
Summary 

• We combine stall-based CPI stacking and critical path analysis. 

• Our approach identifies performance bottlenecks and their impacts more 

accurately than existing methods (FMT [1]). 

• Our CPI stack is similar with ideal CPI breakdown. 

Further Improvement #1 

Further Improvement #2 
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Motivation 
• How to develop an accurate timing simulator to model modern CPUs? 

• How to validate your simulation results match your design spec? 

Background 

• CPI : Cycles Per Instructions 

       > how many cycles to execute one instruction? 

• FMT (interval analysis [1][2]) 

       > CPI stack: ∑ (CPI components per uArch stall event) 

       > how many cycles lost due to a specific stall event? 

           (e.g., cache miss, branch misprediction, slow execution) 

      However, inaccurate analysis due to overestimation  

Our Idea: Avoid Overestimation 

• Examine ‘tagged’ instructions to see exact pipeline timing. 

Conclusion 

• We construct more accurate CPI analysis methods. 

• Our critical-path aware methods outperform existing 

methods significantly. 

Experimental Results (y-axis %) 
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Figure 1. CPI Stack (164.gzip) 

• Apply Critical Path Analysis [3] to explain stall events better! 

• Analyze inter-instruction dependencies. 

Figure 2. Example Trace Format with Timing Tags 
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• if we removed an critical-path event? 

       > a hidden ‘new’ critical path appears. 

• Analyze the impact of hidden critical paths. 

 

  afetch fetch dispatch ready issue complete commit info[3] dep[3] 

inst i-1 104 104 111 120 120 121 125 0 0 0   2  30 30 

inst i 104 113 120 121 121 122 126 1 0 2  30  0   0 

inst i+1 124 374 381 381 383 385 389 5 0 0   0   2  29 

Figure 3. Dependency Chain 

Figure 4. Impact of Hidden Critical Path 
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176.gcc 17% → 11% 27% → 14% 52% → 66% 

252.eon 36% → 31% 33% →37% 99% → 9% 

300.twolf 284% → 12% 86% → 15% 46% → 2% 

SPEC 2000 int all benchmarks 44% → 18% 28% → 26% 35% → 17% 

Table 1. 
Improvement 
of CPI Accuracy 
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= Lower bar means more accurate analysis! 
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