
In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Cost-Aware Triage Ranking Algorithms
for Bug Reporting Systems

Jin-woo Park1, Mu-Woong Lee1, Jinhan Kim1, Seung-won Hwang1, Sunghun Kim2
POSTECH, 대한민국1

HKUST, Hong Kong2

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Outline
1. CosTriage: A Cost-Aware Triage Algorithm for Bug

Reporting Systems, Association for the Advancement of
Artificial Intelligence (AAAI), 2011

2. CosTriage+: Cost-Aware Triage Ranking Algorithms for Bug
Reporting Systems (Submitted), Distributed and Parallel
Databases (DPD), 2012

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Bug reporting systems
 Bugs!!
 More than 300 bug reports per day in Mozilla (a big software

project)

 Bug Solving
 One of the important issues in a software development process
 Bug reports are posted, discussed, and assigned to developers

Open sources projects
 Apache
 Eclipse
 Linux kernel
 Mozilla

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Bug reporting systems
 Bug reports
 Has Bug ID, title, description, status, and other meta data
 Assigned to developers and fixed by developers

Challenges
 Bug triage
 Duplicate bug detection
 …

title (summary)

description

bug ID

status

other data

bug fix history (time)

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Bug reporting systems
 Bug Triage
 Assigning a new bug report to a suitable developer
 Bottleneck of bug fixing process
 Labor intensive
 Miss-assignment can lead to slow bug fix

Open
Source
Project

Bug
Reports

Triager

assign

Developers

Can be
automated!!!

Bottleneck of
the bug fixing

process

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Preliminary (Bug triage)
 PureCBR [Anvik06]
 Construct multi-class classifier using a SVM classifier
 Bug reports B are converted into pair <Word vector, Dev> for

training
 Bug Report History Input Data
 Developers Classes

training

Classifier’s scores

Assign a new bug to Dev 1

Bug Fix
History

New Bug
Report

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Preliminary (Bug triage)
 PureCBR [Anvik06]
 Good performances
 Problem
 This approach only considers accuracy
 Are developer happy?
 We consider developer’s cost (e.g., interests, bug fix time, and expertise)
 We assume that faster bug fixing time has higher developer cost
 Each developer has different preference for a bug

Bug
Report 1

Bug
Report 2

50 days 2 days

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Preliminary (recommendation)
 Recommender algorithms
 Content-based recommendation (CBR)
 Predicting user’s interests based on item features
 Machine learning methods
 Over-specialization problem

 Collaborative filtering recommendation (CF)
 Predicting user’s interests based on affinity’s interests for items
 User neighborhood
 Sparsity problem

 Hybrid recommendation
 Content-boosted collaborative filtering (CBCF)
 Combining an existing CBR with a CF
 Better performance than either approach alone

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Preliminary (recommendation)
 Recommender algorithms
 Hybrid recommendation
 Content-boosted collaborative filtering (CBCF)
 Combining an existing CBR with a CF
 Better performance than either approach alone

Bug 1 Bug 2 Bug 3 Bug 4 Bug 5

Dev 1 10 ? ? ? ?

Dev 2 ? 8 3 ? ?

Dev 3 ? ? ? 7 ?

Bug
Report 5

Two Phases
 - CBR phase
 - CF Phase

Feature word1 word2 word3

Count 3 2 4

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Preliminary (recommendation)
 Recommender algorithms
 Hybrid recommendation
 Content-boosted collaborative filtering (CBCF)
 Combining an existing CBR with a CF
 Better performance than either approach alone

Bug
Report 5

Bug 1 Bug 2 Bug 3 Bug 4 Bug 5

Dev 1 10 10 10 10 10

Dev 2 3 8 3 8 3

Dev 3 7 7 7 7 7

CBR phase

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Preliminary (recommendation)
 Recommender algorithms
 Hybrid recommendation
 Content-boosted collaborative filtering (CBCF)
 Combining an existing CBR with a CF
 Better performance than either approach alone

Bug
Report 5

CF phase

Existing recommendation approaches are not suitable!

Bug 1 Bug 2 Bug 3 Bug 4 Bug 5

Dev 1 10 9 7 9 8

Dev 2 5 8 3 8 5

Dev 3 7 8 5 7 6

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Goal
 Goal
 Find efficient bug-developer matching
 Optimizing not only accuracy but also cost

 Use modified CBCF approach
 Constructing developer profiles for cost

 Challenge
 Enhancing CBCF approach for sparse data
 Extreme sparseness of the past bug fix history data
 A bug fixed by a developer
 Need to reduce sparseness for enhancing quality of CBCF

Bug fix time from bug fix history

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Merging classifier’s scores and developer’s cost scores.
 The accuracy scores are obtained using PureCBR [Anvik06]
 The developer cost scores are obtained from “de-sparsified” bug

fix history.
 Two scores are then merged for prediction

Overview

New Bug
Report

Developer profiles

Bug classifier
<SVM>

Cost

Accuracy

Cost score

Accuracy score

Aggregation
Recommended

Developer

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage (Cost Estimation)
 CosTriage: A Cost-aware Triage Algorithm for bug

reporting system
 Challenge to estimate the developer cost?
 How to reduce the sparseness problem?

