
Program Analysis using Quantifier Elimination
Heuristics

Deepak Kapur

Department of Computer Science
University of New Mexico
Albuquerque, NM, USA

with Zhihai Zhang (Peking University) and
Hengjun Zhao (Chinese Academy of Sciences) and

Matthias Forbach, Qi Lu and Thanh Vu Nguyen (UNM)
(work in progress)

Outline

I Quantifier Elimination Approach for Generating (Loop)
Invariants.

I Octagonal Constraints.

I Geometric and Local Quantifier Elimination Heuristic

I A fast O(n2) to generate the strongest octagonal invariant

I Disjunctive Invariants – max plus constraints

Outline

I Quantifier Elimination Approach for Generating (Loop)
Invariants.

I Octagonal Constraints.

I Geometric and Local Quantifier Elimination Heuristic

I A fast O(n2) to generate the strongest octagonal invariant

I Disjunctive Invariants – max plus constraints

Outline

I Quantifier Elimination Approach for Generating (Loop)
Invariants.

I Octagonal Constraints.

I Geometric and Local Quantifier Elimination Heuristic

I A fast O(n2) to generate the strongest octagonal invariant

I Disjunctive Invariants – max plus constraints

Outline

I Quantifier Elimination Approach for Generating (Loop)
Invariants.

I Octagonal Constraints.

I Geometric and Local Quantifier Elimination Heuristic

I A fast O(n2) to generate the strongest octagonal invariant

I Disjunctive Invariants – max plus constraints

Outline

I Quantifier Elimination Approach for Generating (Loop)
Invariants.

I Octagonal Constraints.

I Geometric and Local Quantifier Elimination Heuristic

I A fast O(n2) to generate the strongest octagonal invariant

I Disjunctive Invariants – max plus constraints

Invariants: Integer Square Root

Example

x := 1, y := 1, z := 0;

while (x <= N) {

x := x + y + 2;

y := y + 2;

z := z + 1

}

return z

Generating Loop Invariant
I Guess/fix the shape of invariants of interest at various

program locations with some parameters which need to be
determined.

I For instance, let

I : A x2 + B y2 + C z2 + D xy + E xz + F yz + G x +
H y + J z + K = 0.

I Generate verification conditions using the hypothesized
invariants from the code.

I VC1: At first possible entry of the loop:

A + B + D + G + H + K = 0.
I VC2: For every iteration of the loop body:

(I (x , y , z) ∧ x ≤ N) =⇒ I (x + y + 2, y + 2, z + 1).

I Using quantifier elimination, find constraints on parameters
A,B,C ,D,E ,F ,G ,H, J,K which ensure that the verification
conditions are valid for all possible program variables.

Generating Loop Invariant
I Guess/fix the shape of invariants of interest at various

program locations with some parameters which need to be
determined.

I For instance, let

I : A x2 + B y2 + C z2 + D xy + E xz + F yz + G x +
H y + J z + K = 0.

I Generate verification conditions using the hypothesized
invariants from the code.

I VC1: At first possible entry of the loop:

A + B + D + G + H + K = 0.
I VC2: For every iteration of the loop body:

(I (x , y , z) ∧ x ≤ N) =⇒ I (x + y + 2, y + 2, z + 1).

I Using quantifier elimination, find constraints on parameters
A,B,C ,D,E ,F ,G ,H, J,K which ensure that the verification
conditions are valid for all possible program variables.

Generating Loop Invariant
I Guess/fix the shape of invariants of interest at various

program locations with some parameters which need to be
determined.

I For instance, let

I : A x2 + B y2 + C z2 + D xy + E xz + F yz + G x +
H y + J z + K = 0.

I Generate verification conditions using the hypothesized
invariants from the code.

I VC1: At first possible entry of the loop:

A + B + D + G + H + K = 0.
I VC2: For every iteration of the loop body:

(I (x , y , z) ∧ x ≤ N) =⇒ I (x + y + 2, y + 2, z + 1).

I Using quantifier elimination, find constraints on parameters
A,B,C ,D,E ,F ,G ,H, J,K which ensure that the verification
conditions are valid for all possible program variables.

Generating Loop Invariant
I Guess/fix the shape of invariants of interest at various

program locations with some parameters which need to be
determined.

I For instance, let

I : A x2 + B y2 + C z2 + D xy + E xz + F yz + G x +
H y + J z + K = 0.

I Generate verification conditions using the hypothesized
invariants from the code.

I VC1: At first possible entry of the loop:

A + B + D + G + H + K = 0.

I VC2: For every iteration of the loop body:

(I (x , y , z) ∧ x ≤ N) =⇒ I (x + y + 2, y + 2, z + 1).

I Using quantifier elimination, find constraints on parameters
A,B,C ,D,E ,F ,G ,H, J,K which ensure that the verification
conditions are valid for all possible program variables.

Generating Loop Invariant
I Guess/fix the shape of invariants of interest at various

program locations with some parameters which need to be
determined.

I For instance, let

I : A x2 + B y2 + C z2 + D xy + E xz + F yz + G x +
H y + J z + K = 0.

I Generate verification conditions using the hypothesized
invariants from the code.

I VC1: At first possible entry of the loop:

A + B + D + G + H + K = 0.
I VC2: For every iteration of the loop body:

(I (x , y , z) ∧ x ≤ N) =⇒ I (x + y + 2, y + 2, z + 1).

I Using quantifier elimination, find constraints on parameters
A,B,C ,D,E ,F ,G ,H, J,K which ensure that the verification
conditions are valid for all possible program variables.

Generating Loop Invariant
I Guess/fix the shape of invariants of interest at various

program locations with some parameters which need to be
determined.

I For instance, let

I : A x2 + B y2 + C z2 + D xy + E xz + F yz + G x +
H y + J z + K = 0.

I Generate verification conditions using the hypothesized
invariants from the code.

I VC1: At first possible entry of the loop:

A + B + D + G + H + K = 0.
I VC2: For every iteration of the loop body:

(I (x , y , z) ∧ x ≤ N) =⇒ I (x + y + 2, y + 2, z + 1).

I Using quantifier elimination, find constraints on parameters
A,B,C ,D,E ,F ,G ,H, J,K which ensure that the verification
conditions are valid for all possible program variables.

I Constraints on parameters are:

C = −F , J = −2B−F+2K , G = −4B−F , H = 3B+F−K .

I Every value of parameters satisfying the above constraints
leads to an invariant.

I 7 parameters and 4 equations, so 3 independent parameters,
say B,F ,K . Make each to be 1 separately with other
independent parameters being 0. Get values of dependent
parameters.

I Most general invariants describing all invariants are:

y = 2z + 1; z2− yz + z + x − y = 0 y2− 2z − 4x + 3y = 0,

I Constraints on parameters are:

C = −F , J = −2B−F+2K , G = −4B−F , H = 3B+F−K .

I Every value of parameters satisfying the above constraints
leads to an invariant.

I 7 parameters and 4 equations, so 3 independent parameters,
say B,F ,K . Make each to be 1 separately with other
independent parameters being 0. Get values of dependent
parameters.

I Most general invariants describing all invariants are:

y = 2z + 1; z2− yz + z + x − y = 0 y2− 2z − 4x + 3y = 0,

I Constraints on parameters are:

C = −F , J = −2B−F+2K , G = −4B−F , H = 3B+F−K .

I Every value of parameters satisfying the above constraints
leads to an invariant.

I 7 parameters and 4 equations, so 3 independent parameters,
say B,F ,K . Make each to be 1 separately with other
independent parameters being 0. Get values of dependent
parameters.

