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5. Conclusion
* Novel approach to invariants generation.
* Plentiful of invariants are the reason why this 
  approach is working with random answers.
* We are currently working on its extension supporting
  quantified invariants.

   Equivalence Query
    1. Check that the guess meets the three conditions to be 
      an invariant.
     2. If not, try to find a counter example.

3. Solutions
3.1. Predicate Abstraction
To find propositional invariant by using the CDNF algorithm which generates only Boolean formula.

Example:

3.2. Query Resolution
Use under/over approximations of the invariant, derived from precondition   , loop guard   , and postcondition   .
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1. Problem : Find an invariant    for the Loop

Invariant must satisfy the following conditions:
       

Example:

             
             Invariant : 

{δ} while ρ do S end {�}

� = (i = 10 ∧ ret)

δ = (i = 0)

ρ

2. Idea : Using the CDNF Algorithm
Exact Learning Algorithm for Boolean formula    
Asks two types of queries:

    1. 

    2. 

λ

Membership Query                 asks
if the truth assignment     satisfies   . µ

MEM (µ)
λ

MEM (µ) = Yes if µ |= λ

MEM (µ) = No if µ �|= λ

Equivalence Query             asks 
if the Boolean formula     is equivalent to   ,  
If not, the teacher returns a truth assignment as 
a counterexample.

EQ(β)
β λ

EQ(β) = Yes
EQ(β) = No

if β ≡ λ
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A.
B.
C.

δ ∧ ρ ⇒ I

I ∧ ρ ⇒ Pre(I , S)

I ∧ ¬ρ ⇒ �

I

while  i < 10 do

   r := random();

   if r != 0 then i := i + 1

end

S

i < 10 ∨ (i = 10 ∧ ret)

bi<10 ∨ (bi=10 ∧ bret)i < 10 ∨ (i = 10 ∧ ret)

be the resulting parse stacks for the code fragments x and y. The
parse stack p for the concatenation x.y is computed as

p = parse(pinit , x.y)

= parse(parse(pinit , x), y)

= parse(px, y).

However, what we have is py = parse(pinit , y) not parse(px, y).
The parse(pinit , y) is the parse stack after parsing y from the initial
stack not from the px stack. We cannot directly compute p from px

and py .
Abstracting the code c into the parse stack transition function

λp.parse(p, c) solves the above concatenation problem elegantly.
Let fx and fy be the parse stack transition functions for code
fragments x and y respectively. Then we have

fx = λp.parse(p, x)

fy = λp.parse(p, y).

With the two parse stack transition functions fx and fy , we con-
struct the parse stack transition function fx.y as follows.

fx.y = λp.parse(p, x.y)

= λp.parse(parse(p, x), y)

= (λp.parse(p, y)) ◦ (λp.parse(p, x))

= fy ◦ fx

3.4 Concrete Parsing Semantics
Using the abstraction from Code to P → P , the Galois connection
2Code −→←−

α

γ
VP = 2P→P is established as follows.

α = λC.{λp.parse(p, c) | c ∈ C}

γ = λF.
[

f∈F

{c | ∀p ∈ P.parse(p, c) = f(p)}

Concrete parsing semantics is derived from the collecting se-
mantics as follows.

P = the set of parse stacks

VP = 2P→P

σ ∈ EnvP = Var → VP

[[e]]0P ∈ EnvP → VP

[[f ]]1P ∈ EnvP → VP

[[x]]0P σ = σ(x)

[[let x e1 e2]]
0
P σ = [[e2]]

0
P (σ[x �→ [[e1]]

0
P σ])

[[or e1 e2]]
0
P σ = [[e1]]

0
P σ ∪ [[e2]]

0
P σ

[[re x e1 e2 e3]]
0
P σ = [[e3]]

0
P (σ[x �→

fix λk.[[e1]]
0
P σ ∪ [[e2]]

0
P (σ[x �→ k])])

[[‘f ]]0P σ = [[f ]]1P σ

[[t]]1P σ = {λp.parse action(p, t)}
[[f1.f2]]

1
P σ = {p2 ◦ p1 | p1 ∈ [[f1]]

1
P σ ∧ p2 ∈ [[f2]]

1
P σ}

[[, e]]1P σ = [[e]]0P σ

4. Abstract Parsing
4.1 First Step Abstraction : Value VP̂ = 2P → 2P

First, we abstract the concrete parsing domain VP to VP̂ = 2P →
2P by establishing the Galois connection VP −→←−

α

γ
VP̂ where

α =λF.λP.
[

p∈P

{f(p) | f ∈ F}

γ = λF.
[

{S | α(S) ⊆ f}.

Then we derive the abstract semantics for this domain as follows.

σ ∈ Env P̂ = Var → VP̂

[[e]]0P̂ ∈ Env P̂ → VP̂

[[f ]]1P̂ ∈ Env P̂ → VP̂

[[x]]0P̂ = σ(x)

[[let x e1 e2]]
0
P̂ σ = [[e2]]

0
P̂ (σ[x �→ [[e1]]

0
P̂ σ])

[[or e1 e2]]
0
P̂ σ = [[e1]]

0
P̂ σ ∪ [[e2]]

0
P̂ σ

[[re x e1 e2 e3]]
0
P̂ σ = [[e3]]

0
P̂ (σ[x �→

fix λk.[[e1]]
0
P̂ σ ∪ [[e2]]

0
P̂ (σ[x �→ k])])

[[‘f ]]0P̂ σ = [[f ]]1P̂ σ

[[t]]1P̂ σ = λP.Parse action(P, t)

[[f1.f2]]
1
P̂ σ = [[f2]]

1
P̂ σ ◦ [[f1]]

1
P̂ σ

[[, e]]1P̂ σ = [[e]]0P̂ σ

where Parse action : 2P → Token → 2P is the natural set
extension of parse action:

Parse action = λP.λt.{parse action(p, t) | p ∈ P}.

Abstract semantic function [[·]]0
P̂

is used to check whether gen-
erated codes conform to the grammar. For the given program e, we
compute

S = [[e]]0P̂ σ0{pinit} : 2P

where σ0 ∈ Env P̂ is an empty environment. Then we compare
S with {pacc}. If they are equal, we conclude that the generated
codes in the given program conform to the grammar. Otherwise,
the analysis concludes that the program may generate syntactically
incorrect code.

4.2 Parameterized Framework
We generalize the analysis by parameterizing abstract domain. In-
stead of abstracting the powerset domain of parse stack 2P into
a particular domain, we provide conditions which the abstract do-
main should satisfy. Then we define semantic function on the ab-
stract parsing domain.

Definition 1 (Abstract Parsing Domain). V � = D� → D�
is

an abstract parsing domain if an abstract domain D�
satisfies the

following conditions.

1. �D�,�,�,⊥D�� is a CPO.

2. Powerset domain of concrete parse stack 2P
and its abstract

domain D�
are Galois connected via α2P→D� and γD�→2P .

3. Parse action�
: D� → Token → D�

is a sound approxima-

tion of Parse action . That is, we have

∀P ∈ 2P .∀t ∈ Token.

