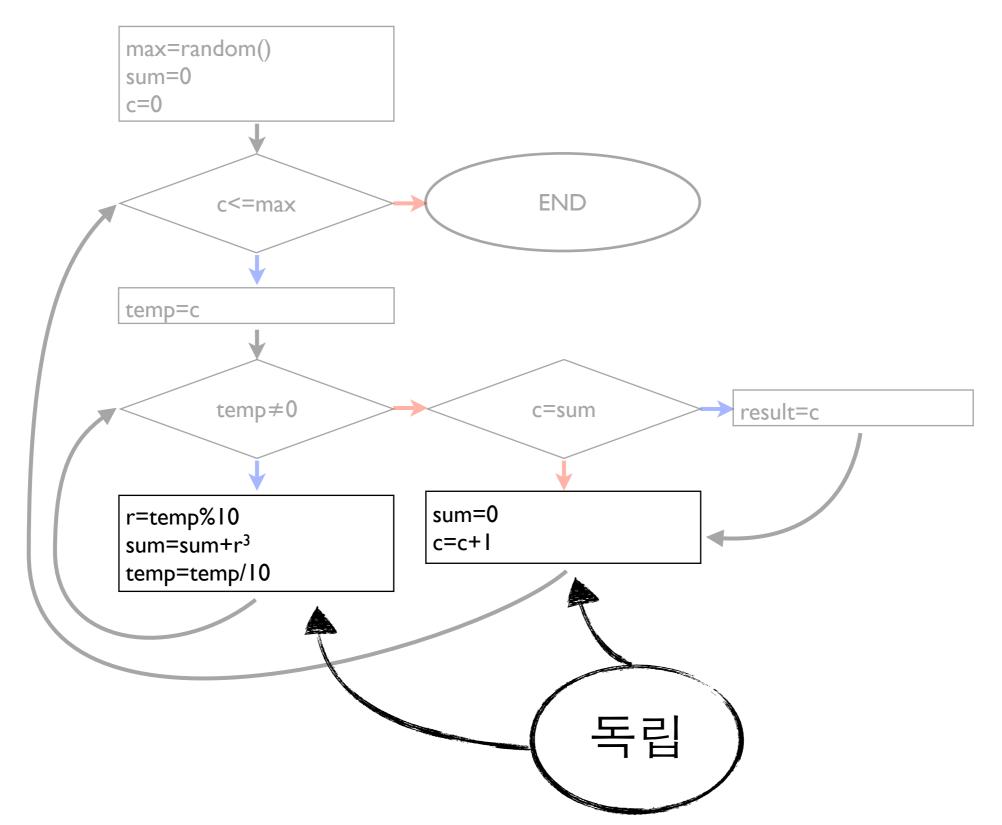

## 프로그램의 정적 분석을 디지털 회로로 표현하기


서울대학교 프로그래밍연구실 윤용호

yhyoon@ropas.snu.ac.kr

# 동기



# 동기 2



#### 정적 분석 + 디지털 회로

● 모든 계산을 동시에, 빠른 수렴

• 새로운 시도,재미

#### 디지털회로설계

- HDL(Hard Dirty Language Hardware Description Language)
  - Verilog, VHDL, ...

• 시뮬레이션 용 바이너리

● 실제 회로 합성(Synthesis)

#### 디지털회로설계

- HDL(Hard Dirty Language Hardware Description Language)
  - Verilog, VHDL, ...

• 시뮬레이션 용 바이너리

● 실제 회로 합성(Synthesis)

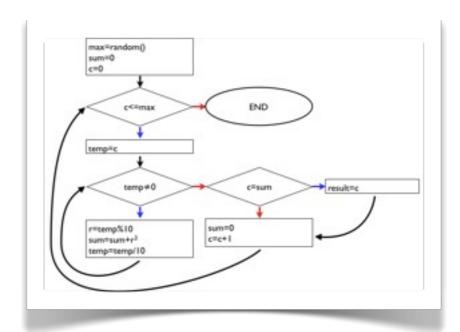


#### 함정

- 일반적으로 합성은 굉장히 오래 걸림
  - 게이트 할당, 도선 배치, 클럭 어긋남 관 리,...

