
Global analysis of million lines of code (Sparse Analysis Framework for C-like Languages)

 $\operatorname{Key}\{\operatorname{Mea},\operatorname{Sparse}^{\delta},\operatorname{Meiled}^{\delta}_{\delta}, \operatorname{Key}^{\delta}_{\delta}, \operatorname{Sparse}^{\delta}, \operatorname{Meiled}^{\delta}_{\delta}, \operatorname{Key}^{\delta}_{\delta}, \operatorname{Sparse}^{\delta}_{\delta}, \operatorname{Meiled}^{\delta}_{\delta}, \operatorname{Key}^{\delta}_{\delta}, \operatorname{Key$

Sparse analysis directly follows the actual semantic

ents x and a strate are than the strat Parsing

ted as 4.1 First Step Abstraction Step Abstraction : Value $V_{\hat{P}} = 2^P \rightarrow 2^P$

First, we abstract file concrete parsing domain to parsing domain V_P to $V_{\hat{P}} = 2^P \rightarrow V_{\hat{P}}$

 2^{P} by establishing 20 by a the big of the big of

$$A = \lambda F. \lambda P. \bigcup_{p \in P} \{q(p) \mid F_f \land P_F \land F_f(p) \mid f \in F\}$$

not $parse(p_x, y)$. y from the initial

$\begin{array}{cccccccccccccccccccccccccccccccccccc$																
•	s for code	$\llbracket e \rrbracket_{\hat{P}} \in$	$Env_{\hat{P}}$ –	$\rightarrow W P^{+}$	$\square \square \square P$	\cdot_P										
C		$\llbracket f \rrbracket^1_{\hat{P}} \in$	$Env_{\hat{P}}$ –	${}_{\rightarrow} \llbracket \psi_{P}^{1} \stackrel{1}{_{P}} \in$	$EEnv_{\hat{P}}$ -	$\rightarrow V_{\hat{P}}$										
	Programs	LOC Interval _v			Interval _{base}		$\mathbf{Spd}\uparrow_1$	$Mem \downarrow_1$	Interval _{sparse}					$\mathbf{Spd}\uparrow_2$	$Mem \downarrow_2$	
		0	Time	Mean	Time	Mem			Dep	Fix	Total	Mem	$\hat{D}(c)$	$\hat{U}(c)$		
	gzip-1.2.4a	[x]	$\sigma(x)$ 72	$ x_{240} =$	$=\sigma(x_{14})$	65	55 x	73 %	2	1	3	63	2.4	2.5	5 x	3 %
	bc-1.06	13K_1	ert. 1,270	a_]]@76 ⊫	= fe_189 ()	$\sigma[x_{177}^{126}]$	$\llbracket e_1 \rrbracket_{\hat{f}\!\!\!\!\!\!\!\hat{S}\!$	54 %	4	3	7	75	4.6	4.9	14 x	40 %
1	$tar-1.$ Bet $x e_1$	e₂]] _{<i>f</i>20K^{−−}}][\$ 2,]}##0	1[£1 88 1 [[6	1 7938			80~%	6	2	8	93	2.9	2.9	42 x	47 %
	y lesses soon-	e_{0}	24,2Å0	¢21,2670	= [[e₁2]] Bσ	$\cup $ $eeteeleeteee$	$\beta \sigma 8x$	66 %	27	6	33	127	11.9	11.9	37 x	66 %
follows	. make-3.76.1 e_1	$^{C2}\mathbb{I}P27K$	124,240	P 1391P	1,893	443	13 x	68 %	16	5	21	114	5.8	5.8	90 x	74 %
	wg $e_1 e_2 e_1 e_2$	e ₃] ⁰ 3 5K €	TAP220	#13# 1 # 5 476 =	= [₽, 2]]≱(36 x	85 %	8	3	11	85	2.4	2.4	110 x	78 %
	screen-4.0.2	45K	∞	N/A	31.324 T	3,096	\mathbb{N}/A	$r[x \mapsto N/A \mapsto N/A])$) 724	43	767	303	53.0	54.0	41 x	92 %
	a2ps-4.14	64K	fix $\lambda k \left[e \right]$		1,324 [23]2400 [23]2400	x_1, \hat{x}	$e_{\hat{\mathbf{A}}}$) 31	9	40	353	2.6	2.8	80 x ∾	AGINE 75 %
	bash-2.05a _m	b05K		$f \hat{\mathbf{N}} =$	[1 , €83σ	1,386	N/A	N/A	45	22	67	220	3.0	3.0	25 x	84 %
$(\ldots))$	lsh-2.0.4	$f_{\mathbf{H}} = \mathbf{F}_{\mathbf{K}}$	$\llbracket f \rrbracket_{\hat{P}}^{1\infty} \llbracket$	∫ [™] N/A	45,522	5,266	N/A	N/A	391	80	471	577	21.1	21.2	97 x	89 %
e(p,x))	sendmail-8.13.6	[<i>t</i>]130K_	$\lambda P. Par$	[[t]] \$/\$;=	$\lambda B A a$	rseNtAct	$ion(\mathbf{M}, t)$	N/A	517	227	744	678	20.7	20.7	N/A	N/A
	nethack-3.3.0	$[t]_{\hat{\mathcal{I}}_{11K}}^{130K}$	\sim	N/A	~ 200	I N/A 1	I N/A	N/A	14,126	2,247	16,373	5,298	72.4	72.4	N/A	N/A
	vim60 $[f_1]$.	f_2] $^{\frac{1}{2}}_{P}$ $^{\frac{1}{2}}$ $^{\frac{1}$	f_1	b_2	$f_{\mathcal{F}}[f_2]_{\hat{\mathcal{F}}}^{r}\sigma$	○ [[f A]]	$\sigma_{ m N/A}$	N/A	17,518	6,280	23,798	5,190	180.2	180.3	N/A	N/A
	emacs-22.1	399K	$\begin{bmatrix} I & J & Z & J & P \\ - & - & 0 & \infty \end{bmatrix}$				N/A	N/A	29,552	8,278	37,830	7,795	285.3	285.5	N/A	N/A
	python-2.5.1], e]] 4₃9K =	$\llbracket e \rrbracket_{\hat{P}}^{0^{\infty}} $	$e] \mathbf{\hat{R}}^{\mathbf{N}/\mathbf{A}} =$	$= \llbracket e \rrbracket_{\hat{\mathcal{B}}}^{\infty} \sigma$	N/A	N/A	N/A	9,677	1,362	11,039	5,535	108.1	108.1	N/A	N/A
	linux-3.0		∞	A = N/A	$P_{p} \infty$. N≠A;	the N/A		6,949	33,618	20,529	76.2	74.8	N/A	N/A
Calaia	where 2Rarse_ad	ctrogs98.2	$rarse_arg_{\infty}$	bkaha-	$2^{P}_{2} \xrightarrow{\infty}_{\infty}$	Field N/A	ral seta 18	the natura	3,751	123	3,874	3,602	4.1	3.9	N/A	N/A
Galois	linux-3.0 where 2Rarse_ac connection extension of year	saxtensby	p of gar	se_ggtic	$n: \infty$	N/A	N/A	N/A	14,116	698	14,814	6,384	9.7	9.7	N/A	N/A
WS.																

