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연구 동기

프로그램 크기(라인수) 시간 메모리

gzip-1.2.4a 7,327 1시간 0.9G

bc-1.06 13,093 7시간 0.8G

make-3.76.1 27,304 24시간 2.7G

bash-2.05a 105,174 n/a >4G
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너무 무거운 스패로우

전체 분석, 3.2GHz with 4GB of memory

(as of 2008) 



정적 분석의 난제

정확하게(precise), 
모든 실행상황을 포섭하며(sound),

큰 프로그램을(scalable),
전체 분석(global analysis)하기



현실

안전성 또는 큰 프로그램을 포기

“verifiers”“bug-finders”

scalable
unsound

sound
unscalable



•전체 분석은 포기

•대신 파일별로 분석

•정확도가 너무 떨어짐

•안전성을 포기

•파일간 교류는 무시

•정확도 회복

스패로우의 경우



목표

안전성과 정확성은 유지하면서
전체 분석의 비용을 절감하는 기술 개발
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의 비용 절감



꼭 필요한 일에 집중하기
(Localization)

•필요한 메모리 영역만 (spatial localization)

•필요한 시점에만 (temporal localization)

•필요한 상황에만 (contextual localization)

“local reasoning”
“frame rule”

Extended In-place Reasoning

� Spec
{tree(p)} DispTree(p) {emp}

� Rest of proof of evident recursive procedure

{tree(i)∗tree(j)}
DispTree(i);
{emp ∗ tree(j)}
DispTree(j);
{emp}

{P}C{Q}
{P∗R}C{Q∗R} Frame Rule

22
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Program LOC Baseline Localize Spd↑ Mem↓
Time Mem Time Mem

gzip-1.2.4a 7 K 772 240 3 63 257 x 74 %

bc-1.06 13 K 1,270 276 7 75 181 x 73 %

less-382 23 K 9,561 1,113 33 127 289 x 86 %

make-3.76.1 27 K 24,240 1,391 21 114 1,154 x 92 %

wget-1.9 35 K 44,092 2,546 11 85 4,008 x 97 %

a2ps-4.14 64 K ∞ N/A 40 353 N/A N/A

sendmail-8.13.6 130 K ∞ N/A 744 678 N/A N/A

nethack-3.3.0 211 K ∞ N/A 16,373 5,298 N/A N/A

emacs-22.1 399 K ∞ N/A 37,830 7,795 N/A N/A

python-2.5.1 435 K ∞ N/A 11,039 5,535 N/A N/A

linux-3.0 710 K ∞ N/A 33,618 20,529 N/A N/A

gimp-2.6 959 K ∞ N/A 3,874 3,602 N/A N/A

ghostscript-9.00 1,363 K ∞ N/A 14,814 6,384 N/A N/A

Table 1.1: Effectiveness of the proposed techniques on various open-source bench-

marks: time (in seconds) and peak memory consumption (in megabytes) of the

baseline analyzer (Baseline) and its localized version (Localize). ∞ means the

analysis ran out of time (exceeded 24 hour time limit). Spd↑ is the speed-up

of Localize over Baseline. Mem↓ shows the memory savings of Localize over

Baseline. All experiments were done on a Linux 2.6 system running on a single

core of Intel 3.07 GHz box with 24 GB of main memory.
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필요한 메모리 영역 잘라내기
(spatial localization)

12

f

call f

local (accessible)

return

global
(non-accessible )



효과

13

int g;

int f() {...}

int main() {
  g = 0;
  f();
  
  g = 1;
  f();
}

f does not access g



실제 프로그램 분석에 꼭 필요
less-382 (23,822 LOC )

14

Program LOC #Functions
less-382
bash-2.05a
vim60
emacs-22.1
linux-3.0
ghostscript-9.00

23K 382
105K 955
227K 2,770
399K 3,388
710K 13,856

1,363K 10,224



실제 프로그램 분석에 꼭 필요
less-382 (23,822 LOC )

15

On average 755 re-analyses 
per procedure

Program LOC #Functions
less-382
bash-2.05a
vim60
emacs-22.1
linux-3.0
ghostscript-9.00

