
Duc Bui Hoang, Yunho Kim and Moonzoo Kim
ducbuihoang@kaist.ac.kr kimyunho@kaist.ac.kr moonzoo@cs.kaist.ac.kr

Provable Software Lab - KAIST

Application of Dynamic Symbolic Execution

to Real-world Binary Programs

 Analyzing binary programs is always in great demand.

 Dynamic symbolic execution (DSE) is a popular white-

box testing technique.
 Also called concolic testing

Motivations & Goal

2

 Goal: Evaluation of the applicability of DSE technique to

real-world Windows application programs

 We applied the DSE technique to Notepad and Adobe Acrobat

Reader on Windows XP and evaluated the experimental results.

Binary Symbolic Execution Engine (BSEE)

 BitBlaze is a binary analysis platform developed by Song et al. at UCB

 2 main components of BitBlaze
 TEMU: Dynamic analysis component.

 Vine: Static analysis component.

 Our BSEE is built on top of Vine

3

Vine IR: Vine

Intermediate

Representation

Example

0x0804841b: cmp $0x5, %eax

0x0804841e: je 0x804842c <main+56>

if(x!=5)

0804841b: cmp $0x5,%eax

0804841e: je 0x0804842c

08048420: … (not jump)

/*cmp $0x5,%eax*/

T_81_1520:reg32_t = R_EAX_5:reg32_t - 5:reg32_t;

R_ZF_13:reg1_t = T_81_1520:reg32_t == 0:reg32_t;

/*je 0x000000000804842c*/

cond_960:reg1_t = R_ZF_13:reg1_t == false;

assert(cond_960:reg1_t);

…

cond_960:reg1_t = R_ZF_13:reg1_t == false;

assert(!cond_960:reg1_t);

//End of file

Execution trace with x=1:

Vine IR:

Vine IR, after negation:

TEMU

BSEE

Vine

GNU C compiler

STP

x=1

0x5 New input x=5:

Experiment Setting

5

 Symbolic input is a file

 A 743-byte long file consisting of character ‘0’

 737 bytes is the minimal size which enables instruction tracing function. A 743-byte

long file size is needed to generate a new input of 737 bytes long. (BitBlaze’s

limitation).

Results

 Adobe Acrobat Reader: 1469 test cases were generated in more

than 5 hours

Run

number of

BSEE

Initial input Number of

new inputs

Lengths of

new inputs

Tracing time Test case

generation time

1 743 bytes of

character ‘0’

736 1 to 738

bytes

10 min 2 hours

2 The 738-byte

long input in

the first run

733 1 to 733

bytes

10 min 2.5 hours

 Notepad: we could not generate test cases because Vine

encountered an error when translating the execution trace to Vine IR

6

Lessons learned (1/2)

7

 Limitations of BitBlaze
 TEMU could not record the execution trace when the target program reads a

very small file.

 TEMU can miss propagation of tainted data in the executions of complicated

applications.

 Vine failed to handle certain binary instructions.

 Analysis of BitBlaze is too slow and consumes too much of resources (see the

table below).

Lessons learned (2/2)

 Large amount of low level data
 10-minute execution trace of Acrobat Reader is 1.2GB and contains more than

19 million instructions.

 We need to process executed instructions of external libraries and

environment in addition to the executed instructions of the target program.

 Separate instructions executed by the target program from external libraries

and the operating system.

 This problem reduces the scalability of the tool

8

Summary

 We applied a BitBlaze-based symbolic execution
engine to 2 real-world application programs on
Windows.

 As a result, we could generate hundreds of test cases
for Acrobat Reader while we could not generate test
cases for Notepad on Windows XP.

 We found that there are still many challenges and
limitations of the existing tool that make DSE not
applicable to real-world applications at the operating
system level.

9

Thank you

…

Questions?

10

