
Adding Functions and Modules to FFMM

Jieung Kim
with Sukyoung Ryu

Programming Language Research Group
Korea Advanced Institute of Science and Technology

Jan. 17, 2012

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 1 / 16



FFMM

Featherweight Fortress with Multiple Dispatch and Multiple
Inheritance

A subset of the Fortress programming language

Multiple dispatch
To select the best method to call, the runtime engine uses the
dynamic types of all the arguments

Multiple inheritance
A type may have multiple super types

Two different kinds of type
Traits: Types without field
Objects: Leaves of type hierarchy containing field

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 2 / 16



FFMM Mechanization

COQ Mechanization of Featherweight Fortress
with Multiple Dispatch and Multiple Inheritance

Jieung Kim and Sukyoung Ryu

Computer Science Department, KAIST
{gbali,sryu.cs}@kaist.ac.kr

Abstract. In object-oriented languages, overloaded methods with multiple dis-
patch extend the functionality of existing classes, and multiple inheritance al-
lows a class to reuse code in multiple classes. However, both multiple dispatch
and multiple inheritance introduce the possibility of ambiguous method calls that
cannot be resolved at run time. To guarantee no ambiguous calls at run time, the
overloaded method declarations should be checked statically.

In this paper, we present a core calculus for the Fortress programming lan-
guage, which provides both multiple dispatch and multiple inheritance. While
previous work proposed a set of static rules to guarantee no ambiguous calls at
run time, the rules were parametric to the underlying programming language. To
implement such rules for a particular language, the rules should be instantiated for
the language. Therefore, to concretely realize the overloading rules for Fortress,
we formally define a core calculus for Fortress and mechanize the calculus and
its type safety proof in COQ.

Keywords: COQ, Fortress, overloading, multiple dispatch, multiple inheritance,
type system, proof mechanization.

1 Introduction

Most object-oriented programming languages support method overloading: a method
may have multiple declarations with different parameter types. Multiple method decla-
rations with the same name can make the program logic clear and simple. When several
of the overloaded methods are applicable to a particular call, the most specific applica-
ble declaration is selected by the dispatch mechanism.

Several dispatch mechanisms exist for various object-oriented languages. For exam-
ple, the JavaTM programming language [11] uses a single-dispatch mechanism, where
the dynamic type of only a single argument (the receiver of the method) and the static
types of the other arguments are considered for method selection. CLOS [9] uses asym-
metric multiple dispatch, where the dynamic type of each argument is considered in a
specified order (usually left to right) for method selection. Fortress [3] uses symmetric
multiple dispatch, where the dynamic types of all the arguments are equally considered.
Because previous work [24,26,4,13] observed that using static types of arguments or a
particular order of method parameters for method selection often produces confusing
results, we focus on symmetric multiple dispatch throughout this paper.

Multiple inheritance lets a type have multiple super types, which allows the type
to reuse code in its multiple super types, and permits more type hierarchies than what

J.-P. Jouannaud and Z. Shao (Eds.): CPP 2011, LNCS 7086, pp. 264–279, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

COQ Mechanization of FFMM 265

Fig. 1. Example type hierarchy

are allowed in single inheritance. While multiple inheritance provides high expressive
power, it has well-known problems such as “name conflicts” and “state conflicts” [28].
Several object-oriented languages support multiple inheritance by addressing these
problems in different ways. For example, C++ [29] requires programmers specify how
to resolve conflicts between inherited fields. Scala [27] supports multiple inheritance
via traits [28], where the order of super traits resolves any conflicts. Fortress [3] also
provides multiple inheritance via traits, but the order of super traits does not affect the
language semantics. Instead, Fortress traits do not include any fields, which removes the
possibility of state conflicts. Similarly to the dispatch mechanism, we focus on symmet-
ric multiple inheritance in this paper.