α2P→D�(Parse action(P, t)) � Parse action�(α2P→D�(P ), t)

δ ρ �

Over Approximation ρ ∨ �

4. Experiment Results
For some Linux device drivers and SPEC2000 benchmarks.

Program LOC AP MEM EQ Random Restart Time (sec)
] ide-ide-tape 16 6 18.2 5.2 4.1 1.2 0.055

ide-wait-ireason 9 6 216.1 111.8 47.2 9.9 0.602
parser 37 20 6694.5 819.4 990.3 12.5 32.120

usb-message 18 10 20.1 6.8 1.0 1.0 0.128
vpr 8 7 14.5 8.9 11.8 2.9 0.055

Under Approximation δ

{

Restart!
Cannot find a counter example.

No, 
with found a counter example.

No

No

Random answer does not break soundness, because we always 
check the three conditions when we resolve equivalence 
query.

Yes / No

No

Yes

Unknown

Random Answer

if β �≡ λ ∧ (µ |= β ⊕ λ)

GuessGuess
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Sparse Analysis Framework

y:=x t:=1 z:=y

y

x
t

Setting

1 Key Idea: Sparse Analysis 2

3-D
Def/Use

b1] · · · [an �→ bn]. We write f [{a1, · · · , an} w�→ b] for f [a1 �→
f(a1) � b, · · · , an �→ f(an) � b] (weak update).

2.2 Program
A program is a tuple �C, �→� where C is a finite set of control points
and �→⊆ C × C is a relation that denotes control dependencies of
the program; c� �→ c indicates that c is a next control point of c�.

Collecting Semantics Collecting semantics of program P is an
invariant [[P ]] ∈ C → 2S that represents a set of reachable states
at each control point, where the concrete domain of states, S, is
defined as follows:

S = L → V
Concrete state s ∈ S is a map from locations to values, and a value
is either integer (Z) or location (L). The collecting semantics is
characterized by the least fixpoint of semantic function F ∈ (C →
2S) → (C → 2S) such that,

F (X) = λc ∈ C.fc(
�

cp�→c

X(cp)). (1)

where fc ∈ 2S → 2S is a semantic function at control point c. We
leave out the definition of the concrete semantic function fc that
depends on target languages. Our framework is independent from
target languages.

2.3 Baseline Abstraction
We abstract collecting semantics of program P by the following
Galois connection

C → 2S −−→←−−
α

γ
C → Ŝ (2)

where α and γ are a pointwise lifting of abstract and concretization
function αS and γS (such that 2S −−−→←−−−

αS

γS Ŝ), respectively.
We consider a particular, but general and practical, family of

abstract domains where abstract state Ŝ is map L̂ → V̂ where
L̂ is a finite set of abstract locations, and V̂ is a (potentially in-
finite) set of abstract values. All non-relational abstract domains
are members of this family. Furthermore, the family covers some
numerical, relational domains. Practical relational analyses exploit
packed relationality [4, 13, 31, 39], where the abstract domain is
of form Packs → R̂ in which Packs is a set of variable groups that
are selected to be related together. R̂ denotes numerical constraints
among variables in those groups. In such relational analysis, each
variable pack is treated as an abstract location (L̂) and numerical
constraints amount to abstract values (V̂). Examples of the numer-
ical constraints are domain of octagons [31] and polyhedrons [12].

Abstract semantics is characterized as a least fixpoint of abstract
semantic function F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,

F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (3)

where f̂c ∈ Ŝ → Ŝ is an abstract semantic function at control
point c. The soundness of abstract semantics is followed by fixpoint
transfer theorem [11].

Lemma 1 (Soundness). If α◦F � F̂ ◦α, then, α(lfpF ) � lfpF̂ .

2.4 Sparse Analysis by Eliminating Unnecessary Propagation
The abstract semantic function given in (3) propagates some ab-
stract values unnecessarily. For example, suppose that we analyze
statement x := y using a non-relational domain, like interval do-
main [9]. We know for sure that the abstract semantic function for
the statement defines a new abstract value only at variable x and
uses only the abstract value of variable y. Thus, it is unnecessary to

propagate the whole abstract states. However, the function given in
(3) blindly propagates the whole abstract states of all predecessors
c� to control point c.

To make the analysis sparse, we need to eliminate this unnec-
essary propagation by making the semantic function propagate ab-
stract values along data dependency, not control dependency; that
is, we make the semantic function propagate only the abstract val-
ues newly computed at one control point to the other where they are
actually used. In the rest of this section, we explain how to make
abstract semantic function (3) sparse with the guarantees of sound-
ness and precision.

2.5 Definition and Use Set
To be correct, we first need to precisely define what are “defini-
tions” and “uses”. They are defined in terms of abstract semantics,
i.e., abstract semantic function f̂c.

Definition 1 (Definition set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Definition set D(c) at control point c
is a set of abstract locations that are assigned a new abstract value
by abstract semantic function f̂c, i.e.

D(c) � {l ∈ L̂ | ∃ŝ �
�

c��→c

S(c�).f̂c(ŝ)(l) �= ŝ(l)}.

Note that the notion of definition set is semantic one. For example,
suppose that we analyze two statements x = 1; x = 1. Even if
the second statement assigns a value to variable x, semantically it
has no effect. Therefore, according to our definition, variable x is
not included in the definition set of the second statement.

Definition 2 (Use set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Use set U(c) at control point c is a
set of abstract locations that are used by abstract semantic function
f̂c, i.e.

U(c) � {l ∈ L̂ | ∃ŝ �
�

c��→c

S(c�).f̂c(ŝ)|D(c) �= f̂c(ŝ\l)|D(c)}.

Example 1. Consider the following simple subset of C:

x := e | ∗x := e where e → x | &x | ∗x.
The meaning of each statement and each expression is fairly stan-
dard. We design a pointer analysis for this as follows:

ŝ ∈ Ŝ = Var → 2Var

f̂c(ŝ) =






ŝ[x �→ Ê(e)(ŝ)] cmd(c) = x := e
ŝ[y �→ Ê(e)(ŝ)] cmd(c) = ∗x := e

and ŝ(x) = {y}
ŝ[ŝ(x)

w�→ Ê(e)(ŝ)] cmd(c) = ∗x := e

Ê(e)(ŝ) =






ŝ(x) e = x
{x} e = &x�

y∈ŝ(x) ŝ(y) e = ∗x

Now suppose that we analyze program 10x := &y; 11∗p := &z;
12y := x; (superscripts are control points). Suppose that points-
to set of pointer p is {x, y} at control point 10 according to the
fixpoint. Definition set and use set at each control point are as
follows.

D(10) = {x} U(10) = ∅
D(11) = {x, y} U(11) = {x, y}
D(12) = {y} U(12) = {x}

Note that U(11) contains D(11) because of the weak update ( w�→).

2.6 Data Dependencies
Once identifying definition set and use set at each control point,
we can discover data dependencies of abstract semantic function
F̂ between two control points. Intuitively, if the abstract value of
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F̂ (X̂) = λc ∈ C.f̂c(
�

c��→c

X̂(c�)). (3)

where f̂c ∈ Ŝ → Ŝ is an abstract semantic function at control
point c. The soundness of abstract semantics is followed by fixpoint
transfer theorem [11].

