
무인 비행체 제어 SW
분석 검증

허기홍, 강동옥, 오학주
서울대학교 프로그래밍연구실

2012 ROSAEC 여름 워크샵

1

목표

• 대 상 : 항공대학교 무인 비행체 제어 SW

• 검증요소 : 프로그램을 죽이는 안전성 오류

• 버퍼 오버런, 0으로 나누기

2

프로그램 특징

• 초기화; (센서입력; 필터; 자세제어)+

3
*사진 출처: 항공대 박상혁 교수님 홈페이지

프로그램 특징
• 핵심 코드 (C코드 4400줄) + 라이브러리

• 동적할당, 재귀함수 없음

• 반복문
• 전체 반복

• 유한 반복문 : 배열 원소 접근

• 센서 입력 대기 : while(buffer.length < 4)

4

프로그램 분석

• 요약 의미 공간

5

[[P]] 2 C ! Ŝ
Ŝ = L̂ ! V̂

V̂ = Ẑ+ 2L̂ + ˆArray? + ˆStruct?

Ẑ = {?}+ {[l, u] | l, u 2 Z [{�1,+1}}

프로그램 분석

• 요약 의미 : 다음 F의 최소 고정점

6

2. Sparse Analysis Framework
2.1 Notation
Given function f 2 A ! B, we write f |

C

for the restriction
of function f to the domain dom(f) \ C. We write f\

C

for the
restriction of f to the domain dom(f)� C. We abuse the notation
f |

a

and f\
a

for the domain restrictions on singleton set {a}. We
write f [a 7! b] for the function got from function f by changing
the value for a to b. We write f [a1 7! b1, · · · , an

7! b

n

] for
f [a1 7! b1] · · · [an

7! b

n

]. We write f [{a1, · · · , an

} w7! b] for
f [a1 7! f(a1) t b, · · · , a

n

7! f(a
n

) t b] (weak update).

2.2 Program
A program is a tuple hC, ,!i where C is a finite set of con-
trol points and ,!✓ C ⇥ C is a relation that denotes control
flows of the program; c0 ,! c indicates that c is a next control
point of c0. Each control point is associated with a command, de-
noted cmd(c). A path p = p0p1 . . . pn is a sequence of control
points such that p0 ,! p1 ,! · · · ,! p

n

. We write Paths =
lfp�P.{c0c1 | c0 ,! c1}[{p0 . . . pnc | p 2 P ^ p

n

,! c} for the
set of all paths in the program.

Collecting Semantics Collecting semantics of program P is an
invariant [[P]] 2 C ! 2S that represents a set of reachable states
at each control point, where the concrete domain of states, S =
L ! V, maps concrete locations (L) to concrete values (V).
The collecting semantics is characterized by the least fixpoint of
semantic function F 2 (C! 2S)! (C! 2S) such that,

F (X) = �c 2 C.f
c

(
[

c

0
,!c

X(c0)). (1)

where f

c

2 2S ! 2S is a semantic function at control point c.
Because our framework is independent from target languages, we
leave out the definition of the concrete semantic function f

c

.

2.3 Baseline Abstraction
We abstract the collecting semantics of program P by the following
Galois connection

C! 2S ��! ��
↵

�

C! Ŝ (2)

where ↵ and � are pointwise liftings of abstract and concretization
function ↵S and �S (such that 2S ���! ���

↵S

�S Ŝ), respectively.
We consider a particular, yet general, family of abstract domains

where abstract state Ŝ is map L̂ ! V̂ where L̂ is a finite set of
abstract locations, and V̂ is a (potentially infinite) set of abstract
values. All non-relational abstract domains, such as intervals [9],
are members of this family. Furthermore, the family covers some
numerical, relational domains. Practical relational analyses exploit
packed relationality [4, 13, 34, 43]; the abstract domain is of form
Packs ! R̂ where Packs is a set of variable groups selected to be
related together. R̂ denotes numerical constraints among variables
in those groups. In such packed relational analysis, each variable
pack is treated as an abstract location (L̂) and numerical constraints
amount to abstract values (V̂). Examples of the numerical con-
straints are domain of octagons [34] and polyhedrons [12]. In prac-
tice, relational analyses are necessarily packed relational [4, 13]
because of otherwise unacceptable costs.

Abstract semantics is characterized as a least fixpoint of abstract
semantic function F̂ 2 (C! Ŝ)! (C! Ŝ) defined as,

F̂ (X̂) = �c 2 C.f̂
c

(
G

c

0
,!c

X̂(c0)). (3)

where f̂

c

2 Ŝ ! Ŝ is a monotone abstract semantic function for
control point c. We assume that F̂ is sound with respect to F , i.e.,

↵�F v F̂ �↵, then the soundness of abstract semantics is followed
by the fixpoint transfer theorem [11].

