Vigilare : A|AHl B A S HAGSI= SIESY
01718 Al HAAUAKIE S HE

Yunheung Paek
S(W/oC/ecurity) Optimizations and Restructuring
Seoul National University

20124 3}A] ERC Workshop

Contents

2

il S E
27T
Satroral esearch Lats

o Introduction

o Implementation of Vigilare version 1
Attack Model
Design and Implementation
Evaluation

o Our roadmap
Short-term goals
Long-term goals

o Conclusion

S Optimizations and Restructuring

Our research godal

. 2

o S Aol 37FX| Security types
Confidentiality

w512 EIXI OFS ALBRIZE FHO WSS U & YEE FHE %

A

Integrity

=52 EIXI F S AGAIZE HEE BEE £HY £ YEE S
A

Availability

= 2 ALGALIE POl YI5HA StnA L m et WX e
gsd= A

0 QB HT FH:OlWH BOHM S SR B HQITH?

Purely software based moniforing system
Hardware based or hardware supported moniforing system

S Optimizations and Restructuring

Vigilare

o Hardware based infegrity moniforing system

o Missions of Vigilare

Hostel H Ot ZHAl 7|15 £ isolated EZF ol A AlSHSH A safer ZF Al

RESEARCH GROUP @

Code errors

o Computer systemol| Al e = Q= 272 A2
= Anything that causes abnormal behavior of SW or HW

ﬂ’}’ﬂltﬂfﬁlﬂ

Accidental & inadvertent Error
m Software Bug
m Hardware 2 & — soft/hard error
Intentional, malicious Error
m 2t 3 E (Malware)e 54
o Vigilare 0]M4 2] X 5 A
> o{EA g REC o5t 2 ZHAl U HFX|?

S Optimizations and Restructuring

=71 A+ 24 (2011 7= - 2012 =)

_ 4]

o Vigilare version T+ o s
Hardware design and | <-—¢ \b—->
implementation on | el > Snooper iz 18 ¥

Malware attack model (_) il ‘t F:)
implementation and | ¢t oy, [

test on Vigilare v.1 6 f b % (i 6

o == X s |

Vigilare : Toward Snoop-based Kernel Integrity Monitor
H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek and B.B. Kang
Conference on Computer and Communications Security (CCS), 2012

S Optimizations and Restructuring

= Top conference in ACM SIGSAC group with acceptance rate < 20%

Malware attack 53 =

f

wEHLYIET

7NEHTP
Natiorial ftescarch Lty

o Personal Identification Stealing
= AlZ YT BE
Al Al
I 2} O[] Al
o Advanced Persistent Threat (APT) for Corporate Espionage
19 dHd 7ls =&
2 U HE EE
o Used as Tool for Other Cybercrimes

DDoS & embedding time-bomb in numerous machines to shutdown
normal services with heavy workloads

@ _ S Optimizations and Restructuring

4 #A X0 e 2=

ral
O
_8 |

ﬂ’}’ﬂltﬂfﬁlﬂ

o User space

ASHGE A Ol OF
o= —

4917t M| 8t

L T™ A _I*C-)l
%%g g)gl g_cl %ng H 2| Il:|-o+0| 5||:|:| E+x|7|- H| I-I .9_o|

o Kernel space (Rootkit)

O| region®il it & rootkit®| 2t = kernel =

LCto 2 2
Oﬁ T e — = —
Zo| AUBtS EH MO 2 S E5t AT EQ O ool AtL
AMAEOl 2 7H58 R | AHY #5090 HIo|EHE oz

DE AAE AEfO| O ESt CH2 38 Sof AR A 21 Jts
8 AlS 0] EFX| E 79 £S 6 (= Android 22 % 20l = Al X|of
o S5 A2 SH