● 회로 합성 시간 >>>> 분석 시간?

### 함정피하기고민


- 합성 해두고 계속 사용
  - 대규모 프로젝트의 안정화된 코드
  - 라이브러리 코드

- 합성 시간 줄이기
  - 미리 만들어둔 블럭 최대한 활용
  - FPGA 모방

### 첫 걸음, 손으로

- 간단한 프로그램을 회로로 옮겨봄
  - Verilog 코드 30KB

• I8사이클에 수렴



| /TB_TOP/top/block3/state_to_var/r      | 30000000000000 | 40000000000000000  |                                         | (000000000000000000                     | 1,3000000000000000                      |
|----------------------------------------|----------------|--------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| /TB_TOP/top/block3/state_to_var/result | 10000000000000 | 400000000000000000 |                                         | 20000000000000000                       | 10000000000000000                       |
| /TB_TOP/top/block4/state_to_var/max    | 0000000140000  | 400000000000000000 | (00000001400000014                      |                                         |                                         |
| /TB_TOP/top/block4/state_to_var/sum    | 30000000000000 | 40000000000000000  | (000000000000000000                     | 3000000000000000                        |                                         |
| /TB_TOP/top/block4/state_to_var/c      | 10000000000000 | 400000000000000000 | (0000000ф00000000                       | (100000000000000000                     |                                         |
| /TB_TOP/top/block4/state_to_var/temp   | 30000000000000 | 40000000000000000  | (000000000000000000                     | (1000000) (300000000                    | 00000000                                |
| /TB_TOP/top/block4/state_to_var/r      | 30000000000000 | 40000000000000000  | (0000000000                             | 0000009 (30000000                       | 00000000                                |
| /TB_TOP/top/block4/state_to_var/result | 10000000000000 | 400000000000000000 |                                         | (00000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |
| /TB_TOP/top/block5/state_to_var/max    | 0000000140000  | 40000000000000000  | (000000014000000                        | 14                                      |                                         |
| /TB_TOP/top/block5/state_to_var/sum    | 30000000000000 | 40000000000000000  | (00000000000000000000000000000000000000 | 00 (30000000000000000                   |                                         |
| /T8_TOP/top/block5/state_to_var/c      | 10000000000000 | 40000000000000000  | (0000000000000000                       | 00 (1000000000000                       | 000                                     |
| /TB_TOP/top/blockS/state_to_var/temp   | 30000000000000 | 400000000000000000 | (00000000000000000000000000000000000000 | 00 (1000000 [3000                       | 0000000000000                           |
| /TB_TOP/top/block5/state_to_var/r      | 30000000000000 | 40000000000000000  | )00000                                  | 000000000009 [3000                      | 000000000000                            |
| /TB_TOP/top/blockS/state_to_var/result | 10000000000000 | 400000000000000000 | )0000000000                             | (10000000                               | 00000000                                |
| /TB_TOP/top/block6/state_to_var/max    | 0000000140000  | 40000000000000000  | (000000014000000                        | 14                                      |                                         |
| /TB_TOP/top/block6/state_to_var/sum    | 30000000000000 | 400000000000000000 | (00000000000000000000000000000000000000 | 00 (30000000000000000                   |                                         |
| /TB_TOP/top/block6/state_to_var/c      | 10000000000000 | 40000000000000000  | (00000000000000000000000000000000000000 | 00 (100000000000                        | 000                                     |
| /TR TOP/ton/blocks/state to var/temp   | 3000000000000  | 4000000000000000   | Y000000000000000                        | on Yennoon (2000                        | 0000000000000                           |
| Now                                    | 40000 ps       | 100                | 000 pe 2000                             | 10 me 300                               | 00.00                                   |

#### 앞으로

- Sparse 분석을 하는 회로
  - 레지스터 수는 메모리 크기보다도 큰 제약
  - 회로가 스스로 Sparse 분석을 구성하는 것 이 가능한가?

- C → Verilog 코드 자동 생성기
  - 실제 회로로 합성(Synthesis) 가능한 코드

# 고맙습니다

- 포스터 발표도 합니다 -