Integrating Code Search into the Development Session

Mu-Woong Lee Seung-won Hwang
POSTECH, Korea

Sunghun Kim
HKUST, Hong Kong

Motivation System Overview
Copy-and-paste Is one of the most common software de i Vector abstracti Vector
development activities to support rapid development. Query code piece cctor abstractions abstractions

During writing a module, reusing a code piece sharing the

same syntactic structure can help developers to quickly —
complete the module. 'fm
Limitations of Existing Work: Developer -°PYy-and-paste — Search results ~ ~ % ,ﬂm% L
= Commercial code search engines are scalable to very | el
large code corpus, but they disregard structural similarity. . . o g
J P Y : Y| Application Scenario: e @@[F[p)@]@ ’

= Code clone detection tools are often structural-aware,
but they are insufficient to be “interactively” used In
development sessions.

Our Goal:
We combine the strength of the both lines of work, by
enabling fast similarity searches of structurally related

A developer working on a large project can search for the code
sharing the same syntactic structure, then either use the results
as references or copy them into his own code.

= Search Scheme:
To support efficient structural similarity comparison between code pieces, we adopt a
multi-resolution vector abstraction of code, and design index building and traversal

public void setSourceBands{int[] sourceBands) {
oject/srcm < s.a [h] IR [I{t if (sourceBands == null) {
F";:d't '“u foe > [F© @@@] this.sourceBands = null;
[% Packa lorer . } ElS.E {
. € TwThE e o int numBands = sourceBands.length;
5 tes e ;ﬂ for (int 1 = @; 1 < numBands; i++) {
rot. - 2 vaL < e nageeaterseneckRosdPar anbandSet tings = -_$ int band = sourceBands[i];
. public wvoid setSour‘Cf?ands(nnnnnnnnnnnnnnnnnn - if I: hand { E ::| {
[conaERiens mn ceodemmageReadRazancodes w 6 throw new IllegalArgumentException("Band wvalue < @!");
publi o 7
; comend] PUORlic wold setDestinationBands (int[] destinationBands) { : }
el if (destinationBands == null) { 10
thi=s.destinationBand=s = nnll; w
} el=se { . : : . :
int numBand=s = destinationBands=s.length; for glnt j =1+ 1; 3 < numBands; J++) {
s] R o if (band == scurceBands[j]) {
, for (int 1 = 0; i < numBands; i++) { throw new IllegalArgumentException("Duplicate band wvalue!");
int band = destinationBands[i]: H
i (dest if (band < 0) { ¥ @@ég@
throw new IllegalArgumentException ("Band wvalue < 0!"); 3 W ‘
this.sourceBands = (int[])({sourceBands.clone()); @@@
‘:- — 1

