<Milestone talk>

Improving Hadoop Performance by
Weakening Dependency

45 HO@SHE| HA0H7HH O
ZISH Z=203AU0 1=

Major milestones

o

Designing & Developing
Studying New MapReduce

Hadoop Runtime System

Modifying -,

~o®. Hadoop o -~

MapReduce review (1)

- Users specify the computation in terms of a map and a reduce function
- MapReduce runtime system automatically

+ parallelizes the computation across large-scale clusters of machines
+ sort & group intermediate pairs
+ handles machine failures

- Hadoop is a representative MapReduce runtime system

procedure MapP(docid n,doc d) Block 1 Block 2 Block 3
H — new ASSOCIATIVEARRAY
P doc 1~100 doc 101~200 | | doc 201~300

H{t} — H{t} +1
for all term ¢ € H do
EMIT(term ¢, posting (n, H{t}))

procedure REDUCE(term ¢, postings [{ny, f1), (na, fa) ..]) { k | haSh(k) %2 == 0} { k | haSh(k) %2 == 1}

P — new LisT
for all posting (a, f) € postings [(n,, fi}, (ns, fo)...] do {} {}
APPEND(P, (a, f))

Reduce task
EMIT(term ¢, postings P)

SORT(P)

Reduce task

MapReduce review (2) — Map task

Map task

H — new ASSOCIATIVEARRAY

for all term ¢ € doc d do
H{t} — H{t} +1
for all term ¢ € H do

« Map tasks go through two phases
1) Mapping
2) Merging

« Each map task launches its own merger
— To merge local spill files

MapReduce review (3) — Reduce task
Map task 1 Map task 2 Map task 3

Reduice task (responsible for partition 0)

PO PO PO
(from mapl) (from map2) (from map3) B input

« Reduce tasks go through two phases
1) Shuffling
2) Reducing

« Reduce tasks get their input from the output of
completed map tasks

— Reduce tasks are scheduled after a pre-defined number of map
tasks are over

Improving Hadoop Performance by Weakening Dependency

e Goal

— To make Hadoop run fast regardless of # of map tasks
« # of map tasks has a significant impact on performance

« Challenge

— To modify Hadoop design choices
« Each map task launches its own merger

* Reduce tasks get their input from the output of completed map
tasks

e Solution
— 72

More detail about Hadoop :
of simultaneous map tasks = # of task slots

o # of task slots = <user parameter>

— If each of 2 nodes has 2 map slots,
we can run at most 4 map tasks at an instant

* Consider only map tasks *| @nodel @node2
A A
slot 2 slot 2
slot 1 slot 1
15t Map wave slot 2 slot 1
N slot 1 slot 2

slot 2 VN slot 2

slot 1 24 Map wave slot 1

slot 2 slot 2

slot 1 slot 1

>

<Ideal> <Real>

of map tasks has a significant impact on performance

key value

e 100G SOI"ting R RS
— Identity map function Ssaryase

— Identity reduce function
— 20 nodes

— 12 map slots per node

» up to 240 map tasks at an instant

<100G sorting input>

One map wave Multiple map waves

blocks = # map tasks

| 1024 MB 100 !
1 1
' 512 MB 200 |
F----.-----.-----------------l
I 256 MB 400 1
1
I 128MB 800 |
1
i 64 MB 1600 !
I 1
! 32 MB 3200 !

of reduce tasks : 80

[———
2 3 T

5

S

- ——————— -
. 5
8 s g

of map tasks has a significant impact on performance

1]

uuuuu

100 maps
total time : 296
map dur. : 101
reduce dur. : 196
first reduce : 62

One map wave

200 maps
total time : 276
map dur. : 87
reduce dur.

