report

9 Bug type = 1
©
~
S
S
(Q\ Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
) c 0058 mozilla 0.047 js 0.028 window 0.023 himl 0.026
S New Bug fine 0058 firefox 004 emor 0018 page 0019 text 0.018
%) Cepp 0040 add 0014 mozilla 0018 click 0016 table 0013
g Report | — int 0032 version 0,010 file 0014 menu 0014 document 0011
T “mozilla 0033 "updaie” 0010 test” 0011 button 0013 image” T 0.010”
~ 2
T SIC 0026 thundervird 0.010 function 0.011 open 0013 style 0.010
Q I Teonst 0023 RIe 0008 s 000 fext 0012 content 0009
] unsigned 0.020 files 0.008 ¢ 0010 dialog 0010 page 0.009
< Kevword Cbytes T 0.019 "added 0007 chrome 0009 select 0000 type 0009
..% Bue Wy TN"Q W D builds ~ 0.018 install ~ 0.007 content 0.009 search 0009 id 0.009
= }u]] X
3 Buew 5 0 1 7
N
S
Bug types
Dev 1 2 3 4 5 6 7

™ 7.73 1.71 859 1428 754 544 8.45
Dy 8.18 6.40 3.50 1.75 400 1290 13.18

Dy 1156) 27.22 6050 2350 4052 267 1920
Dy 1318 1299 1097 1141 1514 2240 2075

Developer cost for a new bug

POSTE2CH

CosTriage

Merging classifier’s scores and developer’s cost scores.

Q .

< Developer profiles Cost score

2 <Bug types>

)

3 . Recommended

Q Bug Aggregation »

< Developer

B Reports

Q

S

3 Bug classifier

IS <SVM> Accuracy score

S

S

S
Bug Devl Dev2 Dev3 Bug Devl Dev2 Dev3 _ Bug Dev 1] Dev2 Dev3
Brew 0.7 02 0.1 + Brew 03 0.4 0.3 = " Baew | 10 0.6 0.4

Accuracy scores [Anvik06] Cost scores (CosTriage) Hybrid scores

POSTE2CH

CosTriage

Limitations of CosTriage

B CosTriage cannot determine the bug types of some bug reports
[J The report does not include any topic word identified by LDA model
[0 4.04% bug reports in Mozilla projects
[CosTriage determines the bug types for the reports randomly.

B CosTriage does not consider temporal characteristic on modeling
developer profiles
[Several studies show that a user’s interests do change over time
[J The recent bug fix history is more important than the older history

R
~
%)
S
3
@
2
Q
]
Q
A
S
]
S
S
S

POSTE2CH

CosTriage+

Overcoming the limitations of CosTriage

B Code-information-based type prediction approach
[J To determine the types of undetermined bug the reports
[J Using a set of classes of libraries imported in the code

B Modeling developer profile changes over time
[J To reduce the weight of bug fix history with a rate proportional to a period
time
[0 Using exponential decay model

R
~
%)
S
3
@
2
Q
]
Q
A
S
]
S
S
S

POSTE2CH

CosTriage+

Code-information-based type prediction approach

By Ba:
org.eclipse.swt.graphics.Image, org.eclipse.swt.graphics,
org.eclipse.swt.widgets, org.eclipse.swt.widgets.Display,
org.eclipse.ui.dialogs org.eclipse.ui.internal

B Using a set of classes or libraries imported in the code
[Set similarity

S(Ts,) N S(Ts,)!

imilarity(S(Zg,),S(Ip,)) S(Zp,)US(ZIn,)|

]
~
"
&
g
)
2
{Q
3
Q
]
§
IS
S
N
S

[Tree similarity (tree edit distance)

0(T(Zs,), T(Is,)

Similarit(T'(Ig,), T'(Zg,)) =1 — - _ :
s T(Ts,)| + [1(Zs,)|

POSTE2CH

]
~
"
&
g
)
2
{Q
3
Q
]
§
IS
S
N
S

CosTriage+

Code-information-based type prediction approach

By Ba:
org.eclipse.swt.graphics.Image, org.eclipse.swt.graphics,
org.eclipse.swt.widgets, org.eclipse.swt.widgets.Display,
org.eclipse.ui.dialogs org.eclipse.ui.internal

B Using a set of classes or libraries imported in the code
[Set similarity

S(Ts,) N 5(Zs,)|
S(IBl) U S(Iﬁz)‘ |

Similarity(S(Zp,).S(In,)) =

[Tree similarity (tree edit distance)

root root root
| | |
org org org
| | |
eclipse eclipse eclipse
swt ui swt ui SWE ui
VRN | RN | N
graphics widgets dialogs graphics widgets dialogs graphics widgets internal
| | |
Image Display Display
(a) (b) (c)