I Most general invariants describing all invariants are:

y = 2z + 1; z2− yz + z + x − y = 0 y2− 2z − 4x + 3y = 0,

I Constraints on parameters are:

C = −F , J = −2B−F+2K , G = −4B−F , H = 3B+F−K .

I Every value of parameters satisfying the above constraints
leads to an invariant.

I 7 parameters and 4 equations, so 3 independent parameters,
say B,F ,K . Make each to be 1 separately with other
independent parameters being 0. Get values of dependent
parameters.

I Most general invariants describing all invariants are:

y = 2z + 1; z2− yz + z + x − y = 0 y2− 2z − 4x + 3y = 0,

I Constraints on parameters are:

C = −F , J = −2B−F+2K , G = −4B−F , H = 3B+F−K .

I Every value of parameters satisfying the above constraints
leads to an invariant.

I 7 parameters and 4 equations, so 3 independent parameters,
say B,F ,K . Make each to be 1 separately with other
independent parameters being 0. Get values of dependent
parameters.

I Most general invariants describing all invariants are:

y = 2z + 1; z2− yz + z + x − y = 0 y2− 2z − 4x + 3y = 0,

from which x = (z + 1)2 follows.

Method for Automatically Generating Invariants by
Quantifier Elimination

I Hypothesize assertions, which are parametrized formulas, at
various points in a program.

I Typically entry of every loop and entry and exit of every
procedure suffice.

I Generate verification conditions for every path in the program
(a path from an assertion to another assertion including
itself).

I Depending upon the logical language chosen to write
invariants,
approximations of assignments and test conditions may be
necessary.

I Find a formula expressed in terms of parameters eliminating
all program variables (using quantifier elimination).

Method for Automatically Generating Invariants by
Quantifier Elimination

I Hypothesize assertions, which are parametrized formulas, at
various points in a program.

I Typically entry of every loop and entry and exit of every
procedure suffice.

I Generate verification conditions for every path in the program
(a path from an assertion to another assertion including
itself).

I Depending upon the logical language chosen to write
invariants,
approximations of assignments and test conditions may be
necessary.

I Find a formula expressed in terms of parameters eliminating
all program variables (using quantifier elimination).

Method for Automatically Generating Invariants by
Quantifier Elimination

I Hypothesize assertions, which are parametrized formulas, at
various points in a program.

I Typically entry of every loop and entry and exit of every
procedure suffice.

I Generate verification conditions for every path in the program
(a path from an assertion to another assertion including
itself).

I Depending upon the logical language chosen to write
invariants,
approximations of assignments and test conditions may be
necessary.

I Find a formula expressed in terms of parameters eliminating
all program variables (using quantifier elimination).

Method for Automatically Generating Invariants by
Quantifier Elimination

I Hypothesize assertions, which are parametrized formulas, at
various points in a program.

I Typically entry of every loop and entry and exit of every
procedure suffice.

I Generate verification conditions for every path in the program
(a path from an assertion to another assertion including
itself).

I Depending upon the logical language chosen to write
invariants,
approximations of assignments and test conditions may be
necessary.

I Find a formula expressed in terms of parameters eliminating
all program variables (using quantifier elimination).

Method for Automatically Generating Invariants by
Quantifier Elimination

I Hypothesize assertions, which are parametrized formulas, at
various points in a program.

I Typically entry of every loop and entry and exit of every
procedure suffice.

I Generate verification conditions for every path in the program
(a path from an assertion to another assertion including
itself).

I Depending upon the logical language chosen to write
invariants,
approximations of assignments and test conditions may be
necessary.

I Find a formula expressed in terms of parameters eliminating
all program variables (using quantifier elimination).

Quality of Invariants

Soundness and Completeness

I Every assignment of parameter values which make the formula
true, gives an inductive invariant.

I If no parameter values can be found, then invariants of
hypothesized forms may not exist. Invariants can be
guaranteed not to exist if no approximations are made, while
generating verification conditions.

I If all assignments making the formula true can be finitely
described, invariants generated may be the strongest of the
hypothesized form. Invariants generated are guaranteed to be
the strongest if no approximations are made, while generating
verification conditions.

Quality of Invariants

Soundness and Completeness

I Every assignment of parameter values which make the formula
true, gives an inductive invariant.

I If no parameter values can be found, then invariants of
hypothesized forms may not exist. Invariants can be
guaranteed not to exist if no approximations are made, while
generating verification conditions.

I If all assignments making the formula true can be finitely
described, invariants generated may be the strongest of the
hypothesized form. Invariants generated are guaranteed to be
the strongest if no approximations are made, while generating
verification conditions.

Quality of Invariants

Soundness and Completeness

I Every assignment of parameter values which make the formula
true, gives an inductive invariant.

I If no parameter values can be found, then invariants of
hypothesized forms may not exist. Invariants can be
guaranteed not to exist if no approximations are made, while
generating verification conditions.

I If all assignments making the formula true can be finitely
described, invariants generated may be the strongest of the
hypothesized form. Invariants generated are guaranteed to be
the strongest if no approximations are made, while generating
verification conditions.

Domains Admitting Quantifier-Elimination

I Generalized Presburger Arithmetic (for invariants expressed
using linear inequalities)

I Polynomials over an algebraic closed field of charateristic 0:
Parametric Gröbner Basis Algorithm (Kapur, 1994),
Comprehensive Gröbner Basis System (Weispfenning, 1992).

I Quantifier Elimination Techniques for Real Closed Fields
(REDLOG, QEPCAD)

I Combination of Theories–Presburger Arithmetic with Theory
of Equality over Uninterpreted Symbols (Shostak, 1979;
Nelson, 1981), and with Boolean Algebra (Kuncak, 2007),
etc.

I Reduction Approach to Decision Procedures for Theories over
Abstract Data Structures, including Finite Lists, Finite Sets,
Finite Arrays, Finite Multisets (Kapur and Zarba, 2005).

Domains Admitting Quantifier-Elimination

I Generalized Presburger Arithmetic (for invariants expressed
using linear inequalities)

I Polynomials over an algebraic closed field of charateristic 0:
Parametric Gröbner Basis Algorithm (Kapur, 1994),
Comprehensive Gröbner Basis System (Weispfenning, 1992).

I Quantifier Elimination Techniques for Real Closed Fields
(REDLOG, QEPCAD)

I Combination of Theories–Presburger Arithmetic with Theory
of Equality over Uninterpreted Symbols (Shostak, 1979;
Nelson, 1981), and with Boolean Algebra (Kuncak, 2007),
etc.

I Reduction Approach to Decision Procedures for Theories over
Abstract Data Structures, including Finite Lists, Finite Sets,
Finite Arrays, Finite Multisets (Kapur and Zarba, 2005).

Domains Admitting Quantifier-Elimination

I Generalized Presburger Arithmetic (for invariants expressed
using linear inequalities)

I Polynomials over an algebraic closed field of charateristic 0:
Parametric Gröbner Basis Algorithm (Kapur, 1994),
Comprehensive Gröbner Basis System (Weispfenning, 1992).

I Quantifier Elimination Techniques for Real Closed Fields
(REDLOG, QEPCAD)

I Combination of Theories–Presburger Arithmetic with Theory
of Equality over Uninterpreted Symbols (Shostak, 1979;
Nelson, 1981), and with Boolean Algebra (Kuncak, 2007),
etc.

I Reduction Approach to Decision Procedures for Theories over
Abstract Data Structures, including Finite Lists, Finite Sets,
Finite Arrays, Finite Multisets (Kapur and Zarba, 2005).

Domains Admitting Quantifier-Elimination

I Generalized Presburger Arithmetic (for invariants expressed
using linear inequalities)

I Polynomials over an algebraic closed field of charateristic 0:
Parametric Gröbner Basis Algorithm (Kapur, 1994),
Comprehensive Gröbner Basis System (Weispfenning, 1992).