23K 382
105K 955
227K 2,770
399K 3,388
710K 13,856

1,363K 10,224



어려움

16

Analysis Localization

필요한 메모리 영역은 분석해봐야 알 수 있음



접근가능한 메모리 영역만 넘기기
(Reachability-based Localization /

abstract garbage collection)

17

•전역 주소, 함수 인자로부터 접근 가능한 영역

f
call f

reachable

unreachable



너무 조심스런 방식
(too conservative)

18

2 Hakjoo Oh and Kwangkeun Yi

Table 1. Reachability-based Approach Is Too Conservative.

Program LOC accessed memory

/ reachable memory

spell-1.0 2,213 5 / 453 (1.1%)
barcode-0.96 4,460 19 / 1175 (1.6%)
httptunnel-3.3 6,174 10 / 673 (1.5%)
gzip-1.2.4a 7,327 22 / 1002 (2.2%)
jwhois-3.0.1 9,344 28 / 830 (3.4%)
parser 10,900 75 / 1787 (4.2%)
bc-1.06 13,093 24 / 824 (2.9%)
less-290 18,449 86 / 1546 (5.6%)

the called procedure bodies. Table 1 shows, given a reachability-based localized
input state to a procedure, how much is actually accessed inside the (directly or
transitively) called procedures.1 For each a/b (r%) in the table, a is the average
number of memory entries accessed in the called procedures, b is the average size
of the reachable input state, and r is their ratio. The results show that only a
few reachable memory entries were actually accessed: procedures accessed only
1.1%–5.6% of reachable memory states. Nonetheless, the reachability-based ap-
proach propagates all the reachable parts to procedures. So, it’s possible for
a procedure body to be needlessly recomputed for input memory states whose
only differences lie in the reachable-but-unaccessed portions. This means that
the reachability-based approach is too conservative for real C programs and
hence is inefficient both in time and memory cost. This finding originates from
the difficulty of having a fast enough industrial-strength static analyzers [10–12,
16] that uses the reachability-based localization.

In this paper we present a new memory localization technique that localizes
the input memory states more aggressively than the reachability-based approach.
In our approach, in addition to excluding unreachable memory entries from the
localized state, we also exclude memory entries that are reachable but unac-
cessed. The main problem is finding the memory parts that will be needed to
analyze a procedure before actually analyzing the procedure. We solve the prob-
lem by staging: (1) the set of memory cells that are accessed by a procedure is
conservatively estimated by a pre-analysis before the actual analysis; (2) then,
the actual analysis uses the accessed-cells-information and filters out memory
cells that will definitely not be accessed by called procedures. The pre-analysis
aggressively applies a conservative abstraction to the abstract semantics of the
original analysis and runs with a small cost. By reducing the sizes of localized

1 The reachable- and accessed-memory ratio is an average over the procedures. We
ran the reachability-based analysis and recorded, for every analysis of procedures,
the sizes of localized memory and its accessed portion. We average the size ratio over
the total number of analyses of procedures.

average :  4%



실제로 쓰는 영역만 자르기
(access-based localization)

19

pre-analysis
conservative 

access information
actual analysis

f
{a,b,c}Over-approximation of 

actual access info.

{a,b}

∪

actual access info.

VMCAI’11



실제로 쓰는 영역만 자르기
(access-based localization)

20

pre-analysis
conservative 

access information
actual analysis

f
call f

non-accessible

{a,b,c}



성능 향상
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필요한 시점에만 분석하기
(temporal localization / sparse analysis)

22

/ 63

Generalized to Statements

y:=x

t:=1

z:=y

y:=x

t:=1

z:=y

46



어려움 (1)

23

x:=1

y:=*p

z:=*q

어떤값이 어디서 필요한지 미리 알 수 없음



안전하게만 가능

24

x:=1

y:=*p

z:=*q

x:=1

y:=*p

z:=*q

actual conservative



어려움 (2)
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a:=1 a:=2

b:=a

actual 
dependence

b = [1,1]

*p:=1



어려움 (2)