WAL 22 Tty

O
i Al O EFX| O LI Z L mot/F o

S Optimizations and Restructuring

States of system compromise

Severi

f Threat

Application

N e
User-Space Applicationi-*,_

1 " "
Malware | M
L
W

Victimized System

S Optimizations and Restructuring

7NEHTP
Natiorial ftescarch Lty

5 4 %I X[1: Kernel Static Region

o This is immutable region, so any 39bit Linux on x86
GCCGSS/mOdIfICGTIOn |S I”egCI| Virtual Address Space Physical Address Space
OXFFFFFFFF 022277723
o Text segment (Kernel code) — wobe —
o Interrupt Descriptor Table e mermory ;gz;;gg:fppmg
B nardware
o Sys_call_table | baging :
Dispatch system calls 00000000 _— memory
space
o Linux®| A1 linear-mapped
kernel virtual address AF& !
3GB User space 0x38000000
QIE_ HWO" A-l |7:|I-A| 7}% Kzrdnelco =
Address mappifg
Mapped statically = simple to trace (iat"'{frfj;ﬁypp 896MB
because violation is verdicted based , 23disssask | —
on structural rules (analogy: 0x00000000 0x00000000

lexical/syntax analysis in compiler)

@ S Optimizations and Restructuring @

54 $l X|2: Kernel Dynamic Region

' mmmmm
o Accesses/modifications are possible in principle but some

that cause semantic mismatch are illegal (ex: removing a process

o Loadable Kernel Modules (LKMs) entry from process table)
Makes monolithic kernel more flexible. (ex: device drivers)

Dynamically loaded into kernel memory space at runtime

] TOSk "nked |i$1' (process Tqble) data structure 1 data structure 2 data structure 3
Dynamically created/deleted at runtime . B B
list_head —> next —L—_-_ next —— |—= next T
R R next S W N prev prev prev
o Virtual File System structure e
Varies with time —
Protection region has to be calculated for every o) donbly Bk v e et
change —> more complex and time consuming A
because violation is determined by behavioral () an empty doubly nked st next
rules (analogy: semantic analysis) —

S Optimizations and Restructuring

54 $lX|3: User Memory Region

o Allocated in ZONE_ HIGHMEM area

No linear address mapping, so difficult to pinpoint the exact location
of wanted objects or data structures

o Virtual memory is managed by kernel
CR3 -> Page directory -> Page Table -> Page Frame Number
o Shared Library, Page fault

Makes attack analysis more complex.

Non linear address mapping, shared library, page faults,
app-specific security requirements =» Identifying data structure,
protection domain becomes more difficult and app-specific
because definition of violation differs from app to app or case by
case at run time (analogy: runtime error checks)

S Optimizations and Restructuring

15t goal of Vigilare

£
o Kernel static region®ll Tt ZEA| 7|5 =38
o Rootkit &4 <[A|

Static hooks/patching

m A A8l = Hooking

m Y 3 E Q| static patching (jmp insertion)

DKOM (Dynamic Kernel Object Manipulation)

m PCB (Process Control Block) =2t for Process Hiding

m Filesystem Manipulations (ex: File Hiding, Content Filtering)

S Optimizations and Restructuring

How Rootkit works

o a class of malware that manipulates OS kernel itself
o Perpetuates privileged access to the victim
o Hides its tfraces by modifying kernel' s system information

reporting functions

o Difficult to detect since it operates in the very core of the
system

High-Level Device Driver(Ring 2)

\
b

Low-Level Device Driver(Ring 1)

— S Optimizations and Restructuring @

£
L7

Kernel integrity monitoring

o Fig 1: Monitor in application layer
Compromised OS kernel may disturb(?) the kernel monitor

o Fig 2: Monitor independent from OS kernel with VMM

OS kernel

OS kernel

Hardware Hardware

Fig 1 Fig 2

S Optimizations and Restructuring @

Kernel integrity monitoring

o Fig 3: Monitor independent from OS kernel with VMM

VMM can also be compromised!!

