
Summary

• We combine stall-based CPI stacking and critical path analysis.

• Our approach identifies performance bottlenecks and their impacts more

accurately than existing methods (FMT [1]).

• Our CPI stack is similar with ideal CPI breakdown.

Further Improvement #1

Further Improvement #2

Performance Bug-Free CPU Modeling
Using Accurate Timing Simulation

Hanul Roh Dongju Chae Jangwoo Kim

High Performance Computing Lab., POSTECH

Motivation
• How to develop an accurate timing simulator to model modern CPUs?

• How to validate your simulation results match your design spec?

Background

• CPI : Cycles Per Instructions

 > how many cycles to execute one instruction?

• FMT (interval analysis [1][2])

 > CPI stack: ∑ (CPI components per uArch stall event)

 > how many cycles lost due to a specific stall event?

 (e.g., cache miss, branch misprediction, slow execution)

 However, inaccurate analysis due to overestimation

Our Idea: Avoid Overestimation

• Examine ‘tagged’ instructions to see exact pipeline timing.

Conclusion

• We construct more accurate CPI analysis methods.

• Our critical-path aware methods outperform existing

methods significantly.

Experimental Results (y-axis %)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

C

P

I

INTERRUPT

STQ_FULL

DEP RES

ORIG RES

DEP LONG

ORIG LONG

DEP TRUE DEP

ORI TRUE DEP

DEP UNEXP DEP

ORI UNEXP DEP

DEP BRANCE

ORIG BRANCE

DEP D TLB

ORIG D TLB

DEP L2 D MISS

ORIG L2 D MISS

DEP L2 D HIT

ORIG L2 D HIT

DEP L1 D HIT

ORIG L1 D HIT

DEP I TLB

ORIG I TLB

DEP L2 I MISS

ORIG L2 I MISS

DEP L2 I HIT

ORIG L2 I HIT

BASE

Figure 1. CPI Stack (164.gzip)

• Apply Critical Path Analysis [3] to explain stall events better!

• Analyze inter-instruction dependencies.

Figure 2. Example Trace Format with Timing Tags

References
[1] S. Eyerman, et al, “A performance counter architecture for computing accurate
CPI components” ACM international Conference on Architectural Support for
Programming Languages and operating Systems, 2006, p175-184

[2] S. Eyerman, et al, “A Mechanistic Performance Model for Superscalar Out-of-
Order Processors” ACM Transactions on Computer Systems, 2009, p3:1~3:36

[3] Brian Fields, et al, “Focusing Processor Policies via Critical-Path Prediction”
ISCA, 2001, p1~12

• if we removed an critical-path event?

 > a hidden ‘new’ critical path appears.

• Analyze the impact of hidden critical paths.

 afetch fetch dispatch ready issue complete commit info[3] dep[3]

inst i-1 104 104 111 120 120 121 125 0 0 0 2 30 30

inst i 104 113 120 121 121 122 126 1 0 2 30 0 0

inst i+1 124 374 381 381 383 385 389 5 0 0 0 2 29

Figure 3. Dependency Chain

Figure 4. Impact of Hidden Critical Path

Miss Events

Workload

Inst. Cache/TLB

Miss

Branch

Misprediction

Data Cache/TLB

Miss

176.gcc 17% → 11% 27% → 14% 52% → 66%

252.eon 36% → 31% 33% →37% 99% → 9%

300.twolf 284% → 12% 86% → 15% 46% → 2%

SPEC 2000 int all benchmarks 44% → 18% 28% → 26% 35% → 17%

Table 1.
Improvement
of CPI Accuracy

0

10

20

30

40

50

60

70

80

I Cache Branch D Cache

176.gcc

0

50

100

150

200

250

300

I Cache Branch D Cache

300.twolf

L2 miss

Wait ADD

L1 miss

commit

commit

commit

inst. i

inst. i+n

inst. i+k

BEFORE AFTER

L2

L1

ETC

L2 miss

Wait ADD

L1 miss

commit

commit

commit

inst. i

inst. i+n

inst. i+k

ADD

L1 miss

commit

commit

commit

inst. i

inst. i+n

inst. i+k

Wait

Critical path

Non-critical path

New critical path

Old critical path

0

10

20

30

40

50

60

70

I Cache Branch D Cache

spec 2000 int all

Difference from idea case

= Lower bar means more accurate analysis!

0

20

40

60

80

100

120

I Cache Branch D Cache

252.eon