26

a:=1 a:=2

b:=a

actual 
dependence

b = [1,2]

spurious 
dependence*p:=1



관련 연구

•특정 분석에 제한된 “알고리즘”들만 존재

•주로 포인터 분석 성능향상을 위한

27



틀 (framework)

28

F̂ : D̂ → D̂ F̂s : D̂ → D̂

lfpF̂ lfpF̂s=

일반적인 요약해석에 대해,

PLDI’12

(submitte
d)



성능 향상: 값 분석
(non-relational analysis)

29

Program LOC Functions Statements Blocks maxSCC AbsLocs

gzip-1.2.4a 7K 132 6,446 4,152 2 1,784
bc-1.06 13K 132 10,368 4,731 1 1,619
tar-1.13 20K 221 12,199 8,586 13 3,245
less-382 23K 382 23,367 9,207 46 3,658
make-3.76.1 27K 190 14,010 9,094 57 4,527
wget-1.9 35K 433 28,958 14,537 13 6,675
screen-4.0.2 45K 588 39,693 29,498 65 12,566
a2ps-4.14 64K 980 86,867 27,565 6 17,684
bash-2.05a 105K 955 107,774 27,669 4 17,443
lsh-2.0.4 111K 1,524 137,511 27,896 13 31,164
sendmail-8.13.6 130K 756 76,630 52,505 60 19,135
nethack-3.3.0 211K 2,207 237,427 157,645 997 54,989
vim60 227K 2,770 150,950 107,629 1,668 40,979
emacs-22.1 399K 3,388 204,865 161,118 1,554 66,413
python-2.5.1 435K 2,996 241,511 99,014 723 51,859
linux-3.0 710K 13,856 345,407 300,203 493 139,667
gimp-2.6 959K 11,728 1,482,230 286,588 2 190,806
ghostscript-9.00 1,363K 12,993 2,891,500 342,293 39 201,161

Table 1: Benchmarks: lines of code (LOC) is obtained by running wc on the source before preprocessing and macro expansion. Functions reports the number of functions in source
code. Statements and Blocks report the number of statements and basic blocks in our intermediate representation of programs (after preprocessing). maxSCC reports the size of the
largest strongly connected component in the callgraph. AbsLocs reports the number of abstract locations that are generated during the analysis.

Programs LOC Intervalvanilla Intervalbase Spd↑1 Mem↓1 Intervalsparse Spd↑2 Mem↓2

Time Mem Time Mem Time Mem

gzip-1.2.4a 7K 772 240 14 65 55 x 73 % 3 63 5 x 3 %
bc-1.06 13K 1,270 276 96 126 13 x 54 % 7 75 14 x 40 %
tar-1.13 20K 12,947 881 338 177 38 x 80 % 8 93 42 x 47 %
less-382 23K 9,561 1,113 1,211 378 8 x 66 % 33 127 37 x 66 %
make-3.76.1 27K 24,240 1,391 1,893 443 13 x 68 % 21 114 90 x 74 %
wget-1.9 35K 44,092 2,546 1,214 378 36 x 85 % 11 85 110 x 78 %
screen-4.0.2 45K ∞ N/A 31,324 3,996 N/A N/A 767 303 41 x 92 %
a2ps-4.14 64K ∞ N/A 3,200 1,392 N/A N/A 40 353 80 x 75 %
bash-2.05a 105K ∞ N/A 1,683 1,386 N/A N/A 67 220 25 x 84 %
lsh-2.0.4 111K ∞ N/A 45,522 5,266 N/A N/A 471 577 97 x 89 %
sendmail-8.13.6 130K ∞ N/A ∞ N/A N/A N/A 744 678 N/A N/A
nethack-3.3.0 211K ∞ N/A ∞ N/A N/A N/A 16,373 5,298 N/A N/A
vim60 227K ∞ N/A ∞ N/A N/A N/A 23,798 5,190 N/A N/A
emacs-22.1 399K ∞ N/A ∞ N/A N/A N/A 37,830 7,795 N/A N/A
python-2.5.1 435K ∞ N/A ∞ N/A N/A N/A 11,039 5,535 N/A N/A
linux-3.0 710K ∞ N/A ∞ N/A N/A N/A 33,618 20,529 N/A N/A
gimp-2.6 959K ∞ N/A ∞ N/A N/A N/A 3,874 3,602 N/A N/A
ghostscript-9.00 1,363K ∞ N/A ∞ N/A N/A N/A 14,814 6,384 N/A N/A