I Quantifier Elimination Techniques for Real Closed Fields
(REDLOG, QEPCAD)

I Combination of Theories–Presburger Arithmetic with Theory
of Equality over Uninterpreted Symbols (Shostak, 1979;
Nelson, 1981), and with Boolean Algebra (Kuncak, 2007),
etc.

I Reduction Approach to Decision Procedures for Theories over
Abstract Data Structures, including Finite Lists, Finite Sets,
Finite Arrays, Finite Multisets (Kapur and Zarba, 2005).

Domains Admitting Quantifier-Elimination

I Generalized Presburger Arithmetic (for invariants expressed
using linear inequalities)

I Polynomials over an algebraic closed field of charateristic 0:
Parametric Gröbner Basis Algorithm (Kapur, 1994),
Comprehensive Gröbner Basis System (Weispfenning, 1992).

I Quantifier Elimination Techniques for Real Closed Fields
(REDLOG, QEPCAD)

I Combination of Theories–Presburger Arithmetic with Theory
of Equality over Uninterpreted Symbols (Shostak, 1979;
Nelson, 1981), and with Boolean Algebra (Kuncak, 2007),
etc.

I Reduction Approach to Decision Procedures for Theories over
Abstract Data Structures, including Finite Lists, Finite Sets,
Finite Arrays, Finite Multisets (Kapur and Zarba, 2005).

Constraint Solving

I Quantifier Elimination based approach proposed in a
Technical Report of Univ. of New Mexico in 2003.

I Sankaranarayan, Sipma and Manna proposed it using Farkas’
Lemma in CAV 2003 and using Gröebner basis algorithms in
POPL 2004.

I Extensively investigated in many areas including program
analysis, program synthesis, termination of programs, as well
as hybrid system analysis, particularly safety check and
controller synthesis.

I Closely related to choosing an abstract domain in the abstract
interpretation approach.

Constraint Solving

I Quantifier Elimination based approach proposed in a
Technical Report of Univ. of New Mexico in 2003.

I Sankaranarayan, Sipma and Manna proposed it using Farkas’
Lemma in CAV 2003 and using Gröebner basis algorithms in
POPL 2004.

I Extensively investigated in many areas including program
analysis, program synthesis, termination of programs, as well
as hybrid system analysis, particularly safety check and
controller synthesis.

I Closely related to choosing an abstract domain in the abstract
interpretation approach.

Constraint Solving

I Quantifier Elimination based approach proposed in a
Technical Report of Univ. of New Mexico in 2003.

I Sankaranarayan, Sipma and Manna proposed it using Farkas’
Lemma in CAV 2003 and using Gröebner basis algorithms in
POPL 2004.

I Extensively investigated in many areas including program
analysis, program synthesis, termination of programs, as well
as hybrid system analysis, particularly safety check and
controller synthesis.

I Closely related to choosing an abstract domain in the abstract
interpretation approach.

Constraint Solving

I Quantifier Elimination based approach proposed in a
Technical Report of Univ. of New Mexico in 2003.

I Sankaranarayan, Sipma and Manna proposed it using Farkas’
Lemma in CAV 2003 and using Gröebner basis algorithms in
POPL 2004.

I Extensively investigated in many areas including program
analysis, program synthesis, termination of programs, as well
as hybrid system analysis, particularly safety check and
controller synthesis.

I Closely related to choosing an abstract domain in the abstract
interpretation approach.

How to Scale this Approach

I Quantifier Elimination Methods typically do not scale up due
to high complexity.

I Even for Presburger arithmetic, complexity is doubly
exponential in the number of quantifier alternations and triply
exponential in the number of quantified variables

I Output is huge and difficult to decipher.
I In practice, they often do not work (i.e., run out of memory or

hang).

I Linear constraint solving on rationals and reals (polyhedral
domain), while of polynomial complexity, has been found in
practice to be inefficient and slow, especially when used
repeatedly as in abstract interpretation approach [Miné]

How to Scale this Approach

I Quantifier Elimination Methods typically do not scale up due
to high complexity.

I Even for Presburger arithmetic, complexity is doubly
exponential in the number of quantifier alternations and triply
exponential in the number of quantified variables

I Output is huge and difficult to decipher.
I In practice, they often do not work (i.e., run out of memory or

hang).

I Linear constraint solving on rationals and reals (polyhedral
domain), while of polynomial complexity, has been found in
practice to be inefficient and slow, especially when used
repeatedly as in abstract interpretation approach [Miné]

How to Scale this Approach

I Quantifier Elimination Methods typically do not scale up due
to high complexity.

I Even for Presburger arithmetic, complexity is doubly
exponential in the number of quantifier alternations and triply
exponential in the number of quantified variables

I Output is huge and difficult to decipher.

I In practice, they often do not work (i.e., run out of memory or
hang).

I Linear constraint solving on rationals and reals (polyhedral
domain), while of polynomial complexity, has been found in
practice to be inefficient and slow, especially when used
repeatedly as in abstract interpretation approach [Miné]

How to Scale this Approach

I Quantifier Elimination Methods typically do not scale up due
to high complexity.

I Even for Presburger arithmetic, complexity is doubly
exponential in the number of quantifier alternations and triply
exponential in the number of quantified variables

I Output is huge and difficult to decipher.
I In practice, they often do not work (i.e., run out of memory or

hang).

I Linear constraint solving on rationals and reals (polyhedral
domain), while of polynomial complexity, has been found in
practice to be inefficient and slow, especially when used
repeatedly as in abstract interpretation approach [Miné]

How to Scale this Approach

I Quantifier Elimination Methods typically do not scale up due
to high complexity.

I Even for Presburger arithmetic, complexity is doubly
exponential in the number of quantifier alternations and triply
exponential in the number of quantified variables

I Output is huge and difficult to decipher.
I In practice, they often do not work (i.e., run out of memory or

hang).

I Linear constraint solving on rationals and reals (polyhedral
domain), while of polynomial complexity, has been found in
practice to be inefficient and slow, especially when used
repeatedly as in abstract interpretation approach [Miné]

Octagonal Constraints

I Octagonal Constraints : l ≤ ±x ± y ≤ h, a highly restricted subset of linear
constraints (at most two variables with coefficients from {−1, 0, 1}).

I This fragment is the most expressive fragment of linear arithmetic over the
integers with a polynomial time decision procedure.

I Extending constraints to contain three variables (with just unit coefficients) per
inequality makes satisfiability check over the integers NP-complete.

I Two variable inequalities with non-unit coefficients over the integers makes the
satisfiability check NP-complete.

I Class of programs that can be analyzed are very restricted. Still using octagonal
constraints (and other heuristics), ASTREE is able to successfully analyze
hundreds of thousands of lines of code of numerical software.

I Miné gave well-designed algorithms based on Difference Bound Matrices
(DBMs) and graph representation for performing various operations needed for
program analysis using the abstract interpretation approach.

I Miné’s algorithms are of O(n3) (sometimes, O(n4)), where n is the number of
variables.

Octagonal Constraints

I Octagonal Constraints : l ≤ ±x ± y ≤ h, a highly restricted subset of linear
constraints (at most two variables with coefficients from {−1, 0, 1}).

I This fragment is the most expressive fragment of linear arithmetic over the
integers with a polynomial time decision procedure.

I Extending constraints to contain three variables (with just unit coefficients) per
inequality makes satisfiability check over the integers NP-complete.

I Two variable inequalities with non-unit coefficients over the integers makes the
satisfiability check NP-complete.

