
SCALABLE KERNEL k-MEANS VIA CENTROID APPROXIMATION
Byung Kang (byungkon@kaist.ac.kr), Woosang Lim (quasar17@kaist.ac.kr), Kyomin Jung (kyomin@kaist.edu)

ABSTRACT

• We present a novel algorithm based on scalable centroid approximation that accelerates kernel k-means down to a sub-quadratic per-iteration complexity of O(n1+δ) for any δ ∈ (0, 1).

• We prove that our algorithm’s approximation of the distortion is within a factor of (1+n−δ) of the kernel k-means algorithm’s distortion, and show the effectiveness of our algorithm through extensive experiments.

1. INTRODUCTION
k-means clustering is a popular iterative

clustering algorithm for Euclidean data. For non-
Euclidean data or data with non-linear separability,
the kernel method is often applied to the clustering
algorithm.

However, kernelized clustering algorithms suffer
high per-iteration time and space complexity of
Θ(n2).

In this work, we present a novel approximation
algorithm called CATS (Centroid Approximation
Through Sampling) that accelerates kernel k-means
to a time complexity of O(n1+δ) while achieving
high accuracy.

In terms of memory usage, our algorithm’s stor-
age requirement is O(n`), where ` is the number of
samples we use. On the other hand, spectral clus-
tering algorithms, such as NJW [3], require Θ(n2)
elements, due to affinity matrix computation.

3. ALGORITHM

Centroid Approximation: Instead of computing the
exact centroid mC , we compute the approximate cen-
troid m̃C for each cluster C. We randomly sample `
points into the set S ⊆ C, and define the approxi-
mate centroid as:

m̃(α)C =
∑
i∈S

αiφ(xi),

where α = (α1, · · · , α`) are the coefficients to be op-
timized. The α is optimized w.r.t. the Distortion:

DC(α) =
∑
i∈C
‖φ(xi)− m̃(α)C‖2 (1)

By differentiating Eqn 1, we get:

α =
M+Le1

n
, (2)

where L ∈ R`×n is a matrix that contains the kernel
values between points in S and C, and M ∈ R`×` is

a matrix containing the kernel values over S×S, e1
is a vector of 1s, and M+ is the pseudoinverse of M .
Inspiration: Johnson-Lindenstrauss lemma [4].

• Low-dimensional embedding approximately
preserves pairwise distances, under certain
conditions.

• Projecting centroid onto sampled subspace
might yield good approximation.

Stopping Criterion: This approximation leads to
the possibility of oscilation towards the end of the
iteration. To overcome this problem, we halt the it-
eration if the variance of the past w distortions is
below a given small threshold θ.

2. KERNEL k-MEANS
Given a kernel function κ(x, y) = φ(x) · φ(y), the

kernel k-means over n points proceeds as follows:

1. Initialize partition C̄

2. For each cluster C ∈ C̄, compute and cache
centroid mC ·mC

3. Assign point xi to cluster

argmin
C

κ(i, i)− 2

|C|
∑
j∈C

κ(i, j) +mC ·mC

4. If not converged, goto line 2

The computation of mC · mC = 1
|C|2

∑
i,j∈C κ(i, j)

costs Θ(n2) operations per iteration.

4. PERFORMANCE ANALYSIS
Let S ⊆ C be a uniformly sampled subset, for

which |S| = nδ , for any δ ∈ [0, 12]. Then,

Theorem 1 The approximated distortion is within
O
(
1 + 1

nδ

)
of the true distortion.

Theorem 2 The per-iteration time complexity is
O(n1+δ).

i.e. We have a near-optimal guarantee on ap-
proximating the true distortion, with sub-quadratic
time complexity.

5. EXPERIMENTS

We tested our algorithm on the UCI database [2]
and the MNIST database [1]. We compare CATS
using our stopping criterion and kernel k-means
(KKM) run until convergence (` =

√
n/k):

MNIST UCI

Distortion
KKM 19.1273 3.5904

CATS 19.134 3.5904
(10−4) (10−7)

Time (sec.)
KKM 1854 1253

CATS 110 76
(47) (4.8)

NMI 0.91 0.99
(0.019) (10−4)

Average time and distortion over 100 trials, with standard
deviation in parentheses.

Comparison against NJW spectral clustering [3]:

NJW KKM CATS

Time (sec.) 180 76 12

True NMI 0.553 0.527 0.530

For qualitative evaluation, we also tested CATS on
the following two synthetic datasets (k=5 and 2,
respectively):

The plot of distortion per each iteration shows
that CATS matches KKM well.

We also report the results of varying `:
`= 8 16 33 66

Distortion 0.34 0.33 0.33 0.34
(0.004) (0.004) (10−5) (10−7)

Time (sec.) 65 71 96 233
(8) (4) (3) (17)

NMI 0.92 0.94 0.99 0.99
(0.04) (0.04) (0.0002) (0.0005)

True NMI 0.64 0.65 0.63 0.64

REFERENCES

[1] Y. LeCun, C. Cortes. MNIST Database. http://yann.lecun.com/exdb/mnist/
[2] A. Frank, A. Asuncion. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml
[3] A. Ng, M. Jordan, Y. Weiss. On Spectral Clustering: Analysis and an Algorithm. In NIPS ’01

[4] W. Johnson, J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In Contemporary Mathematics,
1984.