 Using a Topic Modeling

Categorization bugs to reduce the sparseness

Bug fix time from bug fix history

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage
 Categorizing bugs
 Topic Modeling
 Latent Dirichlet Allocation (LDA) [BleiNg03]
 Each topic is represented as a bug type
 The topic distribution of reports determine bug types

 We adopt the divergence measure proposed in [Arun, R. PAKDD ‘10]
 Finding the natural number of topics (# bug types)

 t is the natural number of bug types

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

 Developer profiles modeling
 Developer Profiles
 N-dimensional feature vector
 The element of developer profiles, Pu[i], denotes the developer cost for i th-

type bugs

 Developer Cost
 The average time to fix ith type bugs

CosTriage

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage
 Predicting missing values in profiles
 Using CF for developer profiles
 Similarity measure:

k=1

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage
Obtaining developer’s cost for a new bug report

New Bug
Report

Developer cost for a new bug

Bug type = 1

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage
Merging classifier’s scores and developer’s cost scores.

Accuracy scores [Anvik06] Cost scores (CosTriage)

+ =

Hybrid scores

Bug
Reports

Developer profiles
<Bug types>

Bug classifier
<SVM>

Cost

Accuracy

Cost score

Accuracy score

Aggregation Recommended
Developer

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage
 Limitations of CosTriage
 CosTriage cannot determine the bug types of some bug reports
 The report does not include any topic word identified by LDA model
 4.04% bug reports in Mozilla projects
 CosTriage determines the bug types for the reports randomly.

 CosTriage does not consider temporal characteristic on modeling

developer profiles
 Several studies show that a user’s interests do change over time
 The recent bug fix history is more important than the older history

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage+
Overcoming the limitations of CosTriage
 Code-information-based type prediction approach
 To determine the types of undetermined bug the reports
 Using a set of classes of libraries imported in the code

 Modeling developer profile changes over time
 To reduce the weight of bug fix history with a rate proportional to a period

time
 Using exponential decay model

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage+
Code-information-based type prediction approach

 Using a set of classes or libraries imported in the code
 Set similarity

 Tree similarity (tree edit distance)

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage+
Code-information-based type prediction approach

 Using a set of classes or libraries imported in the code
 Set similarity

 Tree similarity (tree edit distance)

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage+
Code-information-based type prediction approach

 Using a set of classes or libraries imported in the code
 Set similarity

 Tree similarity (tree edit distance)

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

CosTriage+
Modeling developer profile changes over time
 Exponential decay
 Reducing weight of bug fix history with a rate proportional to a period time
 The quantity N decreases according to the following low:

 Quantifying developer’s cost for i th-type bugs as the weight of bug
history using exponential decay

weight

bug fix time

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Experiments
Subject Systems
 97,910 valid bug reports
 255 active developers
 From four open source projects

Approaches
 PureCBR: State of the art CBR-based approach
 CBCF: Original CBCF
 CosTraige
 CosTraige+

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Experiments
Two research questions

Q1. How much can our approach improve cost (bug fix time) without
sacrificing bug assignment accuracy?

Q2. What are the trade-offs between accuracy and cost (bug fix time)?

Evaluation measures

W is the set of bug reports predicted correctly.
N is the number of bug reports in the test set.

 The real fix time is unknown, we only use the fix time for correctly

matched bugs.

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Experiments
Relative errors of expected bug fix time

 Improvement of bug fix time (Q1)

 CosTriage+ improves the costs efficiently up to 31.49% without
seriously compromising accuracy

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Experiments
Trade-off between accuracy and bug fix time (Q2)

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Experiments
Using code information for type prediction
 558 Mozilla reports (which have code)
 Models
 Random
 n-gram

 E.g., “documents” (“document” in LDA model)
Document → d, do, doc, docu, ocum, cume, umen, ment, ent, nt, t
Documents → d, do, doc, docu, ocum, cume, umen, ment, ents, nts, ts, s

 Code-information-based approach
 Set similarity
 Tree similarity

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Conclusion
We proposed a new bug triaging technique
 Optimize not only accuracy but also cost
 Solve data sparseness problem by using topic modeling

We enhanced the approach
 Enlarging coverage of bug types
 Modeling developer profiles changes over time

Experiments using four real bug report corpora
 Improve the cost without heavy losses of accuracy

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Q & A

 Thank you!

 Do you have any questions?

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Back up
We adopt the divergence measure proposed in [Arun10]
 Finding the natural number of topics (# bug types)

 t is the natural number of bug types

Mozilla Apache

In
fo

rm
at

io
n

&
 D

at
ab

as
e

Sy
st

em
s

La
b

Back up - Bug features
 Bug features
 Keywords of title and description
 Other meta data

New Bug
Report

Title : Traditional Memory Rendering refactoring request

Description : Request additional refactoring so we can
…

Traditional Rendering.

Remove stopwords

Traditional Memory Rendering refactoring request Request
refactoring … Traditional Rendering

	�Cost-Aware Triage Ranking Algorithms for Bug Reporting Systems
	Outline
	Bug reporting systems
	Bug reporting systems
	Bug reporting systems
	Preliminary (Bug triage)
	Preliminary (Bug triage)
	Preliminary (recommendation)
	Preliminary (recommendation)
	Preliminary (recommendation)
	Preliminary (recommendation)
	Goal
	Overview
	CosTriage (Cost Estimation)
	CosTriage
	CosTriage
	CosTriage
	CosTriage
	CosTriage
	CosTriage
	CosTriage+
	CosTriage+
	CosTriage+
	CosTriage+
	CosTriage+
	Experiments
	Experiments
	Experiments
	Experiments
	Experiments
	Conclusion
	Q & A
	Back up
	Back up - Bug features