I Class of programs that can be analyzed are very restricted. Still using octagonal
constraints (and other heuristics), ASTREE is able to successfully analyze
hundreds of thousands of lines of code of numerical software.

I Miné gave well-designed algorithms based on Difference Bound Matrices
(DBMs) and graph representation for performing various operations needed for
program analysis using the abstract interpretation approach.

I Miné’s algorithms are of O(n3) (sometimes, O(n4)), where n is the number of
variables.

Octagonal Constraints

I Octagonal Constraints : l ≤ ±x ± y ≤ h, a highly restricted subset of linear
constraints (at most two variables with coefficients from {−1, 0, 1}).

I This fragment is the most expressive fragment of linear arithmetic over the
integers with a polynomial time decision procedure.

I Extending constraints to contain three variables (with just unit coefficients) per
inequality makes satisfiability check over the integers NP-complete.

I Two variable inequalities with non-unit coefficients over the integers makes the
satisfiability check NP-complete.

I Class of programs that can be analyzed are very restricted. Still using octagonal
constraints (and other heuristics), ASTREE is able to successfully analyze
hundreds of thousands of lines of code of numerical software.

I Miné gave well-designed algorithms based on Difference Bound Matrices
(DBMs) and graph representation for performing various operations needed for
program analysis using the abstract interpretation approach.

I Miné’s algorithms are of O(n3) (sometimes, O(n4)), where n is the number of
variables.

Octagonal Constraints

I Octagonal Constraints : l ≤ ±x ± y ≤ h, a highly restricted subset of linear
constraints (at most two variables with coefficients from {−1, 0, 1}).

I This fragment is the most expressive fragment of linear arithmetic over the
integers with a polynomial time decision procedure.

I Extending constraints to contain three variables (with just unit coefficients) per
inequality makes satisfiability check over the integers NP-complete.

I Two variable inequalities with non-unit coefficients over the integers makes the
satisfiability check NP-complete.

I Class of programs that can be analyzed are very restricted. Still using octagonal
constraints (and other heuristics), ASTREE is able to successfully analyze
hundreds of thousands of lines of code of numerical software.

I Miné gave well-designed algorithms based on Difference Bound Matrices
(DBMs) and graph representation for performing various operations needed for
program analysis using the abstract interpretation approach.

I Miné’s algorithms are of O(n3) (sometimes, O(n4)), where n is the number of
variables.

Octagonal Constraints

I Octagonal Constraints : l ≤ ±x ± y ≤ h, a highly restricted subset of linear
constraints (at most two variables with coefficients from {−1, 0, 1}).

I This fragment is the most expressive fragment of linear arithmetic over the
integers with a polynomial time decision procedure.

I Extending constraints to contain three variables (with just unit coefficients) per
inequality makes satisfiability check over the integers NP-complete.

I Two variable inequalities with non-unit coefficients over the integers makes the
satisfiability check NP-complete.

I Class of programs that can be analyzed are very restricted. Still using octagonal
constraints (and other heuristics), ASTREE is able to successfully analyze
hundreds of thousands of lines of code of numerical software.

I Miné gave well-designed algorithms based on Difference Bound Matrices
(DBMs) and graph representation for performing various operations needed for
program analysis using the abstract interpretation approach.

I Miné’s algorithms are of O(n3) (sometimes, O(n4)), where n is the number of
variables.

Octagonal Constraints

I Octagonal Constraints : l ≤ ±x ± y ≤ h, a highly restricted subset of linear
constraints (at most two variables with coefficients from {−1, 0, 1}).

I This fragment is the most expressive fragment of linear arithmetic over the
integers with a polynomial time decision procedure.

I Extending constraints to contain three variables (with just unit coefficients) per
inequality makes satisfiability check over the integers NP-complete.

I Two variable inequalities with non-unit coefficients over the integers makes the
satisfiability check NP-complete.

I Class of programs that can be analyzed are very restricted. Still using octagonal
constraints (and other heuristics), ASTREE is able to successfully analyze
hundreds of thousands of lines of code of numerical software.

I Miné gave well-designed algorithms based on Difference Bound Matrices
(DBMs) and graph representation for performing various operations needed for
program analysis using the abstract interpretation approach.

I Miné’s algorithms are of O(n3) (sometimes, O(n4)), where n is the number of
variables.

Octagonal Constraints

I Octagonal Constraints : l ≤ ±x ± y ≤ h, a highly restricted subset of linear
constraints (at most two variables with coefficients from {−1, 0, 1}).

I This fragment is the most expressive fragment of linear arithmetic over the
integers with a polynomial time decision procedure.

I Extending constraints to contain three variables (with just unit coefficients) per
inequality makes satisfiability check over the integers NP-complete.

I Two variable inequalities with non-unit coefficients over the integers makes the
satisfiability check NP-complete.

I Class of programs that can be analyzed are very restricted. Still using octagonal
constraints (and other heuristics), ASTREE is able to successfully analyze
hundreds of thousands of lines of code of numerical software.

I Miné gave well-designed algorithms based on Difference Bound Matrices
(DBMs) and graph representation for performing various operations needed for
program analysis using the abstract interpretation approach.

I Miné’s algorithms are of O(n3) (sometimes, O(n4)), where n is the number of
variables.

Octagonal Constraints and Quantifier Elimination

I Octagonal constraints have a fixed shape. Given n variables,
the most general formula (after simplification) is of the
following form∧

i,j (Ii,j : ai,j ≤ xi−xj ≤ bi,j , ci,j ≤ xi +xj ≤ di,j , ei ≤ xi ≤ fi gj ≤ xj ≤ hj)

for every pair of variables xi , xj , where ai,j , bi,j , ci,j , di,j , ei , fi , gj , hj are
parameters.

I For a finite program path consisting of a sequence of
assignment statements interspersed with tests, its behavior is
approximated so that the post condition is also of the above
form.

I A verification condition is expressed using atomic formulas
that are all octagonal constraints.∧

i ,j

((Ii ,j ∧ α(xi , xj))⇒ I ′i ,j),

along with additional parameter-free constraints α(xi , xj), of
the same form in which lower and upper bounds are constants.

Octagonal Constraints and Quantifier Elimination

I Octagonal constraints have a fixed shape. Given n variables,
the most general formula (after simplification) is of the
following form∧

i,j (Ii,j : ai,j ≤ xi−xj ≤ bi,j , ci,j ≤ xi +xj ≤ di,j , ei ≤ xi ≤ fi gj ≤ xj ≤ hj)

for every pair of variables xi , xj , where ai,j , bi,j , ci,j , di,j , ei , fi , gj , hj are
parameters.

I For a finite program path consisting of a sequence of
assignment statements interspersed with tests, its behavior is
approximated so that the post condition is also of the above
form.

I A verification condition is expressed using atomic formulas
that are all octagonal constraints.∧

i ,j

((Ii ,j ∧ α(xi , xj))⇒ I ′i ,j),

along with additional parameter-free constraints α(xi , xj), of
the same form in which lower and upper bounds are constants.

Octagonal Constraints and Quantifier Elimination

I Octagonal constraints have a fixed shape. Given n variables,
the most general formula (after simplification) is of the
following form∧

i,j (Ii,j : ai,j ≤ xi−xj ≤ bi,j , ci,j ≤ xi +xj ≤ di,j , ei ≤ xi ≤ fi gj ≤ xj ≤ hj)

for every pair of variables xi , xj , where ai,j , bi,j , ci,j , di,j , ei , fi , gj , hj are
parameters.

I For a finite program path consisting of a sequence of
assignment statements interspersed with tests, its behavior is
approximated so that the post condition is also of the above
form.