Table 2: Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of analyses. ∞ means the analysis ran out of
time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd↑1 is
the speed-up of Intervalbase over Intervalvanilla. Mem↓1 shows the memory savings of Intervalbase over Intervalvanilla. Spd↑2 is the speed-up of Intervalsparse over Intervalbase.
Mem↓2 shows the memory savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

The results show that Intervalbase already has a competitive
performance: it is faster than Intervalvanilla by 8–55x, saving
peak memory consumption by 54–85%. Intervalvanilla scales to
35 KLOC before running out of time limit (24 hours). In con-
trast, Intervalbase scales to 111 KLOC. For the first six benchmarks
that they both complete, Intervalbase is on average 27x faster than
Intervalvanilla, and uses on average 71% less memory.

Intervalsparse is faster than Intervalbase by 5–110x and saves
memory by 3–92%. In particular, the analysis’ scalability has been
remarkably improved: Intervalsparse scales to 1.4M LOC, which is
an order of magnitude larger than that of Intervalbase.

There are some counterintuitive results. First, the analysis time
for Intervalsparse does not strictly depend on program sizes. For ex-
ample, analyzing emacs-22.1 (399 KLOC) requires 10 hours, tak-
ing six times more than analyzing ghostscript-9.00 (1,363 KLOC).
This is mainly due to the fact that some real C programs have un-
expectedly large recursive call cycles [24, 42]. Column maxSCC

in Table 1 reports the sizes of the largest recursive cycle (precisely
speaking, strongly connected component) in programs. Note that
some programs (such as nethack-3.3.0, vim60, and emacs-22.1)
have a large cycle that contains hundreds or even thousands of pro-
cedures. Such non-trivial SCCs markedly increase analysis cost be-
cause the large cyclic dependencies among procedures make data
dependencies much more complex. Thus, the analysis for gimp-2.6

(959 KLOC) or ghostscript-9.00 (1,363 KLOC), which have few re-
cursion, is even faster than python-2.5.1 (435 KLOC) or nethack-
3.3.0 (211 KLOC), which have large recursive cycles.

Second, data dependency generation takes much longer time
than actual fixpoint computation. For example, data dependency
generation for ghostscript-9.00 takes 14,116 s but the fixpoint is
computed in 698 s. In fact, this phenomenon paradoxically shows
the effectiveness of our pre-analysis. Finding data dependencies
of programs is not an easy work but their exact computation re-
quires the full analysis (Intervalbase). Instead, the pre-analysis finds
an approximation with small cost (compared to Intervalbase). Our
pre-analysis is effective because the approximated data dependen-
cies are shown to be precise enough to make our sparse analysis
efficient. On the other hand, the seemingly unbalanced timing re-
sults are partly because of the uses of BDDs in dependency con-
struction. While BDD dramatically saves memory costs, set opera-
tions for BDDs such as addition and removal are noticeably slower
than usual set operations. Especially, large programs are more in-
fluenced by this characteristic because their data dependency gen-
eration is more complex and much more BDD-operations are in-
volved. However, thanks to the space-effectiveness of BDDs, our
sparse analysis does not steeply increase memory consumption as
program sizes increase.

