Application of Dynamic Symbolic Execution
to Real-world Binary Programs

ducbuihoang@kaist.ac.kr kimyunho@kaist.ac.kr moonzoo@cs.kaist.ac.kr
Provable Software Lab - KAIST

KAIST

I Duc Bui Hoang, Yunho Kim and Moonzoo Kim

Motivations & Goal

» Analyzing binary programs is always in great demand.

» Dynamic symbolic execution (DSE) is a popular white-
box testing technique.
Also called concolic testing

» Goal: Evaluation of the applicability of DSE technique to
real-world Windows application programs

We applied the DSE technique to Notepad and Adobe Acrobat
Reader on Windows XP and evaluated the experimental results.

KAIST 2

Binary Symbolic Execution Engine (BSEE)

» BitBlaze is a binary analysis platform developed by Song et al. at UCB

» 2 main components of BitBlaze
TEMU: Dynamic analysis component.
Vine: Static analysis component.

» Our BSEE is built on top of Vine
Vine IR:Vine

BSEE
Vine
Intermediate
Representation
trace

Negate path constraint

Emulated OS

Initial
Input New
STP
S

KAIST BSEE architecture 3

Example

Execution trace with x=1;:

Vine IR:

Vine IR, after negation:

New input x=5:

1f (x!=5H)
------------------ 0 - GNUC eompiler ~~ "~~~ -
0x0804841b: cmp $0x5, %eax

0x0804841le: je 0x804842c <main+56>

x=I & TEMU

0804841b: cmp $0x5,%eax
0804841e: je 0x0804842c

08048420: .. (not jump)

‘ Vine
/ *cmp S0x5, $eax*/
T 81 1520:reg32 t = R EAX 5:reg32 t - 5:reg32 t;
R ZF 13:regl t = T 81 1520:reg32 t == 0:reg32 t;
/*je 0x000000000804842c*/
cond 960:regl t = R ZF 13:regl t == false;

assert (cond 960:regl t);

> BSEE

cond 960:regl t = R ZF 13:regl t == false;
assert (!cond 960:regl t);

//End of file
’ STP

0x5

Experiment Setting

Target notepad.exe in Windows XP SP3
programs (5.1.2500.5512)

AcroRd32.exe - The main executable
file of Adobe Acrobat Reader 9.2.0

» Symbolic input is a file
A 743-byte long file consisting of character ‘0’

737 bytes is the minimal size which enables instruction tracing function. A 743-byte
long file size is needed to generate a new input of 737 bytes long. (BitBlaze’s
limitation).

KAIST 5

Results

» Adobe Acrobat Reader: 1469 test cases were generated in more
than 5 hours

Run Initial input Number of | Lengths of Tracing time | Test case
number of new inputs | new inputs generation time
BSEE
1 743 bytes of 736 1to 738 10 min 2 hours
character ‘0’ bytes
2 The 738-byte | 733 1to 733 10 min 2.5 hours
long input in bytes
the first run

» Notepad: we could not generate test cases because Vine
encountered an error when translating the execution trace to Vine IR

KAIST 6

Lessons learned (1/2)

» Limitations of BitBlaze

TEMU could not record the execution trace when the target program reads a
very small file.

TEMU can miss propagation of tainted data in the executions of complicated
applications.

Vine failed to handle certain binary instructions.
Analysis of BitBlaze is too slow and consumes too much of resources (see the

table below).
BitBlaze Performance
Target AcroRd32.exe notepad.exe
program
Tracing time |10min |15min 60min Imin
Size of trace|l1l.2GB |2.1GB 35.0GB 72MB
file
Translation 2min |out of [out of | ITmin
time (execution memory [memory [(interrupted
trace to Vine IR) b}r an error)
Size of Vine IR [23MB |N/A N/A N/A

KAIST 7

Lessons learned (2/2)

» Large amount of low level data

10-minute execution trace of Acrobat Reader is 1.2GB and contains more than
19 million instructions.

We need to process executed instructions of external libraries and
environment in addition to the executed instructions of the target program.

» Separate instructions executed by the target program from external libraries
and the operating system.

This problem reduces the scalability of the tool

KAIST 8

» We applied a BitBlaze-based symbolic execution
engine to 2 real-world application programs on
Windows.

» As a result, we could generate hundreds of test cases
for Acrobat Reader while we could not generate test
cases for Notepad on Windows XP.

» We found that there are still many challenges and
limitations of the existing tool that make DSE not
applicable to real-world applications at the operating
system level.

KAIST 9

KAIST

Thank you

Questions?

10