Lemma 1 (Soundness). If α◦F � F̂ ◦α, then, α(lfpF ) � lfpF̂ .

2.4 Sparse Analysis by Eliminating Unnecessary Propagation
The abstract semantic function given in (3) propagates some ab-
stract values unnecessarily. For example, suppose that we analyze
statement x := y using a non-relational domain, like interval do-
main [9]. We know for sure that the abstract semantic function for
the statement defines a new abstract value only at variable x and
uses only the abstract value of variable y. Thus, it is unnecessary to

propagate the whole abstract states. However, the function given in
(3) blindly propagates the whole abstract states of all predecessors
c� to control point c.

To make the analysis sparse, we need to eliminate this unnec-
essary propagation by making the semantic function propagate ab-
stract values along data dependency, not control dependency; that
is, we make the semantic function propagate only the abstract val-
ues newly computed at one control point to the other where they are
actually used. In the rest of this section, we explain how to make
abstract semantic function (3) sparse with the guarantees of sound-
ness and precision.

2.5 Definition and Use Set
To be correct, we first need to precisely define what are “defini-
tions” and “uses”. They are defined in terms of abstract semantics,
i.e., abstract semantic function f̂c.

Definition 1 (Definition set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Definition set D(c) at control point c
is a set of abstract locations that are assigned a new abstract value
by abstract semantic function f̂c, i.e.

D(c) � {l ∈ L̂ | ∃ŝ �
�

c��→c

S(c�).f̂c(ŝ)(l) �= ŝ(l)}.

Note that the notion of definition set is semantic one. For example,
suppose that we analyze two statements x = 1; x = 1. Even if
the second statement assigns a value to variable x, semantically it
has no effect. Therefore, according to our definition, variable x is
not included in the definition set of the second statement.

Definition 2 (Use set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Use set U(c) at control point c is a
set of abstract locations that are used by abstract semantic function
f̂c, i.e.

U(c) � {l ∈ L̂ | ∃ŝ �
�

c��→c

S(c�).f̂c(ŝ)|D(c) �= f̂c(ŝ\l)|D(c)}.

Example 1. Consider the following simple subset of C:

x := e | ∗x := e where e → x | &x | ∗x.
The meaning of each statement and each expression is fairly stan-
dard. We design a pointer analysis for this as follows:

ŝ ∈ Ŝ = Var → 2Var

f̂c(ŝ) =






ŝ[x �→ Ê(e)(ŝ)] cmd(c) = x := e
ŝ[y �→ Ê(e)(ŝ)] cmd(c) = ∗x := e

and ŝ(x) = {y}
ŝ[ŝ(x)

w�→ Ê(e)(ŝ)] cmd(c) = ∗x := e

Ê(e)(ŝ) =






ŝ(x) e = x
{x} e = &x�

y∈ŝ(x) ŝ(y) e = ∗x

Now suppose that we analyze program 10x := &y; 11∗p := &z;
12y := x; (superscripts are control points). Suppose that points-
to set of pointer p is {x, y} at control point 10 according to the
fixpoint. Definition set and use set at each control point are as
follows.

D(10) = {x} U(10) = ∅
D(11) = {x, y} U(11) = {x, y}
D(12) = {y} U(12) = {x}

Note that U(11) contains D(11) because of the weak update ( w�→).

2.6 Data Dependencies
Once identifying definition set and use set at each control point,
we can discover data dependencies of abstract semantic function
F̂ between two control points. Intuitively, if the abstract value of
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b1] · · · [an �→ bn]. We write f [{a1, · · · , an} w�→ b] for f [a1 �→
f(a1) � b, · · · , an �→ f(an) � b] (weak update).

2.2 Program
A program is a tuple �C, �→� where C is a finite set of control points
and �→⊆ C × C is a relation that denotes control dependencies of
the program; c� �→ c indicates that c is a next control point of c�.

Collecting Semantics Collecting semantics of program P is an
invariant [[P ]] ∈ C → 2S that represents a set of reachable states
at each control point, where the concrete domain of states, S, is
defined as follows:

S = L → V
Concrete state s ∈ S is a map from locations to values, and a value
is either integer (Z) or location (L). The collecting semantics is
characterized by the least fixpoint of semantic function F ∈ (C →
2S) → (C → 2S) such that,

F (X) = λc ∈ C.fc(
�

cp�→c

X(cp)). (1)

where fc ∈ 2S → 2S is a semantic function at control point c. We
leave out the definition of the concrete semantic function fc that
depends on target languages. Our framework is independent from
target languages.

2.3 Baseline Abstraction
We abstract collecting semantics of program P by the following
Galois connection

C → 2S −−→←−−
α

γ
C → Ŝ (2)

where α and γ are a pointwise lifting of abstract and concretization
function αS and γS (such that 2S −−−→←−−−

αS

γS Ŝ), respectively.
We consider a particular, but general and practical, family of

abstract domains where abstract state Ŝ is map L̂ → V̂ where
L̂ is a finite set of abstract locations, and V̂ is a (potentially in-
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are selected to be related together. R̂ denotes numerical constraints
among variables in those groups. In such relational analysis, each
variable pack is treated as an abstract location (L̂) and numerical
constraints amount to abstract values (V̂). Examples of the numer-
ical constraints are domain of octagons [31] and polyhedrons [12].

Abstract semantics is characterized as a least fixpoint of abstract
semantic function F̂ ∈ (C → Ŝ) → (C → Ŝ) defined as,
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statement x := y using a non-relational domain, like interval do-
main [9]. We know for sure that the abstract semantic function for
the statement defines a new abstract value only at variable x and
uses only the abstract value of variable y. Thus, it is unnecessary to

propagate the whole abstract states. However, the function given in
(3) blindly propagates the whole abstract states of all predecessors
c� to control point c.

To make the analysis sparse, we need to eliminate this unnec-
essary propagation by making the semantic function propagate ab-
stract values along data dependency, not control dependency; that
is, we make the semantic function propagate only the abstract val-
ues newly computed at one control point to the other where they are
actually used. In the rest of this section, we explain how to make
abstract semantic function (3) sparse with the guarantees of sound-
ness and precision.

2.5 Definition and Use Set
To be correct, we first need to precisely define what are “defini-
tions” and “uses”. They are defined in terms of abstract semantics,
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Note that the notion of definition set is semantic one. For example,
suppose that we analyze two statements x = 1; x = 1. Even if
the second statement assigns a value to variable x, semantically it
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w�→ Ê(e)(ŝ)] cmd(c) = ∗x := e
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Now suppose that we analyze program 10x := &y; 11∗p := &z;
12y := x; (superscripts are control points). Suppose that points-
to set of pointer p is {x, y} at control point 10 according to the
fixpoint. Definition set and use set at each control point are as
follows.