I A verification condition is expressed using atomic formulas
that are all octagonal constraints.∧

i ,j

((Ii ,j ∧ α(xi , xj))⇒ I ′i ,j),

along with additional parameter-free constraints α(xi , xj), of
the same form in which lower and upper bounds are constants.

Approach: Local QE Heuristics

I Analysis of a big conjunctive constraint on every possible pair
of variables can be considered individually by considering the
subformula on each distinct pair.

I Consider a precondition, which is a conjunction,
ai ,j ≤ xi − xj ≤ bi ,j , ci ,j ≤ xi + xj ≤ di ,j , ei ≤ xi ≤ fi , gj ≤
xj ≤ hj
Assignment statements are of the form xi := xi + a or
xi := −xi + a. And, tests are lower and upper bounds on
variables and expressions of the form ±xi ± xj . Otherwise,
tests and assignments must be approximated.

I Quantifier elimination heuristics can be developed using which
it is possible to generate constraints on lower and upper
bounds by table look ups in O(n2) steps, where n is the
number of program variables.

Approach: Local QE Heuristics

I Analysis of a big conjunctive constraint on every possible pair
of variables can be considered individually by considering the
subformula on each distinct pair.

I Consider a precondition, which is a conjunction,
ai ,j ≤ xi − xj ≤ bi ,j , ci ,j ≤ xi + xj ≤ di ,j , ei ≤ xi ≤ fi , gj ≤
xj ≤ hj
Assignment statements are of the form xi := xi + a or
xi := −xi + a. And, tests are lower and upper bounds on
variables and expressions of the form ±xi ± xj . Otherwise,
tests and assignments must be approximated.

I Quantifier elimination heuristics can be developed using which
it is possible to generate constraints on lower and upper
bounds by table look ups in O(n2) steps, where n is the
number of program variables.

Approach: Local QE Heuristics

I Analysis of a big conjunctive constraint on every possible pair
of variables can be considered individually by considering the
subformula on each distinct pair.

I Consider a precondition, which is a conjunction,
ai ,j ≤ xi − xj ≤ bi ,j , ci ,j ≤ xi + xj ≤ di ,j , ei ≤ xi ≤ fi , gj ≤
xj ≤ hj
Assignment statements are of the form xi := xi + a or
xi := −xi + a. And, tests are lower and upper bounds on
variables and expressions of the form ±xi ± xj . Otherwise,
tests and assignments must be approximated.

I Quantifier elimination heuristics can be developed using which
it is possible to generate constraints on lower and upper
bounds by table look ups in O(n2) steps, where n is the
number of program variables.

Geometric QE Heuristic

I Analyze how an octagon is affected by transformations due to
assignments.

I Identify conditions under which the transformed octagon
includes the portion of the original octagon satisfying tests
along a program path.

I For each assignment case, a table is built showing the effect
on the parameter values by determining the effect on every
type of constraints.

Geometric QE Heuristic

I Analyze how an octagon is affected by transformations due to
assignments.

I Identify conditions under which the transformed octagon
includes the portion of the original octagon satisfying tests
along a program path.

I For each assignment case, a table is built showing the effect
on the parameter values by determining the effect on every
type of constraints.

Geometric QE Heuristic

I Analyze how an octagon is affected by transformations due to
assignments.

I Identify conditions under which the transformed octagon
includes the portion of the original octagon satisfying tests
along a program path.

I For each assignment case, a table is built showing the effect
on the parameter values by determining the effect on every
type of constraints.

Table 1: Assignments with signs of variables reversed

xi := −xi +A, xj := −xj +B, ∆1 = B−A, ∆2 = −A−B, ∆3 = −A, ∆4 = −B.

Table 1: Assignments with signs of variables reversed

xi := −xi +A, xj := −xj +B, ∆1 = B−A, ∆2 = −A−B, ∆3 = −A, ∆4 = −B.

present absent
xi − xj ≤ a a ≤ −l1 − ∆1 u1 ≤ −l1 − ∆1

xi − xj ≥ b −u1 − ∆1 ≤ b −u1 − ∆1 ≤ l1
xi + xj ≤ c c ≤ −l2 − ∆2 u2 ≤ −l2 − ∆2

xi + xj ≥ d −u2 − ∆2 ≤ d −u2 − ∆2 ≤ l2
xi ≤ e e ≤ −l3 − ∆3 u3 ≤ −l3 − ∆3
xi ≥ f −u3 − ∆3 ≤ f −u3 − ∆3 ≤ l3
xj ≤ g g ≤ −l4 − ∆4 u4 ≤ −l4 − ∆4

xj ≥ h −u4 − ∆4 ≤ h −u4 − ∆4 ≤ l4

Table 2: No changing signs of variables

xi := xi + A, xj := xj + B, ∆1 = A− B, ∆2 = A + B, ∆3 = A, ∆4 = B.

Table 2: No changing signs of variables

xi := xi + A, xj := xj + B, ∆1 = A− B, ∆2 = A + B, ∆3 = A, ∆4 = B.

present absent
xi − xj ≤ a
∆1 > 0

u1 ≥ a + ∆1 u1 = +∞

xi − xj ≥ b
∆1 < 0

l1 ≤ b + ∆1 l1 = −∞

xi + xj ≤ c
∆2 > 0

u2 ≥ c + ∆2 u2 = +∞

xi + xj ≥ d
∆2 < 0

l2 ≤ d + ∆2 l2 = −∞

xi ≤ e
∆3 > 0

u3 ≥ e + ∆3 u3 = +∞

xi ≥ f
∆3 < 0

l3 ≤ f + ∆3 l3 = −∞

xj ≤ g
∆4 > 0

u4 ≥ g + ∆4 u4 = +∞

xj ≥ h
∆4 < 0

l4 ≤ h + ∆4 l4 = −∞

Table 3: Sign of exactly one variable is changed

xi := −xi + A, xj := xj + B, ∆1 = B − A, ∆2 = −A− B, ∆3 = −A, ∆4 = B.

Table 3: Sign of exactly one variable is changed

xi := −xi + A, xj := xj + B, ∆1 = B − A, ∆2 = −A− B, ∆3 = −A, ∆4 = B.

present absent
xi − xj ≤ a a ≤ −l2 − ∆2 u1 ≤ −l2 − ∆2
xi − xj ≥ b −u2 − ∆2 ≤ b −u2 − ∆2 ≤ l1
xi + xj ≤ c c ≤ −l1 − ∆1 u2 ≤ −l1 − ∆1
xi + xj ≥ d −u1 − ∆1 ≤ d −u1 − ∆1 ≤ l2
xi ≤ e e ≤ −l3 − ∆3 u3 ≤ −l3 − ∆3
xi ≥ f −u3 − ∆3 ≤ f −u3 − ∆3 ≤ l3
xj ≤ g
∆4 > 0

u4 ≥ g + ∆4 u4 = +∞

xj ≥ h
∆4 < 0

l4 ≤ h + ∆4 l4 = −∞

A Simple Example

Example

x := 4; y := 6;

while (x + y >= 0) do

if (y >= 6) then { x := -x; y := y - 1 }

else { x := x - 1; y := -y }

endwhile

A Simple Example

Example

x := 4; y := 6;

while (x + y >= 0) do

if (y >= 6) then { x := -x; y := y - 1 }

else { x := x - 1; y := -y }

endwhile

VC0: I (4, 6)
VC1: (I (x , y) ∧ (x + y) ≥ 0 ∧ y ≥ 6) =⇒ I (−x , y − 1).
VC2: (I (x , y) ∧ (x + y) ≥ 0 ∧ y < 6) =⇒ I (x − 1,−y).

