
Integrating Code Search into the Development Session
Mu-Woong Lee Seung-won Hwang

POSTECH, Korea
Sunghun Kim

HKUST, Hong Kong

Motivation
Copy-and-paste is one of the most common software
development activities to support rapid development.
During writing a module, reusing a code piece sharing the
same syntactic structure can help developers to quickly
complete the module.
Limitations of Existing Work:
 Commercial code search engines are scalable to very

large code corpus, but they disregard structural similarity.
 Code clone detection tools are often structural-aware,

but they are insufficient to be “interactively” used in
development sessions.

Our Goal:
We combine the strength of the both lines of work, by
enabling fast similarity searches of structurally related
code.

System Overview

 Application Scenario:
A developer working on a large project can search for the code
sharing the same syntactic structure, then either use the results
as references or copy them into his own code.
 Search Scheme:

To support efficient structural similarity comparison between code pieces, we adopt a
multi-resolution vector abstraction of code, and design index building and traversal
algorithms optimized for code data and code search workload.

Vector
abstractionsVector abstractionsQuery code piece

Search resultsCopy-and-paste

Demonstration

How to abstract code as vectors?
We adopt the vector abstraction used in
DECKARD[1] to abstract syntactic information of
code, using Abstract Syntax Tree (AST).
1) Characteristic vectors

Given a code S, its AST T, if a subtree Ti of
T has at least minT nodes, Ti’s corresponding
part Si in S is a code piece. The characteristic
vector vi of Si consists of occurrence
counters of syntactic elements in Ti.

2) Distances between vectors
The distance between two vectors is their
L2-norm.

3) Dimensionality reduction
The characteristic vectors are 261
dimensional, we thus select the top-D’
dimensions with the highest variances.

How to build the index?
1) Vector packing

We pack vectors into blocks, where each
block contains a group of nearby vectors,
more precisely, raw data records of them.
We then build an R*-tree of these blocks in
the reduced space.

2) Workload-aware bulkloading
We revised an existing bulkloading
algorithm that recursively subdivides each
dimension into the same number of slices.
For code data, the variance of each
dimension differs significantly. Our revised
partitioning policy tries to partition the
dataset to render more “squared” rectangles,
considering the data distribution.

Conclusion
We demonstrated our tool enabling instant code search during
development. From the demonstration, we showed how such
interactive search supports rapid software development, as
similarly claimed in HCI and SE communities[2], [3]. For more
details about index building and traversal technology, see [4].

References
[1] L. Jiang, et al., “DECKARD: Scalable and Accurate Tree-based Detection of Code Clones,” in ICSE,

2007.
[2] J. Brandt, et al., "Example-centric Programming: Integrating Web Search into the Development

Environment," in SIGCHI, 2010.
[3] M. Kim, et al., "An Ethnographic Study of Copy and Paste Programming Practices in OOPL," in

ISESE, 2004.
[4] M.-W. Lee, et al., “Instant Code Clone Search,” in ACM SIGSOFT/FSE, 2010.

How to traverse the index?
Our traversal algorithm basically follows a
filtering-then-ranking approach, but we
interleaves the two steps as follows:
1) For internal nodes

We traverse the index in the reduced space
in a best-first manner.

2) For leaf nodes
When a leaf entry is reached, we access the
raw data block pointed by the entry and
update the sorted list of the current known
top-k clones.

For this demonstration, k is set to 20, and the
search bound is 5. This means that we only
report the code pieces at least 75%[1] similar to
the query.

	슬라이드 번호 1