D(10) = {x} U(10) = ∅
D(11) = {x, y} U(11) = {x, y}
D(12) = {y} U(12) = {x}
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2.6 Data Dependencies
Once identifying definition set and use set at each control point,
we can discover data dependencies of abstract semantic function
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f(a1) � b, · · · , an �→ f(an) � b] (weak update).

2.2 Program
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and �→⊆ C × C is a relation that denotes control dependencies of
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defined as follows:
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2S) → (C → 2S) such that,
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where fc ∈ 2S → 2S is a semantic function at control point c. We
leave out the definition of the concrete semantic function fc that
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ical constraints are domain of octagons [31] and polyhedrons [12].

Abstract semantics is characterized as a least fixpoint of abstract
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where f̂c ∈ Ŝ → Ŝ is an abstract semantic function at control
point c. The soundness of abstract semantics is followed by fixpoint
transfer theorem [11].

Lemma 1 (Soundness). If α◦F � F̂ ◦α, then, α(lfpF ) � lfpF̂ .

2.4 Sparse Analysis by Eliminating Unnecessary Propagation
The abstract semantic function given in (3) propagates some ab-
stract values unnecessarily. For example, suppose that we analyze
statement x := y using a non-relational domain, like interval do-
main [9]. We know for sure that the abstract semantic function for
the statement defines a new abstract value only at variable x and
uses only the abstract value of variable y. Thus, it is unnecessary to

propagate the whole abstract states. However, the function given in
(3) blindly propagates the whole abstract states of all predecessors
c� to control point c.

To make the analysis sparse, we need to eliminate this unnec-
essary propagation by making the semantic function propagate ab-
stract values along data dependency, not control dependency; that
is, we make the semantic function propagate only the abstract val-
ues newly computed at one control point to the other where they are
actually used. In the rest of this section, we explain how to make
abstract semantic function (3) sparse with the guarantees of sound-
ness and precision.

2.5 Definition and Use Set
To be correct, we first need to precisely define what are “defini-
tions” and “uses”. They are defined in terms of abstract semantics,
i.e., abstract semantic function f̂c.

Definition 1 (Definition set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Definition set D(c) at control point c
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S(c�).f̂c(ŝ)(l) �= ŝ(l)}.

Note that the notion of definition set is semantic one. For example,
suppose that we analyze two statements x = 1; x = 1. Even if
the second statement assigns a value to variable x, semantically it
has no effect. Therefore, according to our definition, variable x is
not included in the definition set of the second statement.

Definition 2 (Use set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Use set U(c) at control point c is a
set of abstract locations that are used by abstract semantic function
f̂c, i.e.

U(c) � {l ∈ L̂ | ∃ŝ �
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S(c�).f̂c(ŝ)|D(c) �= f̂c(ŝ\l)|D(c)}.

Example 1. Consider the following simple subset of C:

x := e | ∗x := e where e → x | &x | ∗x.
The meaning of each statement and each expression is fairly stan-
dard. We design a pointer analysis for this as follows:

ŝ ∈ Ŝ = Var → 2Var

f̂c(ŝ) =


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
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and ŝ(x) = {y}
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Ê(e)(ŝ) =
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

ŝ(x) e = x
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Now suppose that we analyze program 10x := &y; 11∗p := &z;
12y := x; (superscripts are control points). Suppose that points-
to set of pointer p is {x, y} at control point 10 according to the
fixpoint. Definition set and use set at each control point are as
follows.

D(10) = {x} U(10) = ∅
D(11) = {x, y} U(11) = {x, y}
D(12) = {y} U(12) = {x}

Note that U(11) contains D(11) because of the weak update ( w�→).

2.6 Data Dependencies
Once identifying definition set and use set at each control point,
we can discover data dependencies of abstract semantic function
F̂ between two control points. Intuitively, if the abstract value of
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Note that U(11) does not contain D(11) because of strong update.

The following is one example of unsafe approximation.

D̂(10) = {x} Û(10) = ∅
D̂(11) = {x, y} Û(11) = ∅
D̂(12) = {y} Û(12) = {x}.

This approximation is unsafe because spurious definition {x} at

control point 11 is not included in approximated use set Û(11).
With this approximation, abstract value of x at 10 is not propagated

to 12, while it is propagated in the original analysis (10
x� 12, but

10 � x�a 12). However, if {x} ⊆ Û(11), then the abstract value

will be propagated through two data dependency, 10
x�a 11 and

11
x�a 12. Note that x is not defined at 11, thus the propagated

abstract value for x is not modified at 11.

We can formally define safe approximation of definition set and
use set as follows:

Definition 5. Set D̂(c) and Û(c) are a safe approximation of

definition set D(c) and use set U(c), respectively, if and only if

(1) D̂(c) ⊇ D(c) ∧ Û(c) ⊇ U(c); and

(2) D̂(c)− D(c) ⊆ Û(c).

The remaining things is to prove that the safe approximation D̂
and Û yields the correct sparse analysis, which the following lemma
states:

Lemma 3 (Correctness of Safe Approximation). Suppose sparse

abstract semantic function F̂a is derived by the safe approximation

D̂ and Û. Let S and Sa be lfpF̂ and lfpF̂a. Then,

∀c ∈ C.∀l ∈ dom(Sa(c)).Sa(c)(l) = S(c)(l).

Proof. (Sketch) We can prove the lemma by showing the equiva-
lence of the fixpoint equations up to the domain of Sa(c) for each
c ∈ C, as we did for Lemma 2. We make the same assumptions
as in the proof of Lemma 2 (we can generalize the proof easily).
Consider the case when x ∈ D̂(cm)−D(cm) for some m such that
1 < m < n. By the definition of the safe approximation, x ∈ Û(x)
and we now have two data dependencies c1

x�a cm and cm
x�a cn

instead of c1
x� cn. The fixpoint equations of F̂a are as follows:

Sa(cm)(x) = f̂cm (Sa(c1)|x)(x)

Sa(cn)(x) = f̂cn (Sa(cm)|x)(x).

The fixpoint equations of F̂ we derived in the proof of Lemma 2
are as follows:

S(ci)(x) = S(ci−1)(x) where 1 < i < n

S(cn)(x) = f̂cn (S(c1)|x)(x).

Since x is spurious definition at cm, we have S(cm)(x) =
S(cm−1)(x) = f̂cm(S(cm−1))(x) = f̂cm(S(c1)|x)(x), which
proves that two sets of fixpoint equations are equivalent. Therefore,
Sa(cn)(x) = S(cn)(x).

Precision Loss with Conservative Def-use Chains While ap-
proximated data dependency does not degrade the precision of an
analysis, conservative def-use chains from approximated definition
set and use set make the analysis less precise even if the approxi-
mation is safe. The following example illustrates the case of impre-
cision.

Example 4. Consider the same setting of Example 3. Approxi-

mated definition set and use set establish the following three def-

use chains: 10
x�du 11, 11

x�du 12, and 10
x�du 12 (we assume

here that relation �du is similarly modified as in Definition 5). With

these conservative def-use chains, the points-to set of x propagated

to control point 12 is {y} ∪ {z}, which is bigger set than {y}, the

one that appears in the original analysis.