POSTE2CH

CosTriage+

Code-information-based type prediction approach

By Ba:
org.eclipse.swt.graphics.Image, org.eclipse.swt.graphics,
org.eclipse.swt.widgets, org.eclipse.swt.widgets.Display,
org.eclipse.ui.dialogs org.eclipse.ui.internal

B Using a set of classes or libraries imported in the code
[Set similarity

S(Ts,) N S(Ts,)!

imilarity(S(Zg,),S(Ip,)) S(Zp,)US(ZIn,)|

]
~
"
&
g
)
2
{Q
3
Q
]
§
IS
S
N
S

[Tree similarity (tree edit distance)

0(T'(Zs,), T(Is,)
T(Zs,))| + |T(Zs,)|

Similarity(T'(Zg,). I'(Ip,)) = 1 —

scoreli] = E Similarity(Z,Ig:),
J
YBLET (B)

POSTE2CH

CosTriage+

Modeling developer profile changes over time

B Exponential decay
[J Reducing weight of bug fix history with a rate proportional to a period time
[0 The quantity N decreases according to the following low:

N(t) = Noe M

| _e(—Qst/lﬂﬂo)
- = = p(=5t/1000)

....... o (—t/1000)

Quantity N(t)

]
~
"
&
g
)
2
{Q
3
Q
]
§
IS
S
N
S

0 200 400 600 800 1000
The time passed [day]

[Quantifying developer’s cost for i th-type bugs as the weight of bug
history using exponential decay

1
- Yus,eBuy N(ts,)

bug fix time
YvgeB,, (N(ts;) - tfs;)
weight

Puli]

POSTE2CH

Experiments

Subject Systems

B 97,910 valid bug reports

B 255 active developers

B From four open source projects

3
~
(%)
3
~
7
)
® Projects # Fixed # Valid # Total # Active # Bug types # Words Period
§ bug reports bug reports developers developers
I Apache 13,778 636 187 10 19 6,915 2001-01-22 - 2009-02-09
S Eclipse 152,535 47,862 1,116 100 17 61,515 2001-10-11 - 2010-01-22
S ~ Linuxkernel 5082 068 [. 7 T8 2002-T1-14 - 2010-01-16
S Mozilla 162,839 48,424 1,165 117 7 71,878 1998-04-07 - 2010-01-26
S
q
3
N
<
Approaches

B PureCBR: State of the art CBR-based approach
B CBCF: Original CBCF

B CosTraige

B CosTraige+

POSTE2CH

Experiments

Two research questions

Q1. How much can our approach improve cost (bug fix time) without
sacrificing bug assignment accuracy?

Q2. What are the trade-offs between accuracy and cost (bug fix time)?

Evaluation measures

W
Accuracy = ||JT||

> v, ew 1bug fix time of wy }
W

]
~
"
&
g
)
2
Q
3
Q
]
§
IS
S
N
S

Average bug fix time =

W is the set of bug reports predicted correctly.
N is the number of bug reports in the test set.

B The real fix time is unknown, we only use the fix time for correctly
matched bugs.

POSTE2CH

Experiments
Relative errors of expected bug fix time

Apache | Eclipse | Linux | Mozilla
CBCF 99.38 26.41 71.76 21.42
COSTRIAGE 57.69 25.88 46.77 20.89
§ COSTRIAGE+ 50.45 25.61 40.67 19.73
3
L
(g\ [] []
4 L1 Improvement of bug fix time (Q1)
x
IS
S
‘2 Reducing ratio
S PureCBR CBCF COSTRIAGE COSTRIAGE+
§ Project | Time Acc Time Acc Time Acc Time Acc
S Apache | 3233 | 69.70 | -228% | -543% | -30.88% | -5.43% | -31.49% | -5.43%
= Eclipse | 17.87 | 40.39 | -559% | -5.04% | -10.38% | -5.04% | -10.68% | -5.04%
Linux | 55.25 | 30.93 | -24.83% | -5.00% | -28.94% | -5.00% | -31.44% | -5.00%
Mozilla | 11.34 | 6429 | -479% | -5.01% | -71.21% | -5.01% | -1.74% | -5.01%

B CosTriage+ improves the costs efficiently up to 31.49% without
seriously compromising accuracy

POSTE2CH

]
~
"
&
g
)
2
{Q
3
Q
]
§
IS
S
N
S

Experiments

Trade-off between accuracy and bug fix time (Q2)