8 2012/1/17



성능 향상: 값 분석
(non-relational analysis)
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make-3.76.1 27K 24,240 1,391 1,893 443 13 x 68 % 21 114 90 x 74 %
wget-1.9 35K 44,092 2,546 1,214 378 36 x 85 % 11 85 110 x 78 %
screen-4.0.2 45K ∞ N/A 31,324 3,996 N/A N/A 767 303 41 x 92 %
a2ps-4.14 64K ∞ N/A 3,200 1,392 N/A N/A 40 353 80 x 75 %
bash-2.05a 105K ∞ N/A 1,683 1,386 N/A N/A 67 220 25 x 84 %
lsh-2.0.4 111K ∞ N/A 45,522 5,266 N/A N/A 471 577 97 x 89 %
sendmail-8.13.6 130K ∞ N/A ∞ N/A N/A N/A 744 678 N/A N/A
nethack-3.3.0 211K ∞ N/A ∞ N/A N/A N/A 16,373 5,298 N/A N/A
vim60 227K ∞ N/A ∞ N/A N/A N/A 23,798 5,190 N/A N/A
emacs-22.1 399K ∞ N/A ∞ N/A N/A N/A 37,830 7,795 N/A N/A
python-2.5.1 435K ∞ N/A ∞ N/A N/A N/A 11,039 5,535 N/A N/A
linux-3.0 710K ∞ N/A ∞ N/A N/A N/A 33,618 20,529 N/A N/A
gimp-2.6 959K ∞ N/A ∞ N/A N/A N/A 3,874 3,602 N/A N/A
ghostscript-9.00 1,363K ∞ N/A ∞ N/A N/A N/A 14,814 6,384 N/A N/A

Table 2: Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of analyses. ∞ means the analysis ran out of
time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd↑1 is
the speed-up of Intervalbase over Intervalvanilla. Mem↓1 shows the memory savings of Intervalbase over Intervalvanilla. Spd↑2 is the speed-up of Intervalsparse over Intervalbase.
Mem↓2 shows the memory savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

The results show that Intervalbase already has a competitive
performance: it is faster than Intervalvanilla by 8–55x, saving
peak memory consumption by 54–85%. Intervalvanilla scales to
35 KLOC before running out of time limit (24 hours). In con-
trast, Intervalbase scales to 111 KLOC. For the first six benchmarks
that they both complete, Intervalbase is on average 27x faster than
Intervalvanilla, and uses on average 71% less memory.

Intervalsparse is faster than Intervalbase by 5–110x and saves
memory by 3–92%. In particular, the analysis’ scalability has been
remarkably improved: Intervalsparse scales to 1.4M LOC, which is
an order of magnitude larger than that of Intervalbase.

There are some counterintuitive results. First, the analysis time
for Intervalsparse does not strictly depend on program sizes. For ex-
ample, analyzing emacs-22.1 (399 KLOC) requires 10 hours, tak-
ing six times more than analyzing ghostscript-9.00 (1,363 KLOC).
This is mainly due to the fact that some real C programs have un-
expectedly large recursive call cycles [24, 42]. Column maxSCC

in Table 1 reports the sizes of the largest recursive cycle (precisely
speaking, strongly connected component) in programs. Note that
some programs (such as nethack-3.3.0, vim60, and emacs-22.1)
have a large cycle that contains hundreds or even thousands of pro-
cedures. Such non-trivial SCCs markedly increase analysis cost be-
cause the large cyclic dependencies among procedures make data
dependencies much more complex. Thus, the analysis for gimp-2.6

(959 KLOC) or ghostscript-9.00 (1,363 KLOC), which have few re-
cursion, is even faster than python-2.5.1 (435 KLOC) or nethack-
3.3.0 (211 KLOC), which have large recursive cycles.

Second, data dependency generation takes much longer time
than actual fixpoint computation. For example, data dependency
generation for ghostscript-9.00 takes 14,116 s but the fixpoint is
computed in 698 s. In fact, this phenomenon paradoxically shows
the effectiveness of our pre-analysis. Finding data dependencies
of programs is not an easy work but their exact computation re-
quires the full analysis (Intervalbase). Instead, the pre-analysis finds
an approximation with small cost (compared to Intervalbase). Our
pre-analysis is effective because the approximated data dependen-
cies are shown to be precise enough to make our sparse analysis
efficient. On the other hand, the seemingly unbalanced timing re-
sults are partly because of the uses of BDDs in dependency con-
struction. While BDD dramatically saves memory costs, set opera-
tions for BDDs such as addition and removal are noticeably slower
than usual set operations. Especially, large programs are more in-
fluenced by this characteristic because their data dependency gen-
eration is more complex and much more BDD-operations are in-
volved. However, thanks to the space-effectiveness of BDDs, our
sparse analysis does not steeply increase memory consumption as
program sizes increase.
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Program LOC Functions Statements Blocks maxSCC AbsLocs