2.4 Sparse Analysis by Eliminating Unnecessary Propagation
The abstract semantic function given in (3) propagates some ab-
stract values unnecessarily. For example, suppose that we analyze
statement x := y using a non-relational domain, like interval do-
main [9]. We know for sure that the abstract semantic function for
the statement defines a new abstract value only at variable x and
uses only the abstract value of variable y. Thus, it is unnecessary to
propagate the whole abstract states. However, the function given in
(3) blindly propagates the whole abstract states of all predecessors
c

0 to control point c.
To make the analysis sparse, we need to eliminate this un-

necessary propagation by making the semantic function propagate
abstract values along data dependency, not control flows; that is,
we make the semantic function propagate only the abstract values
newly computed at one control point to the other where they are
actually used. In the rest of this section, we explain how to make
abstract semantic function (3) sparse while preserving its precision
and soundness.

2.5 Definition and Use Set
We first need to precisely define what are “definitions” and “uses”.
They are defined in terms of abstract semantics, i.e., abstract se-
mantic function f̂

c

, not concrete semantics.

Definition 1 (Definition set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Definition set D(c) at control point c
is a set of abstract locations that are assigned a new abstract value
by abstract semantic function f̂

c

, i.e.

D(c) , {l 2 L̂ | 9ŝ v
G

c

0
,!c

S(c0).f̂
c

(ŝ)(l) 6= ŝ(l)}.

Definition 2 (Use set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Use set U(c) at control point c is a
set of abstract locations that are used by abstract semantic function
f̂

c

, i.e.

U(c) , {l 2 L̂ | 9ŝ v
G

c

0
,!c

S(c0).f̂
c

(ŝ)|D(c) 6= f̂

c

(ŝ\
l

)|D(c)}.

Example 1. Consider the following simple subset of C:

cmd ! x := e | ⇤x := e

e ! x | &x | ⇤x.
The meaning of each statement and each expression is fairly stan-
dard. We design a pointer analysis for this as follows:

ŝ 2 Ŝ = Var ! 2Var

f̂

c

(ŝ) =

8
>><

>>:

ŝ[x 7! Ê(e)(ŝ)] cmd(c) = x := e

ŝ[y 7! Ê(e)(ŝ)] cmd(c) = ⇤x := e

and ŝ(x) = {y}
ŝ[ŝ(x)

w7! Ê(e)(ŝ)] cmd(c) = ⇤x := e

Ê(e)(ŝ) =

8
<

:

ŝ(x) e = x

{x} e = &xS
y2ŝ(x) ŝ(y) e = ⇤x

Now suppose that we analyze program 10�
x := &y; 11�⇤p := &z;

12�
y := x; (superscripts are control points). Suppose that points-

to set of pointer p is {x, y} at control point 11� according to the
fixpoint. Definition set and use set at each control point are as
follows.

D(10�) = {x} U(10�) = ?
D(11�) = {x, y} U(11�) = {p, x, y}
D(12�) = {y} U(12�) = {x}

2. Sparse Analysis Framework
2.1 Notation
Given function f 2 A ! B, we write f |

C

for the restriction
of function f to the domain dom(f) \ C. We write f\

C

for the
restriction of f to the domain dom(f)� C. We abuse the notation
f |

a

and f\
a

for the domain restrictions on singleton set {a}. We
write f [a 7! b] for the function got from function f by changing
the value for a to b. We write f [a1 7! b1, · · · , an

7! b

n

] for
f [a1 7! b1] · · · [an

7! b

n

]. We write f [{a1, · · · , an

} w7! b] for
f [a1 7! f(a1) t b, · · · , a

n

7! f(a
n

) t b] (weak update).

2.2 Program
A program is a tuple hC, ,!i where C is a finite set of con-
trol points and ,!✓ C ⇥ C is a relation that denotes control
flows of the program; c0 ,! c indicates that c is a next control
point of c0. Each control point is associated with a command, de-
noted cmd(c). A path p = p0p1 . . . pn is a sequence of control
points such that p0 ,! p1 ,! · · · ,! p

n

. We write Paths =
lfp�P.{c0c1 | c0 ,! c1}[{p0 . . . pnc | p 2 P ^ p

n

,! c} for the
set of all paths in the program.

Collecting Semantics Collecting semantics of program P is an
invariant [[P]] 2 C ! 2S that represents a set of reachable states
at each control point, where the concrete domain of states, S =
L ! V, maps concrete locations (L) to concrete values (V).
The collecting semantics is characterized by the least fixpoint of
semantic function F 2 (C! 2S)! (C! 2S) such that,

F (X) = �c 2 C.f
c

(
[

c

0
,!c

X(c0)). (1)

where f

c

2 2S ! 2S is a semantic function at control point c.
Because our framework is independent from target languages, we
leave out the definition of the concrete semantic function f

c

.