Generating Constraints on Parameters
I VC0:

l1 ≤ −2 ≤ u1 ∧ l2 ≤ 10 ≤ u2 ∧ l3 ≤ 4 ≥ u3 ∧ l4 ≤ 6 ≤ u4.

I VC1: x − y : −u2 − 1 ≤ l1 ∧ u1 ≤ −l2 − 1.
x + y : −u1 + 1 ≤ 0 ∧ u2 ≤ −l1 + 1.
x : l3 + u3 = 0.
y : l4 ≤ 5.

I VC2: x − y : −u2 − 1 ≤ −u1 ∧ 10 ≤ −l2 − 1.
x + y : l1 + 1 ≤ 0 ∧ u2 ≤ u1 + 1.
x : l3 ≤ −6.
y : −u4 ≤ l4 ∧ 5 ≤ −l4.

I Making the li ’s as large as possible and ui ’s as small as
possible:

l1 = −10, u1 = 9, l2 = −11, u2 = 10, l3 = −6, u3 = 6, l4 = −5, u4 = 6.

I The corresponding invariant is:

−10 ≤ x−y ≤ 9∧−11 ≤ x+y ≤ 10∧−6 ≤ x ≤ 6∧−5 ≤ y ≤ 6.

Generating Constraints on Parameters
I VC0:

l1 ≤ −2 ≤ u1 ∧ l2 ≤ 10 ≤ u2 ∧ l3 ≤ 4 ≥ u3 ∧ l4 ≤ 6 ≤ u4.
I VC1: x − y : −u2 − 1 ≤ l1 ∧ u1 ≤ −l2 − 1.

x + y : −u1 + 1 ≤ 0 ∧ u2 ≤ −l1 + 1.
x : l3 + u3 = 0.
y : l4 ≤ 5.

I VC2: x − y : −u2 − 1 ≤ −u1 ∧ 10 ≤ −l2 − 1.
x + y : l1 + 1 ≤ 0 ∧ u2 ≤ u1 + 1.
x : l3 ≤ −6.
y : −u4 ≤ l4 ∧ 5 ≤ −l4.

I Making the li ’s as large as possible and ui ’s as small as
possible:

l1 = −10, u1 = 9, l2 = −11, u2 = 10, l3 = −6, u3 = 6, l4 = −5, u4 = 6.

I The corresponding invariant is:

−10 ≤ x−y ≤ 9∧−11 ≤ x+y ≤ 10∧−6 ≤ x ≤ 6∧−5 ≤ y ≤ 6.

Generating Constraints on Parameters
I VC0:

l1 ≤ −2 ≤ u1 ∧ l2 ≤ 10 ≤ u2 ∧ l3 ≤ 4 ≥ u3 ∧ l4 ≤ 6 ≤ u4.
I VC1: x − y : −u2 − 1 ≤ l1 ∧ u1 ≤ −l2 − 1.

x + y : −u1 + 1 ≤ 0 ∧ u2 ≤ −l1 + 1.
x : l3 + u3 = 0.
y : l4 ≤ 5.

I VC2: x − y : −u2 − 1 ≤ −u1 ∧ 10 ≤ −l2 − 1.
x + y : l1 + 1 ≤ 0 ∧ u2 ≤ u1 + 1.
x : l3 ≤ −6.
y : −u4 ≤ l4 ∧ 5 ≤ −l4.

I Making the li ’s as large as possible and ui ’s as small as
possible:

l1 = −10, u1 = 9, l2 = −11, u2 = 10, l3 = −6, u3 = 6, l4 = −5, u4 = 6.

I The corresponding invariant is:

−10 ≤ x−y ≤ 9∧−11 ≤ x+y ≤ 10∧−6 ≤ x ≤ 6∧−5 ≤ y ≤ 6.

Generating Constraints on Parameters
I VC0:

l1 ≤ −2 ≤ u1 ∧ l2 ≤ 10 ≤ u2 ∧ l3 ≤ 4 ≥ u3 ∧ l4 ≤ 6 ≤ u4.
I VC1: x − y : −u2 − 1 ≤ l1 ∧ u1 ≤ −l2 − 1.

x + y : −u1 + 1 ≤ 0 ∧ u2 ≤ −l1 + 1.
x : l3 + u3 = 0.
y : l4 ≤ 5.

I VC2: x − y : −u2 − 1 ≤ −u1 ∧ 10 ≤ −l2 − 1.
x + y : l1 + 1 ≤ 0 ∧ u2 ≤ u1 + 1.
x : l3 ≤ −6.
y : −u4 ≤ l4 ∧ 5 ≤ −l4.

I Making the li ’s as large as possible and ui ’s as small as
possible:

l1 = −10, u1 = 9, l2 = −11, u2 = 10, l3 = −6, u3 = 6, l4 = −5, u4 = 6.

I The corresponding invariant is:

−10 ≤ x−y ≤ 9∧−11 ≤ x+y ≤ 10∧−6 ≤ x ≤ 6∧−5 ≤ y ≤ 6.

Generating Constraints on Parameters
I VC0:

l1 ≤ −2 ≤ u1 ∧ l2 ≤ 10 ≤ u2 ∧ l3 ≤ 4 ≥ u3 ∧ l4 ≤ 6 ≤ u4.
I VC1: x − y : −u2 − 1 ≤ l1 ∧ u1 ≤ −l2 − 1.

x + y : −u1 + 1 ≤ 0 ∧ u2 ≤ −l1 + 1.
x : l3 + u3 = 0.
y : l4 ≤ 5.

I VC2: x − y : −u2 − 1 ≤ −u1 ∧ 10 ≤ −l2 − 1.
x + y : l1 + 1 ≤ 0 ∧ u2 ≤ u1 + 1.
x : l3 ≤ −6.
y : −u4 ≤ l4 ∧ 5 ≤ −l4.

I Making the li ’s as large as possible and ui ’s as small as
possible:

l1 = −10, u1 = 9, l2 = −11, u2 = 10, l3 = −6, u3 = 6, l4 = −5, u4 = 6.

I The corresponding invariant is:

−10 ≤ x−y ≤ 9∧−11 ≤ x+y ≤ 10∧−6 ≤ x ≤ 6∧−5 ≤ y ≤ 6.

Generating Invariants using Table Look-ups

I To determine parameter constraints corresponding to a
specific program path, read the corresponding entries from the
table.

I Accumulate all such constraints on parameter values. They
are also of octagonal form.

I Every parameter value that satisfies the parameter constraints
leads to an invariant.

I Maximum values of lower bounds and minimal values of upper
bounds satisfying the parameter constraints gives the
strongest invariants.

I The above can be computed using Floyd-Warshall’s algorithm.

I Overall Complexity: O(n2).

Generating Invariants using Table Look-ups

I To determine parameter constraints corresponding to a
specific program path, read the corresponding entries from the
table.

I Accumulate all such constraints on parameter values. They
are also of octagonal form.

I Every parameter value that satisfies the parameter constraints
leads to an invariant.

I Maximum values of lower bounds and minimal values of upper
bounds satisfying the parameter constraints gives the
strongest invariants.

I The above can be computed using Floyd-Warshall’s algorithm.

I Overall Complexity: O(n2).

Generating Invariants using Table Look-ups

I To determine parameter constraints corresponding to a
specific program path, read the corresponding entries from the
table.

I Accumulate all such constraints on parameter values. They
are also of octagonal form.

I Every parameter value that satisfies the parameter constraints
leads to an invariant.

I Maximum values of lower bounds and minimal values of upper
bounds satisfying the parameter constraints gives the
strongest invariants.

I The above can be computed using Floyd-Warshall’s algorithm.

I Overall Complexity: O(n2).

Generating Invariants using Table Look-ups

I To determine parameter constraints corresponding to a
specific program path, read the corresponding entries from the
table.