gzip-1.2.4a 7K 132 6,446 4,152 2 1,784
bc-1.06 13K 132 10,368 4,731 1 1,619
tar-1.13 20K 221 12,199 8,586 13 3,245
less-382 23K 382 23,367 9,207 46 3,658
make-3.76.1 27K 190 14,010 9,094 57 4,527
wget-1.9 35K 433 28,958 14,537 13 6,675
screen-4.0.2 45K 588 39,693 29,498 65 12,566
a2ps-4.14 64K 980 86,867 27,565 6 17,684
bash-2.05a 105K 955 107,774 27,669 4 17,443
lsh-2.0.4 111K 1,524 137,511 27,896 13 31,164
sendmail-8.13.6 130K 756 76,630 52,505 60 19,135
nethack-3.3.0 211K 2,207 237,427 157,645 997 54,989
vim60 227K 2,770 150,950 107,629 1,668 40,979
emacs-22.1 399K 3,388 204,865 161,118 1,554 66,413
python-2.5.1 435K 2,996 241,511 99,014 723 51,859
linux-3.0 710K 13,856 345,407 300,203 493 139,667
gimp-2.6 959K 11,728 1,482,230 286,588 2 190,806
ghostscript-9.00 1,363K 12,993 2,891,500 342,293 39 201,161

Table 1: Benchmarks: lines of code (LOC) is obtained by running wc on the source before preprocessing and macro expansion. Functions reports the number of functions in source
code. Statements and Blocks report the number of statements and basic blocks in our intermediate representation of programs (after preprocessing). maxSCC reports the size of the
largest strongly connected component in the callgraph. AbsLocs reports the number of abstract locations that are generated during the analysis.

Programs LOC Intervalvanilla Intervalbase Spd↑1 Mem↓1 Intervalsparse Spd↑2 Mem↓2

Time Mem Time Mem Time Mem

gzip-1.2.4a 7K 772 240 14 65 55 x 73 % 3 63 5 x 3 %
bc-1.06 13K 1,270 276 96 126 13 x 54 % 7 75 14 x 40 %
tar-1.13 20K 12,947 881 338 177 38 x 80 % 8 93 42 x 47 %
less-382 23K 9,561 1,113 1,211 378 8 x 66 % 33 127 37 x 66 %
make-3.76.1 27K 24,240 1,391 1,893 443 13 x 68 % 21 114 90 x 74 %
wget-1.9 35K 44,092 2,546 1,214 378 36 x 85 % 11 85 110 x 78 %
screen-4.0.2 45K ∞ N/A 31,324 3,996 N/A N/A 767 303 41 x 92 %
a2ps-4.14 64K ∞ N/A 3,200 1,392 N/A N/A 40 353 80 x 75 %
bash-2.05a 105K ∞ N/A 1,683 1,386 N/A N/A 67 220 25 x 84 %
lsh-2.0.4 111K ∞ N/A 45,522 5,266 N/A N/A 471 577 97 x 89 %
sendmail-8.13.6 130K ∞ N/A ∞ N/A N/A N/A 744 678 N/A N/A
nethack-3.3.0 211K ∞ N/A ∞ N/A N/A N/A 16,373 5,298 N/A N/A
vim60 227K ∞ N/A ∞ N/A N/A N/A 23,798 5,190 N/A N/A
emacs-22.1 399K ∞ N/A ∞ N/A N/A N/A 37,830 7,795 N/A N/A
python-2.5.1 435K ∞ N/A ∞ N/A N/A N/A 11,039 5,535 N/A N/A
linux-3.0 710K ∞ N/A ∞ N/A N/A N/A 33,618 20,529 N/A N/A
gimp-2.6 959K ∞ N/A ∞ N/A N/A N/A 3,874 3,602 N/A N/A
ghostscript-9.00 1,363K ∞ N/A ∞ N/A N/A N/A 14,814 6,384 N/A N/A