2.9 Designing Sparse Analysis Steps in the Framework
In summary, the design of sparse analysis within our framework is
done in the following two steps:

(1) Design a static analysis based on abstract interpretation frame-
work [9]. Note that the abstract domain should be a member of
the family explained in Section 2.3.

(2) Design a method to find a safe approximation D̂ and Û of
definition set D and use set U (Definition 5).

Once the safe approximation is found in step (2), our framework
guarantees that the derived sparse analysis is correct; that is, the
sparse analysis is sound and has the same precision as the original
analysis designed in step (1).

3. Designing Sparse Non-Relational Analysis
As a concrete example, we show how to design sparse non-
relational analyses within our framework. Following Section 2.9,
we proceed in two steps: (1) We design a conventional non-
relational analysis based on abstract interpretation. Relying on the
abstract interpretation framework [9, 10], we can flexibly design a
static analysis of our interest with soundness guaranteed. However,
the analysis is not yet sparse. (2) We design a method to find D̂ and
Û and prove that they are safe approximations (Definition 5).

For brevity, we restrict our presentation to the following simple
subset of C, where a variable has either an integer value or a pointer
(i.e. V = Z+ L):

x := e | ∗x := e | {{x < n}}
where e → n | x | &x | ∗x | e+e

Assignment x := e corresponds to assigning the value of expres-
sion e to variable x. Store ∗x := e performs indirect assignments;
the value of e is assigned to the location that x points to. Assume
command {{x < n}} makes the program continues only when the
condition evaluates to true.

3.1 Step 1: Designing Non-sparse Analysis
Abstract Domain From the baseline abstraction (in Section 2.3),
we consider a family of state abstractions 2S −−−→←−−−

αS

γS Ŝ such that,
(Because it is standard, we omit the definition of αS.)

Ŝ = L̂ → V̂ L̂ = Var V̂ = Ẑ× P̂ P̂ = 2 L̂

An abstract location is a program variable. An abstract value is a
pair of an abstract integer Ẑ and an abstract pointer P̂. A set of
integers is abstracted to an abstract integer (2Z −−−→←−−−

αZ

γZ Ẑ). Note
that the abstraction is generic so we can choose any non-relational
numeric domains of our interest, such as intervals ( Ẑ = {[l, u] |
l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u}⊥) or constant propagation
domain (Ẑ = {⊥, . . . ,−1, 0, 1, . . . ,�}). For simplicity, we do
not abstract pointers (because they are finite): pointer values are
kept by a points-to set (P̂ = 2L̂). Other pointer abstractions are also
orthogonally applicable.

Abstract Semantics The abstract semantics is defined by the least
fixpoint of semantic function (3), F̂ , where the abstract semantic
function f̂c ∈ Ŝ → Ŝ is defined as follows:
f̂c(ŝ) =




ŝ[x �→ Ê(e)(ŝ)] cmd(c) = x := e

ŝ[ŝ(x).P̂ w�→ Ê(e)(ŝ)] cmd(c) = ∗x := e
ŝ[x �→�ŝ(x).Ẑ�ẐαZ({z∈Z|z<n}), ŝ(x).P̂�] cmd(c) = {{x < n}}

4 2011/12/26

Safe Approximation

abstract location l defined at control point cd is used at control
point cu, there is a data dependency between cd and cu on l. Formal
definition of data dependency is given below:

Definition 3 (Data dependency). Let cd and cu be control points
and l be an abstract location. Data dependency is ternary relation
� defined as follows:

cd
l� cu � cd �→+ cu

∧ l ∈ D(cd) ∩ U(cu)
∧ ∀ci ∈ C.cd �→+ ci �→+ cu =⇒ l �∈ D(ci).

The definition means that if control point cu is reachable from
control point cd, a value of abstract location l can be defined at
cu and used at cd, and there is no intermediate control point ci that
can change the value of l, then we can directly propagate the value
of l from cd to cu.

Example 2. In the program presented Example 1, we can find two
data dependencies, 10 x� 11 and 11

x� 12.

Comparison with Def-use Chains Note that our notion of data
dependency is different from the conventional notion of def-use
chains. If we want to conservatively collect all the possible def-
use chains of the given definition set and use set, we should exclude
only the paths from definition points to use points when there exists
a point that always kills the definition. However, data dependency
in Definition 3 excludes a path even when there exists a point that
might, but not always, kill the definition. We can slightly modify
Definition 3 to express def-use chain relation �du as follows:

cd
l�du cu � cd �→+ cu

∧ l ∈ D(cd) ∩ U(cu)
∧ ∀ci ∈ C.cd �→+ ci �→+ cu =⇒ l �∈ Dmust(ci)

where Dmust(c)�{l∈ L̂ | ∀ŝ �
�

c��→c(lfpF̂ )(c�).f̂c(ŝ)(l) �= ŝ(l)}.
The relation contains the comprehensive set of def-use chains that
appear during the analysis. For example, we can find three def-use
chains, 10 x�du 11, 10 x�du 12, and 11

x�du 12 in Example 1.
The reason why we use our notion of data dependencies instead

of def-use chains becomes evident in Section 2.8, where we discuss
the approximations of them.

2.7 Sparse Abstract Semantic Function
Using data dependency, we can make abstract semantic function
sparse, which propagates between control points only the abstract
values that participate in the fixpoint computation. Sparse abstract
function F̂s, whose definition is given below, is the same as the
original except that it propagates abstract values along to the data
dependency, not to control dependency:

F̂s(X̂) = λc ∈ C.f̂c(
�

cd
l�c

X̂(cd)|l).

As this definition is only different in that it is defined over data
dependency (�), we can reuse abstract semantic function f̂c, and
its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse
abstract semantic function is the same as the one of original analy-
sis.

Lemma 2 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,

∀c ∈ C.∀l ∈ dom(Ss(c)).Ss(c)(l) = S(c)(l).

Proof. (Sketch) We prove the lemma by showing that the fixpoint
equation of F̂s is equivalent to the one of F̂ up to the domain of
Ss(c) for each c ∈ C. Let c1, · · · , cn be control points and x and
y be abstract locations such that c1 �→ · · · �→ cn, c1

x� cn. For

brevity, we only consider the case with the following assumptions:
D(cn) = U(cn) = {x}, c1

x� cn is the only data dependency on
cn, and ci is the only predecessor of ci+1 for all 1 ≤ i < n (we
can easily extend this proof to the general case). Then, the fixpoint
equations of F̂ are as follows:

S(c2) = f̂c2 (S(c1)) · · · S(cn) = f̂cn (S(cn−1)). (4)

We can transform these into the fixpoint equation of F̂s as follows:

S(cn)(x) = f̂cn (S(cn−1))(x) (∵ (4))

= f̂cn (S(cn−1)|x)(x) (∵ Def. of U and U(cn) = {x})

= f̂cn (S(c1)|x)(x) (∵ Def. of � and c1
x� cn)

Note that c1
x� cn ⇒ S(ci)(x) = f̂ci(S(ci−1))(x) = S(ci−1)(x)

where 1 < i < n. The fixpoint equation of F̂s is Ss(cn)(x) =
f̂cn(Ss(c1)|x)(x) and this is equivalent to the one derived above.