S ——

400 maps
total time : 197
map dur. 134
reduce dur. : 130

first reduce :

Multiple
map waves

first reduce : 29

800 maps
total time : 186
map dur. .18
reduce dur. : 133

first reduce : 21

1600 maps
total time : 198
map dur. 011
reduce dur. : 151
first reduce : 20

3200 maps
total time : 226
map dur. :6.44
reduce dur. : 173
first reduce : 16

Why one map wave takes so long time?
200 map tasks vs. 800 map tasks

- Mapping - Merging - Shuffling - Reducing

200 maps
total time : 276
first reduce :43
map dur. : 87
reduce dur. : 196

800 maps
total time : 186
first reduce : 21
map dur. .18
reduce dur. : 133

« What makes the difference (276 sec — 186 sec = 90 sec)?
1) Beginning of reduce tasks (43 sec — 21 sec = 22 sec)

. Reduce tasks get their input from the output of completed map tasks
. Each of the 200 maps (left) takes longer than each of the 800 maps (right)
2) Duration of reduce tasks (196 sec — 133 sec = 63 sec)

. (with 800 maps) smaller map outputs are made continuously throughout the job
. (with 200 maps) mergers are working around the same time

> 90 sec = 22 sec + 63 sec

10

Improving Hadoop Performance by Weakening Dependency

e Goal

— To make Hadoop run fast regardless of # of map tasks
« # of map tasks has a significant impact on performance

« Challenge

— To modify Hadoop design choices
« Each map task launches its own merger

* Reduce tasks get their input from the output of completed map
tasks

« Solution 4

— Decouple mergers from map tasks

11

A Hadoop design choice —
Each map task launches its own merger

Time

Mapping Merging

Partition
B

Partition
A

3

Map “

12

My idea -
Decouple mergers from map tasks

Merger ‘ _ . "

e
. =

» Mergers are working as soon as some local spills are available
» Mergers merge spill files regardless of their lineage

My idea -
Decouple mergers from map tasks

| These are a pullable ‘l
\ which reduce tasks |
|\/|3a|o ' are pulling during |
1 shuffling i
Mergers no) Y) Y O iy P ’
longer belong to ! § | T
map tasks : H 1 l
| 1 11 |
Merger I 1 i I
| 1 11 |
| 1 11 |
| 1 11 |
| 1 11 |
> Time
Mapping
Mapping coincides with Merging
Merging & Shuffling Shuffli
uffling

14

Expectations

1) Start shuffling earlier than before

— as soon as some pullables are available
* not map outputs

2) Have control over when to merge spills
— to make pullable copiers work constantly

15

What if our expectations become reality?

Original

- Mapping - Merging

b R
'

200 maps
total time : 276
first reduce :43
map dur. : 87
reduce dur. : 196

Goal

o B

800 maps
total time : 186
first reduce : 21
map dur. : 18
reduce dur. : 133

200 maps
total time : 2762186
first reduce :43=>15
map dur. : 87260
reduce dur. :196=>110

B shuffing [Reducing

16

Advantages

1) Make Hadoop runs fast regardless of # of map tasks

* Overlap different phases regardless of # of map tasks
v' Mapping
v' Merging
v Shuffling

2) Ease the burden of choosing an appropriate value for #
of maps

17

Conclusion

e Goal

— To make Hadoop run fast regardless of # of map tasks
« # of map tasks has a significant impact on performance

« Challenge

— To modify Hadoop design choices
« Each map task launches its own merger

* Reduce tasks get their input from the output of completed map
tasks

« Solution
— Decouple mergers from map tasks

18

	<Milestone talk>�Improving Hadoop Performance by Weakening Dependency
	Major milestones
	MapReduce review (1)
	MapReduce review (2) – Map task
	MapReduce review (3) – Reduce task
	Improving Hadoop Performance by Weakening Dependency
	More detail about Hadoop :� # of simultaneous map tasks = # of task slots
	# of map tasks has a significant impact on performance
	# of map tasks has a significant impact on performance
	Why one map wave takes so long time?� 200 map tasks vs. 800 map tasks
	Improving Hadoop Performance by Weakening Dependency
	A Hadoop design choice – � Each map task launches its own merger
	My idea – � Decouple mergers from map tasks
	My idea – � Decouple mergers from map tasks
	Expectations
	What if our expectations become reality?
	Advantages
	Conclusion