o Fig 4: Monitor independent from OS kernel with Hardware

OS kernel OS kernel

Virtual Machine Monitor

(VMM) VMM

Hardware Hardware

Fig 3 Fig 4

S Optimizations and Restructuring

%
DS
RESEARCH GROUP

Previous work vs. Vigilare

Copilot HyperSentry Vigilare
(Security 2004) (CCS 2010) (CCS 2012)
Target Static, immutable Static, immutable Static, immutable
regions of Linux regions of Xen regions of Linux kernel
kernel + guest memory
isolation of Xen
How Analyzing Calling in-context Snooping traffic
periodic snapshots | monitor periodically between processor and
memory
Performance 6-9% 0-5% 0%
degradation
Transient May miss May miss Detects all
attacks

S Optimizations and Restructuring

ARLYNE T
27T
Satroral esearch Lats

Attack model (1/4)

o Target: Kernel static/immutable region

Linux kernel is a program: needs codes and
data

m Data generated on runtime (task_struct,
mm_struct, etc)
= Stored in "pages" Dynamic region
= Dynamic region Page ##
m Most of the codes and some of the data

7NEHTP
Natiorial ftescarch Lty

Physical Memory

Static region

Immutable region

should not be in "pages” Page ##
= At least codes/data that manage "pages” P
= Static region °
o

All codes and some data (e.g. sys call table) of
the kernel should not be modified at runtime Page ##

m Immutable region

S Optimizations and Restructuring

Attack model (2/4)

wEHLYIET

7NEHTP
Natiorial ftescarch Lty

o Persistent attack model
o Transient attack model

Opposed to persistent attacks , traces of attacks in memory are not
permanent

Possibly evade periodic scans
Our Transient Rootkit
m Modifies and Restores kernel code at a fixed time intervals

S Optimizations and Restructuring

Attack model (3/4)

o Persistent attacks

Previous approach works

Detected Detected
S —
(eb)
% GE)A I I
Compromised ﬁ hL
I I
Normal [[=——— H H
>

|, Pmonitor I Time
|

/4
v

S Optimizations and Restructuring

Attack model (4/4)

o Transient attacks

Previous periodic monitoring may fail to detect an attack

Our attack model: transient attacks on kernel static/immutable region

Compromised

Normal

State of
Kernel

A

Not Detected Detected
I I
Lactive H "
ginactive "
2 I
1l Il
P Pmonitor Time

S Optimizations and Restructuring

dededededede
7NEHTP
Natiorial ftescarch Lty

Design and Implementation (1/7)

__

S Optimizations and Restructuring

Design and Implementation(2/7)

S Optimizations and Restructuring

RESEARCH GROUP

Design and Implementation(3/7)

o Design spec.
Host system
m 50MHz Leon 3 processor (SPARC V8)
m 64MB SDRAM
SnoopMon
m 50MHz Leon 3 processor (SPRAC V8)
m 2MB SRAM
m Snooper
SnapMon
m 50MHz Leon 3 processor (SPRAC V8)
m 2MB SRAM
m Direct Memory Access (DMA)
m Hash accelerator

@ | S Optimizations and Restructuring

Design and Implementation(4/7)

a] The pro’ro’rype we used for experimen’r (ShnoopMon)

\ 4

Snooper

ahbctrl

Design and Implementation(5/7)

g

s e
Hegiohn

a) How SnoopMon works

Addltlonal Loglc SnoopMon

Pass snooper if
suspicious

/

e——

> Snooper

P :
Z ' 1
< g /
S —" i Physically snoop
" Check weather [~——-———-1—-
malicious or not
1 mctrl
1 apb
i RAM bridge
i , A e (AN
1 < APB >
: AN i’ ikl ‘el -1,/
' 71
1
1
1
|
: uart IRQ timer
: ctrl
1
e S Optimizations and Restructur

RESEARCH GROUP

Design and Implementation(6/7)

a] Copllo’r like snopsho’r monitor (Snopl\/\on) example

ahbctrl

uart

timer

> Direct Memory

Access (DMA) &

Hash
accelerator

T

1

1

1

1 | i

H AHB master !

