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ABSTRACT

SCALABLE KERNEL k-MEANS VIA CENTROID APPROXIMATION

Byung Kang (byungkon@kaist.ac.kr), Woosang Lim (quasarl7@kaist.ac.kr), Kyomin Jung (kyomin@kaist .edu)

e We present a novel algorithm based on scalable centroid approximation that accelerates kernel k-means down to a sub-quadratic per-iteration complexity of O(n'*?) for any 6 € (0, 1).

e We prove that our algorithm’s approximation of the distortion is within a factor of (1-+n7?) of the kernel k-means algorithm’s distortion, and show the effectiveness of our algorithm through extensive experiments.

1. INTRODUCTION

k-means clustering is a popular iterative
clustering algorithm for Euclidean data. For non-
Euclidean data or data with non-linear separability,
the kernel method is often applied to the clustering
algorithm.
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However, kernelized clustering algorithms suffer
high per-iteration time and space complexity of
O(n?).

In this work, we present a novel approximation
algorithm called CATS (Centroid Approximation
Through Sampling) that accelerates kernel k-means
to a time complexity of O(n'™°) while achieving
high accuracy.

In terms of memory usage, our algorithm’s stor-
age requirement is O(nf), where ¢ is the number of
samples we use. On the other hand, spectral clus-
tering algorithms, such as NJW [3], require ©(n?)
elements, due to affinity matrix computation.

4. PERFORMANCE ANALYSIS

Let S C C be a uniformly sampled subset, for
which |S| = n?, for any 6 € [0, ]. Then,

Theorem 1 The approximated distortion is within
O (1 + =5) of the true distortion.

Theorem 2 The per-iteration
O(nlto).

time complexity 1s

1.e. We have a near-optimal guarantee on ap-
proximating the true distortion, with sub-quadratic
time complexity:.
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2. KERNEL k-MEANS

Given a kernel function s(z,y) = ¢(x) - ¢(y), the
kernel k-means over n points proceeds as follows:

1. Initialize partition C

2. For each cluster C € C, compute and cache
centroid m¢ - mc

3. Assign point z; to cluster
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4. If not converged, goto line 2

The computation of m¢ - m¢ = |C}|g D iiec ki)

costs ©(n?) operations per iteration.

We tested our algorithm on the UCI database [2]

and the MNIST database [1]. We compare CATS
using our stopping criterion and kernel k-means

(KKM) run until convergence (¢ = /n/k):

MNIST  UCI

KKM 19.1273 3.5904

Distortion catg 19134 35904
(10=%)  (1077)

KKM 1854 1253

Time (sec.) 110 76
CALS ) @s)

091  0.99

NMI (0.019) (10~

Average time and distortion over 100 trials, with standard
deviation in parentheses.

Centroid Approximation: Instead of computing the
exact centroid m¢, we compute the approximate cen-
troid mc tor each cluster C. We randomly sample ¢
points into the set S C €, and define the approxi-
mate centroid as:

m(a)o = »  a;p(x;),
€S
where a = (g, -+ , ay) are the coefficients to be op-

timized. The a is optimized w.r.t. the Distortion:

Dc(a) =) ll¢(w:) = m(e)c||? (1)
By differentiating Elcfr? 1, we get:

ML
o = (2)

n
where L € R*" is a matrix that contains the kernel

values between points in S and C, and M € R*** is

5. EXPERIMENTS

Comparison against NJW spectral clustering [3]:

NJW KKM CATS
Time (sec.) 180 76 12

True NMI  0.553 0.527  0.530

For qualitative evaluation, we also tested CATS on
the following two synthetic datasets (k=b and 2,
respectively):

The plot of distortion per each iteration shows
that CATS matches KKM well.
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3. ALGORITHM

a matrix containing the kernel values over S x S, e
is a vector of 1s, and M is the pseudoinverse of M.
Inspiration: Johnson-Lindenstrauss lemma [4].

e [Low-dimensional embedding approximately
preserves pairwise distances, under certain
conditions.

e Projecting centroid onto sampled subspace
might yield good approximation.

Stopping Criterion: This approximation leads to
the possibility of oscilation towards the end of the
iteration. To overcome this problem, we halt the it-
eration if the variance of the past w distortions is
below a given small threshold 6.
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We also report the results of varying /:

/=8 16 33 66

Distortion 0.34 0.33 0.33 0.34
(0.004)  (0.004) (10°) (107 ")

Time (sec.) 65 71 96 233
' (8) (4) (3) (17)

NMI 0.92 0.94 0.99 0.99
(0.04)  (0.04) (0.0002) (0.0005)

True NMI 0.64 0.65 0.63 0.64

[4] W.Johnson, J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In Contemporary Mathematics,

1984.