∴ S(cn)(x) = Ss(cn)(x)

Note that dom(Ss(cn)) = D(cn) ∪ U(cn) = {x}.

The lemma guarantees that the sparse analysis result is identical
to the original result only up to the entries that exist in the sparse
analysis result. This is fair since the sparse analysis result does not
contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical
since we can decide definition set D and use set U only with the
original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data
dependency using an approximated definition set D̂ and use set Û.

Definition 4 (Approximated Data Dependency). Let cd and cu be
control points and l be an abstract location. Approximated data
dependency is ternary relation �a defined as follows:

cd
l�a cu � cd �→+ cu

∧ l ∈ D̂(cd) ∩ Û(cu)
∧ ∀ci.cd �→+ ci �→+ cu =⇒ l �∈ D̂(ci)

The definition is the same except that it is defined using D̂ and
Û. The derived sparse analysis is to compute the fixpoint of the
following abstract semantic function:

F̂a(X̂) = λc ∈ C.f̂c(
�

cd
l�ac

X̂(cd)|l).

One thing to note is that not all D̂ and Û make the derived
sparse analysis compute the same result as the original. First,
both D̂(c) and Û(c) at each control point should be an over-
approximation of D(c) and U(c), respectively (we can easily show
that the analysis computes different result if one of them is an
under-approximation). Next, all spurious definitions that are in-
cluded in D̂ but not in D should be also included in Û. The follow-
ing example illustrates what happens when there exists an abstract
location which is a spurious definition but is not included in the
approximated use set.

Example 3. Consider the same program presented in Example 1.
except that we now suppose the points-to set of pointer p being {y}.
Then, definition set and use set at each control point are as follows:

D(10) = {x} U(10) = ∅
D(11) = {y} U(11) = ∅
D(12) = {y} U(12) = {x}.
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abstract location l defined at control point cd is used at control
point cu, there is a data dependency between cd and cu on l. Formal
definition of data dependency is given below:

Definition 3 (Data dependency). Let cd and cu be control points
and l be an abstract location. Data dependency is ternary relation
� defined as follows:

cd
l� cu � cd �→+ cu

∧ l ∈ D(cd) ∩ U(cu)
∧ ∀ci ∈ C.cd �→+ ci �→+ cu =⇒ l �∈ D(ci).

The definition means that if control point cu is reachable from
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cu and used at cd, and there is no intermediate control point ci that
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of l from cd to cu.

Example 2. In the program presented Example 1, we can find two
data dependencies, 10 x� 11 and 11

x� 12.

Comparison with Def-use Chains Note that our notion of data
dependency is different from the conventional notion of def-use
chains. If we want to conservatively collect all the possible def-
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cd
l�du cu � cd �→+ cu

∧ l ∈ D(cd) ∩ U(cu)
∧ ∀ci ∈ C.cd �→+ ci �→+ cu =⇒ l �∈ Dmust(ci)

where Dmust(c)�{l∈ L̂ | ∀ŝ �
�

c��→c(lfpF̂ )(c�).f̂c(ŝ)(l) �= ŝ(l)}.
The relation contains the comprehensive set of def-use chains that
appear during the analysis. For example, we can find three def-use
chains, 10 x�du 11, 10 x�du 12, and 11

x�du 12 in Example 1.
The reason why we use our notion of data dependencies instead

of def-use chains becomes evident in Section 2.8, where we discuss
the approximations of them.
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dependency (�), we can reuse abstract semantic function f̂c, and
its soundness result, from the original analysis design.

The following lemma states that the analysis result with sparse
abstract semantic function is the same as the one of original analy-
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Lemma 2 (Correctness). Let S and Ss be lfpF̂ and lfpF̂s. Then,
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brevity, we only consider the case with the following assumptions:
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cn, and ci is the only predecessor of ci+1 for all 1 ≤ i < n (we
can easily extend this proof to the general case). Then, the fixpoint
equations of F̂ are as follows:
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= f̂cn (S(c1)|x)(x) (∵ Def. of � and c1
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Note that c1
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where 1 < i < n. The fixpoint equation of F̂s is Ss(cn)(x) =
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Note that dom(Ss(cn)) = D(cn) ∪ U(cn) = {x}.

The lemma guarantees that the sparse analysis result is identical
to the original result only up to the entries that exist in the sparse
analysis result. This is fair since the sparse analysis result does not
contain the entries unnecessary for its computation.

2.8 Sparse Analysis with Approximated Data Dependency
Sparse analysis designed until Section 2.7 might not be practical
since we can decide definition set D and use set U only with the
original fixpoint lfpF̂ computed.

To design a practical sparse analysis, we can approximate data
dependency using an approximated definition set D̂ and use set Û.

Definition 4 (Approximated Data Dependency). Let cd and cu be
control points and l be an abstract location. Approximated data
dependency is ternary relation �a defined as follows:

cd
l�a cu � cd �→+ cu

∧ l ∈ D̂(cd) ∩ Û(cu)
∧ ∀ci.cd �→+ ci �→+ cu =⇒ l �∈ D̂(ci)

The definition is the same except that it is defined using D̂ and
Û. The derived sparse analysis is to compute the fixpoint of the
following abstract semantic function:

F̂a(X̂) = λc ∈ C.f̂c(
�

cd
l�ac

X̂(cd)|l).

One thing to note is that not all D̂ and Û make the derived
sparse analysis compute the same result as the original. First,
both D̂(c) and Û(c) at each control point should be an over-
approximation of D(c) and U(c), respectively (we can easily show
that the analysis computes different result if one of them is an
under-approximation). Next, all spurious definitions that are in-
cluded in D̂ but not in D should be also included in Û. The follow-
ing example illustrates what happens when there exists an abstract
location which is a spurious definition but is not included in the
approximated use set.

Example 3. Consider the same program presented in Example 1.
except that we now suppose the points-to set of pointer p being {y}.
Then, definition set and use set at each control point are as follows:

D(10) = {x} U(10) = ∅
D(11) = {y} U(11) = ∅
D(12) = {y} U(12) = {x}.
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Note that U(11) does not contain D(11) because of strong update.

The following is one example of unsafe approximation.

D̂(10) = {x} Û(10) = ∅
D̂(11) = {x, y} Û(11) = ∅
D̂(12) = {y} Û(12) = {x}.

This approximation is unsafe because spurious definition {x} at

control point 11 is not included in approximated use set Û(11).
With this approximation, abstract value of x at 10 is not propagated

to 12, while it is propagated in the original analysis (10
x� 12, but

10 � x�a 12). However, if {x} ⊆ Û(11), then the abstract value

will be propagated through two data dependency, 10
x�a 11 and

11
x�a 12. Note that x is not defined at 11, thus the propagated

abstract value for x is not modified at 11.