Table B performents of increases of the second sec

collecting se-e where all empty environment. Then we compare with remain the environment. Then we compare with remain the sense and the sens the collecting $\sigma_0^{\text{se-}} \in$ cks incorrect code

SEOUI NATIONAL

2 Sparse Analysis Framework λ

Setting
$$\mathbb{C} \to 2^{\mathbb{S}} \xrightarrow{\gamma} \mathbb{C} \overset{MEM}{\to} \overset{MEM}{\to} \overset{(\mu)}{\downarrow} (\hat{x}) \underset{\lambda}{=} \overset{MEM}{\to} \overset{(\mu)}{\downarrow} (\bigcup_{\lambda} \hat{x}(c')).$$

 $Def/\underbrace{MEM}(\mu) = \underbrace{YMEM}(\mu) = \underbrace{Yes}_{\substack{\beta \in \mathbb{C} \\ \beta \in$

$$EQ_{c_{d}}^{(\beta)} = N_{c_{u}} N_{c_{u}} \stackrel{EQ_{c_{d}}^{(\beta)}}{\to} \stackrel{F}{\to} c_{u}^{(\beta)} \stackrel{$$

Sparse Abstract Semantic Function

$$\hat{F}_a(\hat{X}) = \lambda c \in \mathbb{C}.\hat{f}_c(\bigsqcup_{\substack{c_d \stackrel{l}{\rightsquigarrow} a^c}} \hat{X}(c_d)|_l).$$

Theorem (Correctness of Safe Approximation). Suppose sparse abstract semantic function \hat{F}_a is derived by the safe approximation \hat{D} and \hat{U} . Let S and S_a be $\mathbf{lfp}\hat{F}$ and $\mathbf{lfp}\hat{F}_a$. Then,

$$\overset{\delta}{\underset{\rho}{\forall c \in \mathbb{C}. \forall l \in \mathsf{dom}(\mathcal{S}_a(c)). \mathcal{S}_a(c)(l) = \mathcal{S}(c)(l). }$$

 ϵ

λ