However, both multiple dispatch and multiple inheritance introduce the possibility of
ambiguous method calls that cannot be resolved at run time. Consider a type hierarchy
illustrated in Figure 1 in a language with multiple dispatch and multiple inheritance.
The following overloaded method declarations:

collide(Car c, CampingCar cc)
collide(CampingCar cc, Car c)

introduce a possibility of an ambiguous method call due to multiple dispatch. For a
method call collide(cc1, cc2) where both cc1 and cc2 have the CampingCar
type at run time, we cannot select the best method to call because none of the collide
method declarations is more specific than the other. Likewise, the following overloaded
method declarations:

lightOn(Car c)
lightOn(CampingTrailer ct)

introduce a possibility of an ambiguous method call due to multiple inheritance. For a
method call lightOn(cc) where cc has the CampingCar type at run time, we cannot
select the best method to call because none of the lightOnmethod declarations is more
specific than the other.

To break ties between ambiguous method declarations to a call, there should exist
a disambiguating method declaration that is more specific than the ambiguous declara-
tions and also applicable to the call. For example, if we add the following declaration
to the above set of collide method declarations:

collide(CampingCar cc1, CampingCar cc2)

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 3 / 16



What Is Next?

Adding functions and modules

to FFMM

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 4 / 16



Functions and Modules

Adding Functions

Enhances function extensibility

Allows programmers to express mathematical notation as closely as
possible

Adding Modules

Provides a unit of compilation and a unit of code distribution

Allows programmers to develop large software mostly independently

Allows programmers to handle namespace efficiently

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 5 / 16



Functional Declarations in Fortress

Dotted methods

Top-level functions

Functional methods

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 6 / 16



Dotted Methods

Similar to method declarations in JavaTM

trait Vector

multiply(m:Matrix):Vector = . . .

end

trait Matrix excludes Vector

multiply(v :Vector):Vector = . . .

end

m .multiply (v )
v .multiply (m)

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 7 / 16



Top-level Functions

Allow to extend an existing class with entirely new functionality

trait Vector end

trait Matrix excludes Vector end

multiply(m:Matrix, v :Vector):Vector = . . .

multiply(v :Vector,m:Matrix):Vector = . . .

multiply (m , v )
multiply (v , m)

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 8 / 16



Functional Methods

Allow one self parameter in a parameter list

Inherited to subtypes

Overloaded with top-level functions

trait Vector

trait Matrix excludes Vector

multiply(self, v :Vector):Vector = . . .

multiply(v :Vector, self):Vector = . . .

end

multiply (m , v )
multiply (v , m)

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 9 / 16



Functional Methods

Allow one self parameter in a parameter list

Inherited to subtypes

Overloaded with top-level functions

trait Vector

trait Matrix excludes Vector

opr ·(self, v :Vector):Vector = . . .

opr ·(v :Vector, self):Vector = . . .

end

m · v
v · m

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 9 / 16



Module System of Fortress

Fortress divides a program into components

Components may import declarations in other components via APIs,
which serve as “interfaces” of the components.

Each component is modularly checked at compile time

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 10 / 16



Module System

component A

trait Matrix end

object SparseMatrix extends Matrix

getSize():N = . . .

multiply(self,m:Matrix) = . . .

end

multiply(m:Matrix,m:Matrix)

end

component B

import A.{SparseMatrix,multiply}
. . .

end

Declarations in component

Trait declarations
Object declarations
Top-level functions

Import items

Types
Functions

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 11 / 16



Module System

component A

trait Matrix end

object SparseMatrix extends Matrix

getSize():N = . . .

multiply(self,m:Matrix) = . . .

end

multiply(m:Matrix,m:Matrix)

end

component B

import A.{SparseMatrix,multiply}
. . .

end

Declarations in component

Trait declarations

Object declarations
Top-level functions

Import items

Types
Functions

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 11 / 16



Module System

component A

trait Matrix end

object SparseMatrix extends Matrix

getSize():N = . . .

multiply(self,m:Matrix) = . . .

end

multiply(m:Matrix,m:Matrix)

end

component B

import A.{SparseMatrix,multiply}
. . .

end

Declarations in component

Trait declarations
Object declarations

Top-level functions

Import items

Types
Functions

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 11 / 16



Module System

component A

trait Matrix end

object SparseMatrix extends Matrix

getSize():N = . . .

multiply(self,m:Matrix) = . . .