75 45
62.70 - H
40,30 mm = e eeemeemcccccccccccccccccoaaaa ---d
i L]
i TR .
&0 : B [--1I-T| HI_I.I:I:+
H —= s T RIAGE
H —&— CECF
' 30
— H —_
& asl H &
= ' =
o : o
g ' g
3 ; 3
30r "
o o
"
= : < 5
i
i
i
15+ —& CosT RIAGEA+ :
—— o T RIAGE H
= CECF :
i
L I I I I L i 0 L I i
% 5 10 15 20 25 32.33] 5 i 0 15 17.87 20
Average time to fix a bug [day] Average time to fix a bug [day]
(a) Apache (b) Eclipse
a5 r 70 .
: G470k ==ss=sssssssss=ssssssssssss=css==cs=== =
30.93F ==~ -- '
[H &0 == oS TRIAGE+ :
H ~= CosTRIAGE .
' —&— CBCOF '
251 ! 50 '
i 1
— ' — '
2 : & :
- 20 ; - W0 !
1z ' o !
E : E !
o 15t i 2 @ :
L= ¥ (%] '
=< , =< !
10} ; 20 :
: i
B CosTRIAGE+ : :
5 — Cos TRIAGE : 10 :
—&— CECF H !
o . . ! o :
1] 10 20 30 40 55.25 2 4 [3 8 10 11.34
Average time to fix a bug [day] Average time to fix a bug [day]

(¢) Linux kernel (d) Mozilla

POSTE2CH

Experiments

Using code information for type prediction

B 558 Mozilla reports (which have code)

B Models
[J Random
[n-gram

M E.g., “documents” (“document” in LDA model)

Document = d, do, doc, docu, ocum, cume, umen, ment, ent, nt, t

Documents = d, do, doc, docu, ocum, cume, umen, ment, ents, nts, ts, s
[J Code-information-based approach

M Set similarity

M Tree similarity

]
~
"
&
g
)
2
{Q
3
Q
]
§
IS
S
N
S

Model Precision

Random 3/558 (5.91%)
n-gram (n = 3) 8].’558 (14.52%)
n-gram (n=4) 85/558 (15.23%)
n-gram (n=23) 8 f558 (14.87%)
Set similarity 8(23.29%)
Tree similarity l”w 55 (22.40%)

POSTE2CH

Conclusion

We proposed a new bug triaging technique
B Optimize not only accuracy but also cost
B Solve data sparseness problem by using topic modeling

We enhanced the approach
B Enlarging coverage of bug types
B Modeling developer profiles changes over time

Experiments using four real bug report corpora
B Improve the cost without heavy losses of accuracy

R
~
%)
S
3
@
2
Q
]
Q
A
S
]
S
S
S

POSTE2CH

Q&A

Thank you!

R
~
%)
S
3
@
2
Q
]
Q
A
S
]
S
S
S

Do you have any questions?

POSTE2CH

Back up

We adopt the divergence measure proposed in [Arun10]
B Finding the natural number of topics (# bug types)

T = argmin K L_Divergence(t)
t

tis the natural number of bug types

]
~
"
&
g
)
2
{Q
3
Q
]
§
IS
S
N
S

& 3
< c
o @
o o
A -
v @
= 2
o =
- -
X Y
9 o
5 3 |
= £ 0.05 :
£ : = .
YRR | | » % 0 19 30 40 50
MW 4710 20 30 40 50
Number of bug types Number of bug types
Mozilla Apache

POSTE2CH

Back up - Bug features

Bug features
B Keywords of title and description
B Other meta data

|
Title : Traditional Memory Rendering refactoring request
New Bug ‘ Description : Request additional refactoring so we can
Report L Traditional Rendering.

Q
«
~
"
S
g
)
8
N
Q
3
Q
]
§
IS
S
N
S

l Remove stopwords

Keyword
Bug w: {uz ws D h Traditional Memory Rendering refactoring request Request
B 5 0 B refactoring ... Traditional Rendering

POSTE2CH

	�Cost-Aware Triage Ranking Algorithms for Bug Reporting Systems
	Outline
	Bug reporting systems
	Bug reporting systems
	Bug reporting systems
	Preliminary (Bug triage)
	Preliminary (Bug triage)
	Preliminary (recommendation)
	Preliminary (recommendation)
	Preliminary (recommendation)
	Preliminary (recommendation)
	Goal
	Overview
	CosTriage (Cost Estimation)
	CosTriage
	CosTriage
	CosTriage
	CosTriage
	CosTriage
	CosTriage
	CosTriage+
	CosTriage+
	CosTriage+
	CosTriage+
	CosTriage+
	Experiments
	Experiments
	Experiments
	Experiments
	Experiments
	Conclusion
	Q & A
	Back up
	Back up - Bug features