1 I

: L-----------------E----J 3

1

1

1

i

i Lacme ahbctrl

1 N

T C 4

1

1

I S

|1 AHBslave 1

1 1 H N

1 1 H 7z

1 1

1 L----i.

1 |

1

1

1

i

: mctrl €—>

' apb

1 bridge RAM

LR

1 1’ ---------------------- 1S,

1/ \\

:(\ APB P
__________________ ’

i \4$ 1 $ =/

1

1

1

i IRQ

: uart timer

I

Design and Implementation(7/7)

g

DHLYIET
27T
Satroral esearch Lats

a) How SnapMon works
Addltlonal Loglc SnapMon

1
1
! !
1 1
1 1
i l i
1 1
: s B I Take snapshots " """"""" E """ i
1 1
1 ! 1
1 1 1
1]
i ahbctrl Leon3 > Direct Memory i\ Leon3 ahbctrl i
] - Access (DMA) Sl > !
: | AHB Slafe i ! i
i < ! e !
! < : S Hash |1 AHBslave ! i
E H H > 1 1 H N
i - i ; accelerator o 12 i
H T N [T S A — - !
Y /A N — 1 N PP 1 1
\ i ,I, 1
H &i L i '
: \) ! :
i €——> mctrl apb Hash snapshots ‘ I apb mctrl €——> i
I /RAM brid i brid i
i A N LA o N
]
| < APB > K APB > i
’ TTTTY i 5
Check weather i i
malicious or not RO . l IRQ , i
B R uart timer 1 uart timer H
! ctrl : ctrl i
1 - . 1 1
b e S Opfimizations and Restructuring !

RESEARCH GROUP

Evaluation (1/3)

o Performance degradation

copy Mscale madd ®triad ®avg
120

—
)
o

80
60 —
40 —
20 —
0 -

SnapMon SnapMon SnapMon SnapMon SnoopMon
50ms 100ms 500ms 1000ms

Type of Monitor

Normalized Performance (%)

S Optimizations and Restructuring

RESEARCH GROUP

Evaluation (2/3)

o Transient attack detection

10 m50 =100 =500 = 1000
120

—
-}
-

80
60
40
20

Detected Attack (%)

)

SnoopMon SnapMon SnapMon SnapMon SnapMon
50ms 100ms 500ms 1000ms

Type of Monitor

S Optimizations and Restructuring @

RESEARCH GROUP

Evaluation (3/3)

ul B

7NEHTP
Natioral ftesearch Lt

o Fundamental trade-off of ShnapMon
Longer period, less performance degradation
Longer period, less ability to detect transient attacks

o No such trade-off does SnoopMon have
Detect all transient attacks
No performance degradation

S Optimizations and Restructuring

Overall roadmap in big picture

API-supported

Protection Coverage
user app

monitoring
Kernel
dynamic region
integrity checking
Kernel
static region
integrity checking
g7

=
&7

@ S Optimizations and Restructuring
‘-&."

RESEARCH GROUP

Research Time

Kernel Static Region

o This is immutable region, so any 39bit Linux on x86
GCCGSS/mOdIfICGTIOn |S I”egCI| Virtual Address Space Physical Address Space
OxFFFFFFFF 027777777
o Text segment (Kernel code) — wobe —
o Interrupt Descriptor Table e mermory ;gz;;gg:fppmg
s nardware
o Sys_call_table | baging :
Dispatch system calls 00000000 _— memory
space
o Linux®| A1 linear-mapped
kernel virtual address AF& !
3GB User space 0x38000000
QIE_ HWO" A-l |7:|I-A| 7}% Kzrdnelco =
Address mappitg
(static data 896MB KERNEL
We have implemented basic | o yirtually
Vlgllare hardware platf‘orm 000000000 0)(00060000

for the attacks on this region,

@ S Optimizations and Restructuring @

Kernel Dynamic Region

’.':

0 Accesses/modifications are possible in principle but some
are iIIeng (ex: removing a process entry from process table)

o Loadable Kernel Modules (LKMs)

Makes monolithic kernel more flexible.