end

multiply(m:Matrix,m:Matrix)

end

component B

import A.{SparseMatrix,multiply}
. . .

end

Declarations in component

Trait declarations
Object declarations
Top-level functions

Import items

Types
Functions

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 11 / 16



Module System

component A

trait Matrix end

object SparseMatrix extends Matrix

getSize():N = . . .

multiply(self,m:Matrix) = . . .

end

multiply(m:Matrix,m:Matrix)

end

component B

import A.{

SparseMatrix,multiply

}
. . .

end

Declarations in component

Trait declarations
Object declarations
Top-level functions

Import items

Types
Functions

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 11 / 16



Module System

component A

trait Matrix end

object SparseMatrix extends Matrix

getSize():N = . . .

multiply(self,m:Matrix) = . . .

end

multiply(m:Matrix,m:Matrix)

end

component B

import A.{SparseMatrix

,multiply

}
. . .

end

Declarations in component

Trait declarations
Object declarations
Top-level functions

Import items

Types

Functions

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 11 / 16



Module System

component A

trait Matrix end

object SparseMatrix extends Matrix

getSize():N = . . .

multiply(self,m:Matrix) = . . .

end

multiply(m:Matrix,m:Matrix)

end

component B

import A.{SparseMatrix,multiply}
. . .

end

Declarations in component

Trait declarations
Object declarations
Top-level functions

Import items

Types
Functions

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 11 / 16



Restrictions Related to Functional Declarations

A top-level function declaration must not be more specific than a
functional method declaration with the same name.

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 12 / 16



Restrictions Related to Functional Declarations

A top-level function declaration must not be more specific than a
functional method declaration with the same name.

trait Matrix

multiply(self, z:Z) . . .
end

multiply(m:Matrix, t:Object) . . .

object SparseMatrix extends Matrix

multiply(self, n:N) . . .
end

multiply(sm: SparseMatrix, z:Z) . . .

multiply (m , 3 )

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 12 / 16



Restrictions Related to Functional Declarations

A top-level function declaration must not be more specific than a
functional method declaration with the same name.

trait Matrix

multiply(self, z:Z) . . .
end

multiply(m:Matrix, t:Object) . . .

object SparseMatrix extends Matrix

multiply(self, n:N) . . .
end

multiply(sm: SparseMatrix, z:Z) . . .

multiply (m , 3 )
⇓

multiply (sm , 3 )

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 12 / 16



Restrictions Related to Functional Declarations

A top-level function declaration must not be more specific than a
functional method declaration with the same name.

trait Matrix

multiply(self, z:Z) . . .
end

multiply(m:Matrix, t:Object) . . .

object SparseMatrix extends Matrix

multiply(self, z:Z) . . .
multiply(self, n:N) . . .

end

multiply (m , 3 )

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 12 / 16



Restrictions Related to Functional Declarations

A top-level function declaration must not be more specific than a
functional method declaration with the same name.

trait Matrix

multiply(self, z:Z) . . .
end

multiply(m:Matrix, t:Object) . . .

object SparseMatrix extends Matrix

multiply(self, z:Z) . . .
multiply(self, n:N) . . .

end

multiply (m , 3 )
⇓

multiply (sm , 3 )

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 12 / 16



Restrictions Related to Functional Declarations

self parameters must be in the same position of two functional
method declarations if they do not satisfy the exclusion rule or the
subtype rule.

Inherited functional methods must be checked for overloading rules
even when they are not explicitly imported.

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 13 / 16



Calculus

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 14 / 16



Conclusion

Define a core calculus of the Fortress programming language

Three kinds of functional declarations
Multiple dispatch
Multiple inheritance
Modular checks

Will mechanize its type safety using Coq

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 15 / 16



Any Questions?

Jieung Kim (PLRG @ KAIST) Adding Functions and Modules to FFMM Jan. 17, 2012 16 / 16


	Introduction
	FFMM
	What Is Next?

	Functional declarations in Fortress
	Dotted Methods
	Top-level Functions
	Functional Methods

	Module System
	Restrictions
	Calculus
	Conclusion