We can formally define safe approximation of definition set and
use set as follows:

Definition 5. Set D̂(c) and Û(c) are a safe approximation of

definition set D(c) and use set U(c), respectively, if and only if

(1) D̂(c) ⊇ D(c) ∧ Û(c) ⊇ U(c); and

(2) D̂(c)− D(c) ⊆ Û(c).

The remaining things is to prove that the safe approximation D̂
and Û yields the correct sparse analysis, which the following lemma
states:

Lemma 3 (Correctness of Safe Approximation). Suppose sparse

abstract semantic function F̂a is derived by the safe approximation

D̂ and Û. Let S and Sa be lfpF̂ and lfpF̂a. Then,

∀c ∈ C.∀l ∈ dom(Sa(c)).Sa(c)(l) = S(c)(l).

Proof. (Sketch) We can prove the lemma by showing the equiva-
lence of the fixpoint equations up to the domain of Sa(c) for each
c ∈ C, as we did for Lemma 2. We make the same assumptions
as in the proof of Lemma 2 (we can generalize the proof easily).
Consider the case when x ∈ D̂(cm)−D(cm) for some m such that
1 < m < n. By the definition of the safe approximation, x ∈ Û(x)
and we now have two data dependencies c1

x�a cm and cm
x�a cn

instead of c1
x� cn. The fixpoint equations of F̂a are as follows:

Sa(cm)(x) = f̂cm (Sa(c1)|x)(x)

Sa(cn)(x) = f̂cn (Sa(cm)|x)(x).

The fixpoint equations of F̂ we derived in the proof of Lemma 2
are as follows:

S(ci)(x) = S(ci−1)(x) where 1 < i < n

S(cn)(x) = f̂cn (S(c1)|x)(x).

Since x is spurious definition at cm, we have S(cm)(x) =
S(cm−1)(x) = f̂cm(S(cm−1))(x) = f̂cm(S(c1)|x)(x), which
proves that two sets of fixpoint equations are equivalent. Therefore,
Sa(cn)(x) = S(cn)(x).

Precision Loss with Conservative Def-use Chains While ap-
proximated data dependency does not degrade the precision of an
analysis, conservative def-use chains from approximated definition
set and use set make the analysis less precise even if the approxi-
mation is safe. The following example illustrates the case of impre-
cision.

Example 4. Consider the same setting of Example 3. Approxi-

mated definition set and use set establish the following three def-

use chains: 10
x�du 11, 11

x�du 12, and 10
x�du 12 (we assume

here that relation �du is similarly modified as in Definition 5). With

these conservative def-use chains, the points-to set of x propagated

to control point 12 is {y} ∪ {z}, which is bigger set than {y}, the

one that appears in the original analysis.

2.9 Designing Sparse Analysis Steps in the Framework
In summary, the design of sparse analysis within our framework is
done in the following two steps:

(1) Design a static analysis based on abstract interpretation frame-
work [9]. Note that the abstract domain should be a member of
the family explained in Section 2.3.

(2) Design a method to find a safe approximation D̂ and Û of
definition set D and use set U (Definition 5).

Once the safe approximation is found in step (2), our framework
guarantees that the derived sparse analysis is correct; that is, the
sparse analysis is sound and has the same precision as the original
analysis designed in step (1).

3. Designing Sparse Non-Relational Analysis
As a concrete example, we show how to design sparse non-
relational analyses within our framework. Following Section 2.9,
we proceed in two steps: (1) We design a conventional non-
relational analysis based on abstract interpretation. Relying on the
abstract interpretation framework [9, 10], we can flexibly design a
static analysis of our interest with soundness guaranteed. However,
the analysis is not yet sparse. (2) We design a method to find D̂ and
Û and prove that they are safe approximations (Definition 5).

For brevity, we restrict our presentation to the following simple
subset of C, where a variable has either an integer value or a pointer
(i.e. V = Z+ L):

x := e | ∗x := e | {{x < n}}
where e → n | x | &x | ∗x | e+e

Assignment x := e corresponds to assigning the value of expres-
sion e to variable x. Store ∗x := e performs indirect assignments;
the value of e is assigned to the location that x points to. Assume
command {{x < n}} makes the program continues only when the
condition evaluates to true.

3.1 Step 1: Designing Non-sparse Analysis
Abstract Domain From the baseline abstraction (in Section 2.3),
we consider a family of state abstractions 2S −−−→←−−−

αS

γS Ŝ such that,
(Because it is standard, we omit the definition of αS.)

Ŝ = L̂ → V̂ L̂ = Var V̂ = Ẑ× P̂ P̂ = 2 L̂

An abstract location is a program variable. An abstract value is a
pair of an abstract integer Ẑ and an abstract pointer P̂. A set of
integers is abstracted to an abstract integer (2Z −−−→←−−−

αZ

γZ Ẑ). Note
that the abstraction is generic so we can choose any non-relational
numeric domains of our interest, such as intervals ( Ẑ = {[l, u] |
l, u ∈ Z ∪ {−∞,+∞} ∧ l ≤ u}⊥) or constant propagation
domain (Ẑ = {⊥, . . . ,−1, 0, 1, . . . ,�}). For simplicity, we do
not abstract pointers (because they are finite): pointer values are
kept by a points-to set (P̂ = 2L̂). Other pointer abstractions are also
orthogonally applicable.

Abstract Semantics The abstract semantics is defined by the least
fixpoint of semantic function (3), F̂ , where the abstract semantic
function f̂c ∈ Ŝ → Ŝ is defined as follows:
f̂c(ŝ) =




ŝ[x �→ Ê(e)(ŝ)] cmd(c) = x := e

ŝ[ŝ(x).P̂ w�→ Ê(e)(ŝ)] cmd(c) = ∗x := e
ŝ[x �→�ŝ(x).Ẑ�ẐαZ({z∈Z|z<n}), ŝ(x).P̂�] cmd(c) = {{x < n}}
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Performance3

3-DPrograms LOC Intervalvanilla Intervalbase Spd↑1 Mem↓1 Intervalsparse Spd↑2 Mem↓2

