
<Milestone talk>

Improving Hadoop Performance by
Weakening Dependency

김동원@동원리더스아카데미
포항공대 프로그래밍언어 연구실

Major milestones

2

Studying

Hadoop

Modifying

Hadoop

Designing & Developing

New MapReduce

Runtime System I’m here

MapReduce review (1)

3

- Users specify the computation in terms of a map and a reduce function
- MapReduce runtime system automatically

 + parallelizes the computation across large-scale clusters of machines

 + sort & group intermediate pairs

 + handles machine failures

- Hadoop is a representative MapReduce runtime system

Shuffling
(Sort & Group)

Reduce task Reduce task

{ k | hash(k) % 2 == 0}

Map task Map task Map task

Block 1
doc 1~100

Block 2
doc 101~200

Block 3
doc 201~300

{ k | hash(k) % 2 == 1}

MapReduce review (2) – Map task

• Map tasks go through two phases
1) Mapping
2) Merging

• Each map task launches its own merger
– To merge local spill files

4

Map task

Block 1
doc 1~100

p0

p1

p0

p1

p0

p1
p0

p1

Merging Mapping

• Reduce tasks go through two phases
1) Shuffling
2) Reducing

• Reduce tasks get their input from the output of
completed map tasks
– Reduce tasks are scheduled after a pre-defined number of map

tasks are over

MapReduce review (3) – Reduce task

5

Reduce task (responsible for partition 0)

Map task 1 Map task 2 Map task 3

p1 p1 p1

p0
(from map1)

p0
(from map2)

p0
(from map3) Reduce input

Shuffling Reducing

p0 p0 p0

Improving Hadoop Performance by Weakening Dependency

• Goal
– To make Hadoop run fast regardless of # of map tasks

• # of map tasks has a significant impact on performance

• Challenge

– To modify Hadoop design choices
• Each map task launches its own merger
• Reduce tasks get their input from the output of completed map

tasks

• Solution
– ??

6

slot 2
slot 1

slot 1
slot 2

More detail about Hadoop :
 # of simultaneous map tasks = # of task slots

• # of task slots = <user parameter>
– If each of 2 nodes has 2 map slots,

 we can run at most 4 map tasks at an instant

7

slot 2
slot 1

slot 2
slot 1

slot 2
slot 1
slot 2
slot 1

slot 2
slot 1
slot 2
slot 1

1st Map wave

2nd Map wave

<Ideal> <Real>

* Consider only map tasks * @node1 @node2

of map tasks has a significant impact on performance

• 100G sorting
– Identity map function
– Identity reduce function
– 20 nodes
– 12 map slots per node
 up to 240 map tasks at an instant

8

Block size # blocks = # map tasks

1024 MB 100

512 MB 200

256 MB 400

128 MB 800

64 MB 1600

32 MB 3200

296
276

197 186
198

226

100 200 400 800 1600 3200
of maps

Best

key value

of reduce tasks : 80

One map wave Multiple map waves

<100G sorting input>

of map tasks has a significant impact on performance

9

100 maps
total time : 296
map dur. : 101
reduce dur. : 196
first reduce : 62

200 maps
total time : 276
map dur. : 87
reduce dur. : 196
first reduce : 43

400 maps
total time : 197
map dur. : 34
reduce dur. : 130
first reduce : 29

800 maps
total time : 186
map dur. : 18
reduce dur. : 133
first reduce : 21

1600 maps
total time : 198
map dur. : 11
reduce dur. : 151
first reduce : 20

3200 maps
total time : 226
map dur. : 6.44
reduce dur. : 173
first reduce : 16

M
A
P

Reduce

Shuffling Mapping Merging Reducing
One map wave

Multiple
map waves

10

800 maps
total time : 186
first reduce : 21
map dur. : 18
reduce dur. : 133

200 maps
total time : 276
first reduce : 43
map dur. : 87
reduce dur. : 196

Shuffling Mapping Merging Reducing

Why one map wave takes so long time?
 200 map tasks vs. 800 map tasks

• What makes the difference (276 sec – 186 sec = 90 sec)?
1) Beginning of reduce tasks (43 sec – 21 sec = 22 sec)

• Reduce tasks get their input from the output of completed map tasks
• Each of the 200 maps (left) takes longer than each of the 800 maps (right)

2) Duration of reduce tasks (196 sec – 133 sec = 63 sec)
• (with 800 maps) smaller map outputs are made continuously throughout the job
• (with 200 maps) mergers are working around the same time

 90 sec ≒ 22 sec + 63 sec

Improving Hadoop Performance by Weakening Dependency

• Goal
– To make Hadoop run fast regardless of # of map tasks

• # of map tasks has a significant impact on performance

• Challenge

– To modify Hadoop design choices
• Each map task launches its own merger
• Reduce tasks get their input from the output of completed map

tasks

• Solution
– Decouple mergers from map tasks

11

A Hadoop design choice –
 Each map task launches its own merger

12

Map
1

Map
2

Map
3

Mapping Merging

Partition
A

Partition
B

Time

Map
1

Map
2

Map
3

13

 Mergers are working as soon as some local spills are available
 Mergers merge spill files regardless of their lineage

My idea –
 Decouple mergers from map tasks

My idea –
 Decouple mergers from map tasks

14

Map
1

Map
2

Map
3

Merger

These are a pullable
which reduce tasks
are pulling during

shuffling

Mergers no
longer belong to

map tasks

Mapping

Merging

Time

Mapping coincides with
Merging & Shuffling

Shuffling

Expectations

15

1) Start shuffling earlier than before
– as soon as some pullables are available

• not map outputs

2) Have control over when to merge spills

– to make pullable copiers work constantly

What if our expectations become reality?

16

Original

Goal

Shuffling Mapping Merging Reducing

200 maps
total time : 276186
first reduce : 4315
map dur. : 8760
reduce dur. : 196110

800 maps
total time : 186
first reduce : 21
map dur. : 18
reduce dur. : 133

200 maps
total time : 276
first reduce : 43
map dur. : 87
reduce dur. : 196

Advantages

17

1) Make Hadoop runs fast regardless of # of map tasks
• Overlap different phases regardless of # of map tasks
 Mapping
 Merging
 Shuffling

2) Ease the burden of choosing an appropriate value for #

of maps

Conclusion

• Goal
– To make Hadoop run fast regardless of # of map tasks

• # of map tasks has a significant impact on performance

• Challenge

– To modify Hadoop design choices
• Each map task launches its own merger
• Reduce tasks get their input from the output of completed map

tasks

• Solution
– Decouple mergers from map tasks

18

	<Milestone talk>�Improving Hadoop Performance by Weakening Dependency
	Major milestones
	MapReduce review (1)
	MapReduce review (2) – Map task
	MapReduce review (3) – Reduce task
	Improving Hadoop Performance by Weakening Dependency
	More detail about Hadoop :� # of simultaneous map tasks = # of task slots
	# of map tasks has a significant impact on performance
	# of map tasks has a significant impact on performance
	Why one map wave takes so long time?� 200 map tasks vs. 800 map tasks
	Improving Hadoop Performance by Weakening Dependency
	A Hadoop design choice – � Each map task launches its own merger
	My idea – � Decouple mergers from map tasks
	My idea – � Decouple mergers from map tasks
	Expectations
	What if our expectations become reality?
	Advantages
	Conclusion

