3x3 행렬 곱셈 방법

행렬 곱셈의 복잡도
- 기본적인 알고리즘: $O(n^3)$
- 슈트라센 알고리즘: $O(n^{2.807...})$
- 코퍼스-워너그라드: $O(n^{2.323...})$

기본적인 2x2 행렬 곱셈

$$
\begin{pmatrix}
A_1 & A_2 \\
A_3 & A_4
\end{pmatrix}
\begin{pmatrix}
B_1 & B_2 \\
B_3 & B_4
\end{pmatrix}
=
\begin{pmatrix}
C_1 & C_2 \\
C_3 & C_4
\end{pmatrix}
$$

$$
C_1 = A_1B_1 + A_2B_3 \\
C_2 = A_2B_4 + A_3B_3 \\
C_3 = A_3B_2 + A_4B_4 \\
C_4 = A_4B_1 + A_1B_2
$$

슈트라센 알고리즘

$$
M_1 = (A_1 + A_3)(B_1 + B_3) \\
M_2 = (A_1 + A_4)(B_2 + B_3) \\
M_3 = A_1(B_2 + B_3) \\
M_4 = A_4(-B_1 + B_3) \\
M_5 = (A_1 + A_2)(B_1 - B_3) \\
M_6 = (-A_1 + A_2)(B_3 + B_3) \\
C_1 = M_1 + M_4 - M_5 + M_2 \\
C_2 = M_2 + M_5 \\
C_3 = M_3 + M_4 \\
C_4 = M_1 - M_2 + M_3 + M_6
$$

레더만 알고리즘

$$
M_1 = (A_1 + A_2 + A_3 - A_4 - A_5 - A_6 - A_7)B_5 \\
M_2 = (A_1 - A_4)(B_2 + B_3) \\
M_3 = A_3(B_1 + B_3 - B_5 - B_7 + B_9) \\
M_4 = (-A_1 + A_2 + A_4)(B_1 - B_3 + B_5) \\
M_5 = (A_1 + A_3)(-B_2 - B_3) \\
M_6 = A_2B_1 \\
M_7 = (-A_1 + A_2)(B_3 + B_5 + B_7 + B_9) \\
M_8 = (A_2B_5 + A_2B_9)(B_3 + B_5 + B_7 + B_9) \\
M_9 = (A_1 + A_2 + A_4 - A_5 - A_6 - A_7 - A_8)B_6 \\
M_{10} = (A_2 + A_4)(B_2 - B_3 - B_4 - B_5 + B_7 - B_8 - B_9) \\
C_1 = M_1 + M_4 - M_5 + M_2 \\
C_2 = M_2 + M_5 \\
C_3 = M_3 + M_4 \\
C_4 = M_1 - M_2 + M_3 + M_6
$$

일반화된 행렬 곱셈 식

$$
M_{\ell} = (\sum \alpha_{ijk} A_{ij}) (\sum \beta_{kln} B_{ln}) = \sum_{i,j,l} \gamma_{mn} M_{\ell}
$$

두 식을 합치면 다음과 같다:

$$
C_{mn} = \sum_{i,j,k} \gamma_{lm} \alpha_{ijk} \beta_{kln} B_{ln}
$$

이 식에서 γ, α, β의 참자만 본다.

집합과 네 개의 행렬을 합쳐서 레더만 알고리즘과 같이 곱셈 연산 23개를 쓰는 다른 해를 찾아냈다. 다섯 개를 합쳐서 22개를 쓰는 해를 찾는 중이다.