Dynamically loaded into kernel memory space at runtime

o Task linked list (process table) sl Gwsmaws s
Dynamically created/deleted at runtime e (_bnsnte_:ad:gis;_:ad:] |

o Virtual File System structure e
Varies with time ————

{a} adoubly linked listed with three elements

The next research topic!
: . : 3
We are enhancing our Vigilare architecture tm—head
B {b) an empty doubly linked list next
to handle the attack on these regions

prev

S Optimizations and Restructuring

Roadmap - tH7|

1.

2.

dddddd

Kernel dynamic region®l Cigt 52| ot 8t £CF L=
71Z&0°| & Vigilare SystemZ 2 CF & X 2 Fof E3f

o Xz HAGSH o
o Ul AOLEE M ZALQF XM AOFEE HOF B i
m 20FEE 9| AP SOCO| StAl One chip & Al & - Vigilare version 2

m 2712 =X memory ZE 2 A& 35t Vigilare version 1= Y HHH
ol ADtE Zof HL5t7|of FHAIZH UL

m Bt 712 memoryE & =otHAM 7= EQHFFE E0F

ADDR} XtMICH = MXAtXAH| HOoF X X| JHur A& =

m LinuxtH &1 2 Hlol 2 H A QI VxWorks 22 RTOSOl £8t& ¢z

= Jlet

m CHSH LA ® X &HH|of| E31E 2O gftack BlE{ofl THSH TS

S Optimizations and Restructuring

Roadmap - tH7|

o Monitoring dynamic region
Challenges:
m Locating a certain page
m Physical addr to logical addr translation

o Monitoring mutable region
Challenges:

m Designing integrity policies:

"What is legal modification?"

S Optimizations and Restructuring

Physical Memory

Static region

Immutable region

Dynamic region

Page ##

Page ##

Page ##

Roadmap - tH7|

0 20FEE9|M = 2= processor core= ©| Application
processor (AP) SoC°J°1I 2 5 integrated circuit® = packaging
Hd, 022z 25 F9 X

0 Vigilare vi€ 123 HA S BIFSHA| £2¢

Apple Ax (A4,A5)

—>
Samsung Exynos

o Old architecture revisited

Roadmap - EhH7|

Vigilare System

o s s
e e e e e]

-
Q
o
17,
>N
(V)
')
7]
(o]
I

S Optimizations and Restructuring

i RESEARCH GROUP

Roadmap - EhH7|

o New Architecture for the work with AP SoC

S Optimizations and Restructuring @

User Memory Region — =% 7|

o Allocated in ZONE_ HIGHMEM area

No linear address mapping, so difficult to pinpoint the exact location
of wanted objects or data structures

o Virtual memory is managed by kernel
CR3 -> Page directory -> Page Table -> Page Frame Number

o Shared Library, Page fault

Makes system more complex.

In a few years, we will deal with the
attacks on user memory regions.
We already have some ideas about it.

S Optimizations and Restructuring

Roadmap - 7| =

f

7NEHTP
Natioral ftesearch Lt

o APl support for monitoring user programs

Design APIs and supporting architectures for user programs
Monitor the integrity of user programs that used the APIs

Early stage: rely on information provided by developer
Advanced: generate more information by analyzing user programs

Possibly can be a new programming model
"Programming model for attack-tolerant application”

S Optimizations and Restructuring

API support A A

ul B

7NEHTP
Natioral ftesearch Lt

o Monitoring Control Flow Integrity (CFl) of user apps
Why CFI?
m Attacks on user app break CFl in many cases
One key challenge: defining "legitimate” control flow - CFl table

m Relying on developer
Manually generate CFl table

m Analyzing source/binary code
Automatically generate CFl table

m Tools to assist developer
Interactively generate CFl table

S Optimizations and Restructuring

API support A A

D

7NEHTP
Natioral ftesearch Lt

o Relying on developer
APl 7+ /8 : returndt function pointer& & Tt function callZ Al st=
functions
m sec_return(ret,legal_functionsl])
m sec_call{function_pointer, legal_values())
m CFIET E 2|l table &9l AF&
m "code EAM" o ot burdenZ XS M7t
O| appell tiot CAEZ E A|&st= = 5t= function
m sec_CFI();

S Optimizations and Restructuring

APl support | A

o Compile time

Source Code
using the API

sec_CFI()
sec_call(val,list);

sec_return(ret,list);

CFI table

(caller, callee)
(caller, callee)

|

N
Compiler :l>

Binary Code
(in assem)
call_tz sec_CFI

st pc,val
call val

st pc,val
return ret

S Optimizations and Restructuring

APl support | A

o Install time

Trusted Storage
Storage for “Market” server

applications

/ \:‘> CFI table

e Gl Trusted hardware

o /

—
.