Time Mem Time Mem Dep Fix Total Mem D̂(c) Û(c)
gzip-1.2.4a 7K 772 240 14 65 55 x 73 % 2 1 3 63 2.4 2.5 5 x 3 %
bc-1.06 13K 1,270 276 96 126 13 x 54 % 4 3 7 75 4.6 4.9 14 x 40 %
tar-1.13 20K 12,947 881 338 177 38 x 80 % 6 2 8 93 2.9 2.9 42 x 47 %
less-382 23K 9,561 1,113 1,211 378 8 x 66 % 27 6 33 127 11.9 11.9 37 x 66 %
make-3.76.1 27K 24,240 1,391 1,893 443 13 x 68 % 16 5 21 114 5.8 5.8 90 x 74 %
wget-1.9 35K 44,092 2,546 1,214 378 36 x 85 % 8 3 11 85 2.4 2.4 110 x 78 %
screen-4.0.2 45K ∞ N/A 31,324 3,996 N/A N/A 724 43 767 303 53.0 54.0 41 x 92 %
a2ps-4.14 64K ∞ N/A 3,200 1,392 N/A N/A 31 9 40 353 2.6 2.8 80 x 75 %
bash-2.05a 105K ∞ N/A 1,683 1,386 N/A N/A 45 22 67 220 3.0 3.0 25 x 84 %
lsh-2.0.4 111K ∞ N/A 45,522 5,266 N/A N/A 391 80 471 577 21.1 21.2 97 x 89 %
sendmail-8.13.6 130K ∞ N/A ∞ N/A N/A N/A 517 227 744 678 20.7 20.7 N/A N/A
nethack-3.3.0 211K ∞ N/A ∞ N/A N/A N/A 14,126 2,247 16,373 5,298 72.4 72.4 N/A N/A
vim60 227K ∞ N/A ∞ N/A N/A N/A 17,518 6,280 23,798 5,190 180.2 180.3 N/A N/A
emacs-22.1 399K ∞ N/A ∞ N/A N/A N/A 29,552 8,278 37,830 7,795 285.3 285.5 N/A N/A
python-2.5.1 435K ∞ N/A ∞ N/A N/A N/A 9,677 1,362 11,039 5,535 108.1 108.1 N/A N/A
linux-3.0 710K ∞ N/A ∞ N/A N/A N/A 26,669 6,949 33,618 20,529 76.2 74.8 N/A N/A
gimp-2.6 959K ∞ N/A ∞ N/A N/A N/A 3,751 123 3,874 3,602 4.1 3.9 N/A N/A
ghostscript-9.00 1,363K ∞ N/A ∞ N/A N/A N/A 14,116 698 14,814 6,384 9.7 9.7 N/A N/A

Table 3: Performance of interval analysis: time (in seconds) and peak memory consumption (in megabytes) of the various versions of analyses. ∞ means the analysis ran out of
time (exceeded 24 hour time limit). Dep and Fix reports the time spent during data dependency analysis and actual analysis steps, respectively, of the sparse analysis. Spd↑1 is
the speed-up of Intervalbase over Intervalvanilla. Mem↓1 shows the memory savings of Intervalbase over Intervalvanilla. Spd↑2 is the speed-up of Intervalsparse over Intervalbase.
Mem↓2 shows the memory savings of Intervalsparse over Intervalbase. D̂(c) and Û(c) show the average size of D̂(c) and Û(c), respectively.

6.2 Octagon Domain-based Sparse Analysis

Setting We implemented octagon domain-based static analyzers
Octagonvanilla, Octagonbase, and Octagonsparse on top of the in-
terval domain-based analysis engine explained in Section 6.1. We
replaced interval-based abstract domain by octagon-based domain
with variable packings. Non-numerical values (such as pointers, ar-
ray, and structures) are handled in the same way as the interval anal-
ysis. Semantic functions are appropriately changed. Besides ab-
stract domain and semantics, exactly the same engineering efforts
have been also put into octagon-based analyzers. Octagonbase per-
forms the access-based localization [33] in terms of variable packs.
Octagonvanilla is same as Octagonbase but does not perform the lo-
calization and Octagonsparse is sparse version of Octagonbase. To
represent octagon domain, we use Apron library [21].

In all experiments, we used a syntax-directed packing strategy.
Given a program, we first run a flow-insensitive interval domain-
based analysis (proposed in Section 3.2) to find the set of ab-
stract locations. Then, by using a syntactic pre-analysis, we collect
groups of abstract locations that are likely to be logically related.
Packs are the set of all such groups. Then, relational analysis for the
program uses the Packs. Our packing heuristic is similar to Miné’s
approach [13, 31], which groups abstract locations that have syn-
tactic locality. For examples, abstract locations involved in the lin-
ear expressions or loops are grouped together. Scope of the locality
is limited within each of syntactic C blocks. We also group abstract
locations involved in actual and formal parameters, which is neces-
sary to capture relations across procedure boundaries. In our pack-
ing, some large packs whose sizes exceed a threshold (10 abstract
locations) are split down into smaller ones. The three analyzers use
the same packing heuristic.

Result We also compared main analysis time and peak memory
consumption of Octagonvanilla, Octagonbase, and Octagonsparse in
the same way as interval analysis. The performance numbers are
described in Table 4.

While Octagonvanilla requires extremely large amount of time
and memory space but Octagonbase makes the analysis realistic
by leveraging the access-based localization. Octagonbase is able
to analyze 20 KLOC within 6 hours and 588MB of memory. With
the localization, analysis speed of Octagonbase increases by 10x–
20x and memory consumption decreases by 50%–76%. Though
Octagonbase saves a lot of memory, the analysis is still not scal-
able at all. For example, bc-1.06 requires 5 times more memory

than gzip-1.2.4a. This memory consumption is not reasonable con-
sidering program size and interval analysis result.

Thanks to sparse analysis technique, Octagonsparse becomes
more practical and scales to 130 KLOC within 25 mins and 9.8 GB
of memory consumption. Octagonsparse is 30–377x faster than
Octagonbase and saves memory consumption by 84%–95%. Note
that the performance gap between sparse and non-sparse versions
is more remarkable than those in interval analysis. It is because
relational analysis has much more computational cost and memory
consumption for each abstract value than non-relational analysis.

6.3 Discussion

Sparsity We discuss the relation between performance and spar-
sity. Column D̂(c) and Û(c) in Table 3 and Table 4 show how many
abstract locations are defined and used for each basic block on av-
erage. It clearly shows the key observation to sparse analysis in
real programs; only a few abstract locations are defined and used in
each program point. In interval domain-based analysis, 2.4–285.3
abstract locations are defined (Avg. D̂(c)) and 2.5–285.5 are used
(Avg. Û(c)) in average.2 For example, a2ps-4.14 defines and uses
only 0.1% of all abstract locations in one program point. Similarly,
2.3–15.9 (resp., 2.5–16.0) variable packs per program point are de-
fined (resp., used) in octagon domain-based analysis. By exploit-
ing this sparsity of analysis, we could achieve orders of magnitude
speed up compared to the baseline possible.

One interesting observation from the experiment results is that
the analysis performance is more dependent on the sparsity than
the program size. As an extreme case, consider two programs,
emacs-22.1 and ghostscript-9.00. Even though ghostscript-9.00 is
3.5 times bigger than emacs-22.1 in terms of LOC, ghostscript-9.00
takes 2.6 times less time to analyze. Behind this phenomenon, there
is a large difference of sparsity; average D̂(c) size (and Û(c) size)
of emacs-22.1 is 30 times bigger than the one of ghostscript-9.00.

Variable Packing For maximal precision, packing strategy should
be more carefully devised for each target program. However, note
that our purpose of experiments is to show relative performance
of Octagonsparse over Octagonbase, and we applied the same pack-
ing strategy for all analyzers. Though our general-purpose packing
strategy is not specialized to each program, the packing strategy
reasonably groups logically related variables. The average size of

2 The average sizes of D̂(c) and Û(c) are quite similar. Because our abstract
semantics considers weak update.
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In global analysis of imperative programs, the 
analysis is typically sparse in space and time.

Sparse analysis directly follows the actual semantic 
dependences.