Table 2: Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of analyses. ∞ means the analysis ran out of
time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd↑1 is
the speed-up of Intervalbase over Intervalvanilla. Mem↓1 shows the memory savings of Intervalbase over Intervalvanilla. Spd↑2 is the speed-up of Intervalsparse over Intervalbase.
Mem↓2 shows the memory savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

The results show that Intervalbase already has a competitive
performance: it is faster than Intervalvanilla by 8–55x, saving
peak memory consumption by 54–85%. Intervalvanilla scales to
35 KLOC before running out of time limit (24 hours). In con-
trast, Intervalbase scales to 111 KLOC. For the first six benchmarks
that they both complete, Intervalbase is on average 27x faster than
Intervalvanilla, and uses on average 71% less memory.

Intervalsparse is faster than Intervalbase by 5–110x and saves
memory by 3–92%. In particular, the analysis’ scalability has been
remarkably improved: Intervalsparse scales to 1.4M LOC, which is
an order of magnitude larger than that of Intervalbase.

There are some counterintuitive results. First, the analysis time
for Intervalsparse does not strictly depend on program sizes. For ex-
ample, analyzing emacs-22.1 (399 KLOC) requires 10 hours, tak-
ing six times more than analyzing ghostscript-9.00 (1,363 KLOC).
This is mainly due to the fact that some real C programs have un-
expectedly large recursive call cycles [24, 42]. Column maxSCC

in Table 1 reports the sizes of the largest recursive cycle (precisely
speaking, strongly connected component) in programs. Note that
some programs (such as nethack-3.3.0, vim60, and emacs-22.1)
have a large cycle that contains hundreds or even thousands of pro-
cedures. Such non-trivial SCCs markedly increase analysis cost be-
cause the large cyclic dependencies among procedures make data
dependencies much more complex. Thus, the analysis for gimp-2.6

(959 KLOC) or ghostscript-9.00 (1,363 KLOC), which have few re-
cursion, is even faster than python-2.5.1 (435 KLOC) or nethack-
3.3.0 (211 KLOC), which have large recursive cycles.

Second, data dependency generation takes much longer time
than actual fixpoint computation. For example, data dependency
generation for ghostscript-9.00 takes 14,116 s but the fixpoint is
computed in 698 s. In fact, this phenomenon paradoxically shows
the effectiveness of our pre-analysis. Finding data dependencies
of programs is not an easy work but their exact computation re-
quires the full analysis (Intervalbase). Instead, the pre-analysis finds
an approximation with small cost (compared to Intervalbase). Our
pre-analysis is effective because the approximated data dependen-
cies are shown to be precise enough to make our sparse analysis
efficient. On the other hand, the seemingly unbalanced timing re-
sults are partly because of the uses of BDDs in dependency con-
struction. While BDD dramatically saves memory costs, set opera-
tions for BDDs such as addition and removal are noticeably slower
than usual set operations. Especially, large programs are more in-
fluenced by this characteristic because their data dependency gen-
eration is more complex and much more BDD-operations are in-
volved. However, thanks to the space-effectiveness of BDDs, our
sparse analysis does not steeply increase memory consumption as
program sizes increase.
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Programs Octagon
vanilla