S Optimizations and Restructuring

APl support | A

o Runtime

/Main memory

Monitoring

Binary Code

RESEARCH GROUP

{ Vigilare }

ﬁ_? Monitoring §

G‘usted Storage

=2 A Sl CFI table M| &

Trusted hardware

CFI table

ﬁ Monitoring §

Host system }

2

S Optimizations and Restructuring

API support A A

dededededede
7NEHTP
Natioral ftesearch Lt

o Analyzing source/binary code
Difficult to generate control flow graph in general for binary codes
Resulting ‘“legitimate” control flow may include "unintended" one

o Tools to assist developer

Subset of “legitimate”
and “unintended”
control flows

[Developer J { Analyzer }

Set of resulting
“legitimate” control
flows

S Optimizations and Restructuring

Vigilare APl & 2715/

o CFl table: an example of app-specific information

7NEHTP
Natioral ftesearch Lt

o More examples:

Critical data protection
m Critical data table
m Secure data allocation in user application

Peripheral access control
m Access permission table

S Optimizations and Restructuring

Conclusion

O

Vigilare= 71 &9l SW 7[8t2| Integrity monitoring 7Iﬂ%%
ofEAHL =22 T3l more secure & energy-efficient,
faster ot Al =3 & = = Sll== HWZ|BF B oFZEA| X X|
Vigilare viZ 5l & A+ feasibilityE AU F
A K| *UFE%%OH HE2 2ot stES o X Mol &
M £ < 04-_r“,§_| s 2 H S XM H82 ADTEEQ
EfTHE S EZ v2, v32EQ M HAEE gt
Vigilare APIKI-?;J% 53l Vigilare processors = Hostoll Al &
2dY Jtsot=e=E ot, CtY Tt user-level EQt 715 X
H 75

> 7IES FH 24 71gel BYE Tts

§

S Optimizations and Restructuring

	��Vigilare : 시스템 무결성을 보장하는 하드웨어기반 상시 보안감시자를 목표로���Yunheung Paek�S(W/oC/ecurity) Optimizations and Restructuring�Seoul National University�
	Contents
	Our research goal
	Vigilare
	Code errors
	초기 연구 결과 (2011 가을 – 2012 봄)
	Malware attack 유형들
	공격 위치에 따른 분류
	States of system compromise
	공격 위치1: Kernel Static Region
	공격 위치2: Kernel Dynamic Region
	공격 위치3: User Memory Region
	1st goal of Vigilare
	How Rootkit works
	Kernel integrity monitoring
	Kernel integrity monitoring
	Previous work vs. Vigilare
	Attack model (1/4)
	Attack model (2/4)
	Attack model (3/4)
	Attack model (4/4)
	Design and Implementation (1/7)
	Design and Implementation(2/7)
	Design and Implementation(3/7)
	Design and Implementation(4/7)
	Design and Implementation(5/7)
	Design and Implementation(6/7)
	Design and Implementation(7/7)
	Evaluation (1/3)
	Evaluation (2/3)
	Evaluation (3/3)
	Overall roadmap in big picture
	Kernel Static Region
	Kernel Dynamic Region
	Roadmap - 단기
	Roadmap - 단기
	Roadmap - 단기
	Roadmap - 단기
	Roadmap - 단기
	User Memory Region – 중장기
	Roadmap - 중장기 목표
	API support 예제
	API support 예제
	API support 예제
	API support 예제
	API support 예제
	API support 예제
	Vigilare API 활용가능성
	Conclusion