:::: thth 2 to sta t th D;DEEE;ﬁDn' It 1s calculated by I *8@ adjust value by amoun t returned
> nt startInde g p ” - e private int getPopupFitWidth({Rectangle popupRectInscreen, Component invoker){
S if (invoker != null){
it (startIn Eg:.e [T Startindex > size()) { | -4 Search Clones [> Container par‘ent,
__________ 1 ' for (parent = oker.getParent(); ent != null; parent = parent.getParent()){
: try { Ff Fix internal ﬂ"ame size bu g 4139@8?‘ - 4159@12
Enumeration mycomps = getSuffix(startIndex); P S g f(parent instanceo f JFrame || par‘ent instanceo f IDbialo g || .
while (mycomps.hasMoreElements()) { | e parent instanceo f JuWi d w]l { // no check for awt.Fr since we use Heavy tips
String my = (5tring)mycomps.nextElement(): i 1 return getWidthAdjust(parent.getBounds(),popu r:lFi ctIn S enl;
Ui ey String his = (String)suffix.nextElement(); ' 1 } else if (parent instanceo -F Japple 1: || parent instanceo -F :IIn‘ter"nalFr"amE]l 1
public boolean startsWith(int posn, Enumeration prefix) { if (syntaxTrimBlanks) { B il 1 if (popupFrameRect == null){ s
; ; my = my.trimi): ——— popupFrameRect new Fi ctangle
1f (posn < 0 || pesn > size()) 1 hyis - ﬁi .trﬂf}; private int getPopupFitHeight (Rectangle popupRectInScreen, Component invoker) { T
[return false; 1 if (invoker !'= nmll){ Point p = parent.getlocationOnScreen();
} if (syntaxCaseInsensitive) { Container parent;: popupFrameRect.setBounds(p.x,p.y,
try { 1-Ftl:!l:m¥.§qu?l Ign C (his))) for (parent = invoker.getParent():; parent '= mmll; parent = parent.getParent(}){ par‘egg.gzgguﬂggsﬂ.;{ dtrh-l_'*::l
Enumeration myconps = getPrefix(posn): urn Talse; pa E 1E
: } else { if (parent instancecf JFrame || parent instanceof JDialog || return getWidthAdjust(popupFrameRect,popupRectInScreen);
while (mycomps.hasMoreElements()) { if {!{my.equalsihis))) parent instanceof JWindow) { T
String my = (3tring)mycomps.nextElement (): return false; return getHeightZdiust (parent.getBounds () , popupRectInScreen) ; ¥
String his = (String)prefix.nextElement () % } el=se if (parent instanceof JApplet || parent instanceof JInternalFrame) { }r-‘etu 8
if (syntaxTrimBlanks) { if F Eect == 113 {
- } catch (MoSuchEl tExcept] if (popupFrameRec null) 3
my = my.trim(); return false; popupFrameRect = new Rectangle ()
his = his.trim():; } 1
A

How to abstract code as vectors?

We adopt the vector abstraction used In
DECkKARD! to abstract syntactic information of
code, using Abstract Syntax Tree (AST).

1) Characteristic vectors
Given a code S, 1ts AST T, If a subtree T, of
T has at least minT nodes, T;’s corresponding
part S; in S Is a code piece. The characteristic
vector v; of S; consists of occurrence
counters of syntactic elements in T..

2) Distances between vectors
The distance between two vectors Is their
L,-norm.

3) Dimensionality reduction

he characteristic vectors are 261
dimensional, we thus select the top-D’
dimensions with the highest variances.

How to build the index?

1) Vector packing
We pack vectors into blocks, where each
block contains a group of nearby vectors,
more precisely, raw data records of them.

We then build an R*-tree of these blocks In

the reduced space.

2) Workload-aware bulkloading
We revised an existing bulkloading

algorithm that recursively subdivides each
dimension into the same number of slices.

For code data, the variance of each

dimension differs significantly. Our revised

partitioning policy tries to partition the

dataset to render more “squared” rectangles,

considering the data distribution.

How to traverse the index?

Our traversal algorithm basically follows a
filtering-then-ranking approach, but we
Interleaves the two steps as follows:

1) For internal nodes

We traverse the index in the reduced space

In a best-first manner.
2) For leaf nodes

When a leaf entry is reached, we access the

raw data block pointed by the entry and

update the sorted list of the current known

top-k clones.

For this demonstration, k Is set to 20, and the
search bound is 5. This means that we only

report the code pieces at least 75%l! similar to

the query:.

Conclusion

We demonstrated our tool enabling instant code search during
development. From the demonstration, we showed how such
Interactive search supports rapid software development, as

similarly claimed in HCI and SE communities!? [3],

details about index building and traversal technology, see [4].

References

2007.

For more
ISESE, 2004,

[2] J. Brandt, et al., "Example-centric Programming: Integrating Web Search into the Development
Environment," in SIGCHI, 2010.
[3] M. Kim, et al., "An Ethnographic Study of Copy and Paste Programming Practices in OOPL," In

[4] M.-W. Lee, et al., “Instant Code Clone Search,” in ACM SIGSOFT/FSE, 2010.

[1] L. Jiang, et al., “DECKARD: Scalable and Accurate Tree-based Detection of Code Clones,” in ICSE,

POSTELH

	슬라이드 번호 1