Octagon
base

Spd↑1 Mem↓1 Octagon
sparse

Spd↑2 Mem↓2

Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)
gzip-1.2.4a 9,649 5,744 483 1,355 20 x 76 % 2 13 15 211 2.3 2.5 30 x 84 %
bc-1.06 15,027 10,090 1,454 5,065 10 x 50 % 4 17 21 381 3.1 3.4 55 x 92 %
tar-1.13 ∞ N/A 21,125 13,810 N/A N/A 6 46 52 588 2.5 2.5 377 x 95 %
less-382 ∞ N/A ∞ N/A N/A N/A 5 126 131 405 7.0 7.1 N/A N/A
make-3.76.1 ∞ N/A ∞ N/A N/A N/A 16 23 39 554 4.0 4.1 N/A N/A
wget-1.9 ∞ N/A ∞ N/A N/A N/A 8 181 189 1,098 2.0 2.1 N/A N/A
screen-4.0.2 ∞ N/A ∞ N/A N/A N/A 724 6,445 7,169 19,143 38.8 39.7 N/A N/A
a2ps-4.14 ∞ N/A ∞ N/A N/A N/A 31 763 794 1,229 2.4 2.6 N/A N/A
bash-2.05a ∞ N/A ∞ N/A N/A N/A 45 362 407 1,875 2.5 2.6 N/A N/A
lsh-2.0.4 ∞ N/A ∞ N/A N/A N/A 391 1,162 1,553 4,449 5.4 5.5 N/A N/A
sendmail-8.13.6 ∞ N/A ∞ N/A N/A N/A 517 946 1,463 9,881 15.9 16.0 N/A N/A

Table 3: Performance of octagon analysis: all columns are same as those in Table 2

Programs Octagon
vanilla

Octagon
base

Spd↑1 Mem↓1 Octagon
sparse

Spd↑2 Mem↓2

Time Mem Time Mem Total Mem
gzip-1.2.4a 9,649 5,744 483 1,355 20 x 76 % 15 211 30 x 84 %
bc-1.06 15,027 10,090 1,454 5,065 10 x 50 % 21 381 55 x 92 %
tar-1.13 ∞ N/A 21,125 13,810 N/A N/A 52 588 377 x 95 %
less-382 ∞ N/A ∞ N/A N/A N/A 131 405 N/A N/A
make-3.76.1 ∞ N/A ∞ N/A N/A N/A 39 554 N/A N/A
wget-1.9 ∞ N/A ∞ N/A N/A N/A 189 1,098 N/A N/A
screen-4.0.2 ∞ N/A ∞ N/A N/A N/A 7,169 19,143 N/A N/A
a2ps-4.14 ∞ N/A ∞ N/A N/A N/A 794 1,229 N/A N/A
bash-2.05a ∞ N/A ∞ N/A N/A N/A 407 1,875 N/A N/A
lsh-2.0.4 ∞ N/A ∞ N/A N/A N/A 1,553 4,449 N/A N/A
sendmail-8.13.6 ∞ N/A ∞ N/A N/A N/A 1,463 9,881 N/A N/A

Table 4: Performance of octagon analysis: all columns are same as those in Table 2

a sparse analysis algorithm for constant propagation and Wegman
et al. [40] extended it to conditional constant propagation. Dhamd-
here et al. [15] showed how to sparse partial redundancy elimi-
nation. These algorithms are fully sparse in that precise def-use
chains are syntactically identifiable and values are always propa-
gated along to def-use chains (in an SSA form). Sparse evaluation
technique [8, 14, 20, 35], which exploits only a limited form of
sparsity, is to remove statements that are irrelevant to the analysis
from control flow graphs. For example, we can remove the state-
ments for numerical computation when we do typical pointer anal-
ysis. Sparse evaluation technique is not effective when the underly-
ing analysis does not have many irrelevant statements, which is the
case of static analysis that considers the full semantics of programs.

Localization Our framework allows us to design a correct sparse
static analysis that exploits more sparsity than localization tech-
niques [29, 33, 37, 41]. Localization is a static analysis technique
that exploits a limited form of sparsity; when analyzing code blocks
such as procedure bodies, localization attempts to remove irrelevant
parts of abstract states that will not be used during the analysis.
Still, localization cannot avoid unnecessary propagation of abstract
values along to control flow. Localization has been widely used
for cost reduction in many semantics-based static analysis, such as
shape analysis [37, 41], higher-order flow analysis [29], and nu-
meric abstract interpretation [33].

BDDs In this paper, we propose another use of Binary Decision
Diagram (BDD) [6] in representation of data dependencies of anal-
ysis. Most of the previous uses are limited to compact representa-
tions of points-to sets in pointer analysis [3, 18, 19].
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