I Accumulate all such constraints on parameter values. They
are also of octagonal form.

I Every parameter value that satisfies the parameter constraints
leads to an invariant.

I Maximum values of lower bounds and minimal values of upper
bounds satisfying the parameter constraints gives the
strongest invariants.

I The above can be computed using Floyd-Warshall’s algorithm.

I Overall Complexity: O(n2).

Generating Invariants using Table Look-ups

I To determine parameter constraints corresponding to a
specific program path, read the corresponding entries from the
table.

I Accumulate all such constraints on parameter values. They
are also of octagonal form.

I Every parameter value that satisfies the parameter constraints
leads to an invariant.

I Maximum values of lower bounds and minimal values of upper
bounds satisfying the parameter constraints gives the
strongest invariants.

I The above can be computed using Floyd-Warshall’s algorithm.

I Overall Complexity: O(n2).

Generating Invariants using Table Look-ups

I To determine parameter constraints corresponding to a
specific program path, read the corresponding entries from the
table.

I Accumulate all such constraints on parameter values. They
are also of octagonal form.

I Every parameter value that satisfies the parameter constraints
leads to an invariant.

I Maximum values of lower bounds and minimal values of upper
bounds satisfying the parameter constraints gives the
strongest invariants.

I The above can be computed using Floyd-Warshall’s algorithm.

I Overall Complexity: O(n2).

Local QE Heuristics: Propagation of Tests?

I Local propagation (i.e., propagate bounds only for the pair of
variables appearing in the constraints) on tests to bring them
in a canonical form can sometimes improve the bounds. But
that is not always clear. The complexity still remains O(n2).

I Global propagation (meaning propagate bounds from the
given constraints on a pair of variables to other constraints in
which these variables appear) can sometimes improve the
bounds even further. But, then the complexity is O(n3).

I There are examples for which both local and global
propagation (closure) lead to worse results.

Local QE Heuristics: Propagation of Tests?

I Local propagation (i.e., propagate bounds only for the pair of
variables appearing in the constraints) on tests to bring them
in a canonical form can sometimes improve the bounds. But
that is not always clear. The complexity still remains O(n2).

I Global propagation (meaning propagate bounds from the
given constraints on a pair of variables to other constraints in
which these variables appear) can sometimes improve the
bounds even further. But, then the complexity is O(n3).

I There are examples for which both local and global
propagation (closure) lead to worse results.

Local QE Heuristics: Propagation of Tests?

I Local propagation (i.e., propagate bounds only for the pair of
variables appearing in the constraints) on tests to bring them
in a canonical form can sometimes improve the bounds. But
that is not always clear. The complexity still remains O(n2).

I Global propagation (meaning propagate bounds from the
given constraints on a pair of variables to other constraints in
which these variables appear) can sometimes improve the
bounds even further. But, then the complexity is O(n3).

I There are examples for which both local and global
propagation (closure) lead to worse results.

Comparative Analysis

I QE based methods generate inductive invariants.

I Invariants generated by a complete QE based method are the
strongest invariants of the given shape.

I Any method for generating invariants that uses fixed point
computation, also generates inductive invariants, and hence,
cannot generate stronger invariants than those generated by a
complete QE method insofar as these invariants are of the
same form.

I It has been found in practice that QE based methods generate
stronger inductive invariants than methods based on abstract
interpretation for polyhedral domain.

I An open question: the strength of invariants generated by the
proposed incomplete heuristics.

Comparative Analysis

I QE based methods generate inductive invariants.

I Invariants generated by a complete QE based method are the
strongest invariants of the given shape.

I Any method for generating invariants that uses fixed point
computation, also generates inductive invariants, and hence,
cannot generate stronger invariants than those generated by a
complete QE method insofar as these invariants are of the
same form.

I It has been found in practice that QE based methods generate
stronger inductive invariants than methods based on abstract
interpretation for polyhedral domain.

I An open question: the strength of invariants generated by the
proposed incomplete heuristics.

Comparative Analysis

I QE based methods generate inductive invariants.

I Invariants generated by a complete QE based method are the
strongest invariants of the given shape.

I Any method for generating invariants that uses fixed point
computation, also generates inductive invariants, and hence,
cannot generate stronger invariants than those generated by a
complete QE method insofar as these invariants are of the
same form.

I It has been found in practice that QE based methods generate
stronger inductive invariants than methods based on abstract
interpretation for polyhedral domain.

I An open question: the strength of invariants generated by the
proposed incomplete heuristics.

Comparative Analysis

I QE based methods generate inductive invariants.

I Invariants generated by a complete QE based method are the
strongest invariants of the given shape.

I Any method for generating invariants that uses fixed point
computation, also generates inductive invariants, and hence,
cannot generate stronger invariants than those generated by a
complete QE method insofar as these invariants are of the
same form.

I It has been found in practice that QE based methods generate
stronger inductive invariants than methods based on abstract
interpretation for polyhedral domain.

I An open question: the strength of invariants generated by the
proposed incomplete heuristics.

Comparative Analysis

I QE based methods generate inductive invariants.

I Invariants generated by a complete QE based method are the
strongest invariants of the given shape.

I Any method for generating invariants that uses fixed point
computation, also generates inductive invariants, and hence,
cannot generate stronger invariants than those generated by a
complete QE method insofar as these invariants are of the
same form.

I It has been found in practice that QE based methods generate
stronger inductive invariants than methods based on abstract
interpretation for polyhedral domain.

I An open question: the strength of invariants generated by the
proposed incomplete heuristics.

Disjunctive Invariants

0 5 10
0

5

10x := 0; y := 5;
while (x < 10) do

if (x < 5) then
x := x + 1;

else
x := x+1; y := y+1;

I = (0 ≤ x ≤ 5 ∧ y = 5) ∨ (5 ≤ x ≤
10 ∧ x = y).
It consists of two lines and is clearly not convex.
It cannot be expressed as a conjunction of linear constraints,
including octagonal constraints or even general polyhedra.

Shapes

(
a1

b1

) (
a1

b1

)
(
a1

b1

)(
a2

b2

)
(
a2

b2

)

(
a2

b2

)
Shape 1:
b1 ≤ b2

a1−b1 ≤ a2−b2

Shape 2:
b1 ≤ b2

a1−b1 ≥ a2−b2

Shape 3:
b1 ≥ b2

Shape 1

assignment statements max-plus polyhedra to be cut off

A = 0,B = 0 –

A > 0,B = 0, A ≤ ∆a −∆b co({
(a2−∆b−A+1

b1

)
,
(a2
b2

)
})

A > 0,B = A, A ≤ ∆b co({
(a1
b1

)
,
(a2−∆b−1

b1

)
}), if ∆a 6= ∆b

co({
(a2−A+1
b2−A+1

)
,
(a2
b2

)
})

A > B,B > 0, ∆ ≤ ∆a −∆b,B ≤ ∆b co({
(a1
b1

)
,
(a2−∆b−∆−1

b1

)
}), if ∆b + ∆ 6= ∆a

co({
(a2
b2

)
,
(a2−∆b−∆+1

b1

)
})

A < 0,B = 0, |A| ≤ ∆a −∆b co({
(a1
b1

)
,
(a1−A−1

b1

)
})

co({
(a2−∆b+1

b1+1

)
,
(a2
b2

)
}), if ∆b 6= 0

A < 0,B = A, |A| ≤ ∆b co({
(a1
b1

)
,
(a2−∆b−A+1

b1−A+1

)
})