2.3 Baseline Abstraction
We abstract the collecting semantics of program P by the following
Galois connection

C! 2S ��! ��
↵

�

C! Ŝ (2)

where ↵ and � are pointwise liftings of abstract and concretization
function ↵S and �S (such that 2S ���! ���

↵S

�S Ŝ), respectively.
We consider a particular, yet general, family of abstract domains

where abstract state Ŝ is map L̂ ! V̂ where L̂ is a finite set of
abstract locations, and V̂ is a (potentially infinite) set of abstract
values. All non-relational abstract domains, such as intervals [9],
are members of this family. Furthermore, the family covers some
numerical, relational domains. Practical relational analyses exploit
packed relationality [4, 13, 34, 43]; the abstract domain is of form
Packs ! R̂ where Packs is a set of variable groups selected to be
related together. R̂ denotes numerical constraints among variables
in those groups. In such packed relational analysis, each variable
pack is treated as an abstract location (L̂) and numerical constraints
amount to abstract values (V̂). Examples of the numerical con-
straints are domain of octagons [34] and polyhedrons [12]. In prac-
tice, relational analyses are necessarily packed relational [4, 13]
because of otherwise unacceptable costs.

Abstract semantics is characterized as a least fixpoint of abstract
semantic function F̂ 2 (C! Ŝ)! (C! Ŝ) defined as,

F̂ (X̂) = �c 2 C.f̂
c

(
G

c

0
,!c

X̂(c0)). (3)

where f̂

c

2 Ŝ ! Ŝ is a monotone abstract semantic function for
control point c. We assume that F̂ is sound with respect to F , i.e.,

↵�F v F̂ �↵, then the soundness of abstract semantics is followed
by the fixpoint transfer theorem [11].

2.4 Sparse Analysis by Eliminating Unnecessary Propagation
The abstract semantic function given in (3) propagates some ab-
stract values unnecessarily. For example, suppose that we analyze
statement x := y using a non-relational domain, like interval do-
main [9]. We know for sure that the abstract semantic function for
the statement defines a new abstract value only at variable x and
uses only the abstract value of variable y. Thus, it is unnecessary to
propagate the whole abstract states. However, the function given in
(3) blindly propagates the whole abstract states of all predecessors
c

0 to control point c.
To make the analysis sparse, we need to eliminate this un-

necessary propagation by making the semantic function propagate
abstract values along data dependency, not control flows; that is,
we make the semantic function propagate only the abstract values
newly computed at one control point to the other where they are
actually used. In the rest of this section, we explain how to make
abstract semantic function (3) sparse while preserving its precision
and soundness.

2.5 Definition and Use Set
We first need to precisely define what are “definitions” and “uses”.
They are defined in terms of abstract semantics, i.e., abstract se-
mantic function f̂

c

, not concrete semantics.

Definition 1 (Definition set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Definition set D(c) at control point c
is a set of abstract locations that are assigned a new abstract value
by abstract semantic function f̂

c

, i.e.

D(c) , {l 2 L̂ | 9ŝ v
G

c

0
,!c

S(c0).f̂
c

(ŝ)(l) 6= ŝ(l)}.

Definition 2 (Use set). Let S be the least fixpoint lfpF̂ of the
original semantic function F̂ . Use set U(c) at control point c is a
set of abstract locations that are used by abstract semantic function
f̂

c

, i.e.

U(c) , {l 2 L̂ | 9ŝ v
G

c

0
,!c

S(c0).f̂
c

(ŝ)|D(c) 6= f̂

c

(ŝ\
l

)|D(c)}.

Example 1. Consider the following simple subset of C:

cmd ! x := e | ⇤x := e

e ! x | &x | ⇤x.
The meaning of each statement and each expression is fairly stan-
dard. We design a pointer analysis for this as follows:

ŝ 2 Ŝ = Var ! 2Var

f̂

c

(ŝ) =

8
>><

>>:

ŝ[x 7! Ê(e)(ŝ)] cmd(c) = x := e

ŝ[y 7! Ê(e)(ŝ)] cmd(c) = ⇤x := e

and ŝ(x) = {y}
ŝ[ŝ(x)

w7! Ê(e)(ŝ)] cmd(c) = ⇤x := e

Ê(e)(ŝ) =

8
<

:

ŝ(x) e = x

{x} e = &xS
y2ŝ(x) ŝ(y) e = ⇤x

Now suppose that we analyze program 10�
x := &y; 11�⇤p := &z;

12�
y := x; (superscripts are control points). Suppose that points-

to set of pointer p is {x, y} at control point 11� according to the
fixpoint. Definition set and use set at each control point are as
follows.

D(10�) = {x} U(10�) = ?
D(11�) = {x, y} U(11�) = {p, x, y}
D(12�) = {y} U(12�) = {x}

대상 특화

• 인터럽트를 통한 센서 입력

• 센서값을 담는 버퍼를 특별히 처리

• 센서값이 갖는 범위 파악해서 반영

7

대상 특화

• 행렬 연산 코드에 적절한
넓히기(widening) 연산

8

// 행렬 곱셈 계산
for(i = 0; i < sa; i++){
 for(j = 0; j < sb; j++){
 w = 0.0;
 for(k = 0; k < sc; k++)
 w += a[i*sa+k] * b[k*sb+j];
 c[i*sc+j] = w;
 }
}

결론

• 무인 비행체 SW에 특화된 분석기 제작중

• 하드웨어 동작 처리, 똑똑한 넓히기 연산

• 자세한 이야기는 포스터 발표에서

9

고맙습니다

10