A < B,B < 0, ∆ ≤ ∆a −∆b, |B| < ∆b co({
(a1
b1

)
,
(a2−∆b−B−1

b1−B−1

)
})

co({
(a2
b2

)
,
(a2−∆b−B+1

b1−B+1

)
}), if B + ∆b 6= 0

all other cases co({
(a1
b1

)
,
(a2
b2

)
})

Shape 2

assignment statements max-plus polyhedra to be cut off

A = 0,B = 0 –

A = 0,B > 0, B ≤ ∆b −∆a co({
(a1
b2−∆a−B+1

)
,
(a2
b2

)
})

A = 0,B < 0, |B| ≤ ∆b −∆a co({
(a1
b1

)
,
(a1
b1−B+1

)
})

co({
(a1+1
b2−∆a+1

)
,
(a2
b2

)
}), if a1 6= a2

A > 0,B = A, A ≤ ∆a co({
(a1
b1

)
,
(a1
b2−∆a−1

)
}), if ∆a 6= ∆b

co({
(a2
b2

)
,
(a2−A+1
b2−A+1

)
})

A > 0,B > A, A ≤ ∆a,∆ ≥ ∆b −∆a co({
(a1
b1

)
,
(a1
b2−∆a+∆−1

)
})

co({
(a2
b2

)
,
(a1
b2−∆a+∆+1

)
}), if ∆a −∆ 6= ∆b

A < 0,B = A, |A| ≤ ∆a co({
(a1
b1

)
,
(a1−A−1
b2−∆a−A−1

)
})

A < 0,B < A, |A| ≤ ∆a,∆ ≤ ∆b −∆a co({
(a1
b1

)
,
(a1−A−1
b2−∆a−A−1

)
})

co({
(a2
b2

)
,
(a1−A+1
b2−∆a−A+1

)
}), if ∆b + A 6= 0

all other cases co({
(a1
b1

)
,
(a2
b2

)
})

Shape 3

assignment statements max-plus polyhedra to be cut off

A = 0,B = 0 –

A = 0,B > 0, B ≤ −∆b co({
(a1
b1

)
,
(a2
b1−B+1

)
})

A = 0,B < 0, B ≥ ∆b co({
(a1
b1

)
,
(a2−1

b1

)
}), if a1 6= a2

co({
(a2
b2

)
,
(a2
b2−B−1

)
})

A > 0,B = 0, A ≤ ∆a co({
(a2
b2

)
,
(a2−A+1

b1

)
})

A > 0,B < 0, A ≤ ∆a,B ≥ ∆b co({
(a1
b1

)
,
(a2−A−1

b1

)
}), if A 6= ∆a

co({
(a2
b2

)
,
(a2−A+1

b1

)
})

A < 0,B = 0, |A| ≤ ∆a co({
(a1
b1

)
,
(a1−A−1

b1

)
})

co({
(a2
b2

)
,
(a2
b1−1

)
}), if b1 6= b2.

A < 0,B > 0, |A| ≤ ∆a,B ≤ −∆b co({
(a1
b1

)
,
(a2
b1−B+1

)
})

co({
(a2
b2

)
,
(a2
b1−B−1

)
}), if ∆b + B 6= 0.

all other cases co({
(a1
b1

)
,
(a2
b2

)
})

Example

0 5 10
0

5

10x := 0; y := 5;
while (x < 10) do

if (x < 5) then
x := x + 1;

else
x := x+1; y := y+1;

Example

(
a1

b1

) (
a2

b2

)Assumed shape of M:

Loop invariant M must be satisfied when the loop is entered.
The initial value is situated on the horizontal branch of M giving
the constraints
a1 ≤ 0 ≤ a2 − (b2 − b1) and b1 = 0.

Example

(
a1

b1

) (
a2

b2

)Assumed shape of M:

First branch: VC is(x
y

)
∈ co({

(a1
b1

)
,
(a2
b2

)
})∧(x < 10∧x < 5) =⇒

(x+1
y

)
∈ co({

(a1
b1

)
,
(a2
b2

)
})

or equivalently(x
y

)
∈ co({

(a1
b1

)
,
(a2
b2

)
})∧(x < 10∧x < 5) =⇒

(x
y

)
∈ co({

(a1−1
b1

)
,
(a2−1

b2

)
}) .

Resulting constraint: a2 − (b2 − b1)− 1 ≥ 4

Example

(
a2−(b2−b1)−1

b1

)
(
a1

b1

) (
a2

b2

)Assumed shape of M: Analysis of path 1:

M ′1

Second branch: let M ′2 be the max-plus polyhedron generated by(a1−1
b1−1

)
and

(a2−1
b2−1

)
.

For M to be an invariant, every point in M \M ′2, i.e. every point in

M left of
(a2−(b2−b1)

b1

)
or right of

(a2−1
b2−1

)
, is cut off by the

constraints x < 10 ∧ x ≥ 5 (or equivalently x ≤ 9 ∧ x ≤ 4) along
the path. This implies a2 − (b2 − b1) ≤ 5 and a2 − 1 ≥ 9.

Example

(
a2−(b2−b1)−1

b1

) (
a2−(b2−b1)

b1

)(
a2−1
b2−1

)(
a1

b1

) (
a2

b2

)Assumed shape of M: Analysis of path 1: Analysis of path 2:

M ′1

M ′2

All these constraints can be combined to a1 ≤ 0, b1 = 0, a2 ≥ 10,
and a2 − b2 = 5.
Every instantiation of the parameters that satisfies these
constraints leads to a valid loop invariant.
To find the strongest invariant, maximize a1 and b1 and minimize
a2 and b2, just as we before maximized the li and minimized the
ui . This yields the max-plus polyhedron generated by the two
points

(0
5

)
and

(10
10

)
.

Summary

I Quantifier-elimination heuristics might be an alternative to
abstract interpretation for program analysis.

I Since general (complete) QE methods are very expensive and
their outputs are hard to decipher, it is better to consider
special cases, sacrificing completeness as well as generality.

I There is a real trade-off between resources/efficiency and
precision/incompleteness.

I Many bells and whistles are needed, just like in the abstract
interpretation approach.

I An implementation is in progress.

Summary

I Quantifier-elimination heuristics might be an alternative to
abstract interpretation for program analysis.

I Since general (complete) QE methods are very expensive and
their outputs are hard to decipher, it is better to consider
special cases, sacrificing completeness as well as generality.

I There is a real trade-off between resources/efficiency and
precision/incompleteness.

I Many bells and whistles are needed, just like in the abstract
interpretation approach.

I An implementation is in progress.

Summary

I Quantifier-elimination heuristics might be an alternative to
abstract interpretation for program analysis.

I Since general (complete) QE methods are very expensive and
their outputs are hard to decipher, it is better to consider
special cases, sacrificing completeness as well as generality.

I There is a real trade-off between resources/efficiency and
precision/incompleteness.

I Many bells and whistles are needed, just like in the abstract
interpretation approach.

I An implementation is in progress.

Summary

I Quantifier-elimination heuristics might be an alternative to
abstract interpretation for program analysis.

I Since general (complete) QE methods are very expensive and
their outputs are hard to decipher, it is better to consider
special cases, sacrificing completeness as well as generality.

I There is a real trade-off between resources/efficiency and
precision/incompleteness.

I Many bells and whistles are needed, just like in the abstract
interpretation approach.

I An implementation is in progress.

	Introduction
	Automatically Generating Loop Invariants
	Automatically Generating Invariants
	Template Based Constraint Solving
	Scaling Up
	Octagonal Constraints
	Octagonal Constraints
	Approach: Local Geometric QE
	Assignments in which signs of variables are reversed
	Assignments in which signs of variables do not change
	Assignments in which sign of exactly one variable is changed
	Comparison
	Max-Plus Invariants
	Conclusions

