ThisdJava:
An Extension of Java with Recursive Types

Hyunik Na
PL Lab@KAIST

ROSAEC 8" Workshop
2012.7.25~28

equals() Method

class Point {
inkt =, ¥

class ColorPoint extends Point {
RGB color;

boolean equals(Point other) { boolean equals(ColorPoint other) {
return (x == other.x && return (x == other.x &&
v == other.y); y == other.y &&
} color == other.color);
} }
}
ROSAEC 8th Workshop

2/36

equals() Method

class Point {
int x, y7;

boolean equals(Object o) {
if (o instanceof Point) {
Point other = (Point) o;
return (other.canEqual(this)
&& % == other.x
&& y == other.y)’
} else {
return false;

boolean canEqual (Object o) {
return (o instanceof Point) ;

}

class ColorPoint extends Point |{
RGB color:;

boolean equals(Object o) {
if (o instanceof ColorPoint) {
ColorPoint other = (ColorPoint) o;
return (other.canEqual (this)

&& x == other.x
&& y == other.y
&& color == other.color) !

} else |
return false;

boolean canEqual(Object o) {
return (o instanceof ColorPoint) ;

}

ROSAEC 8th Workshop

3/36

equals() Method

class Point {
int x, y7;

boolean equals(Object o) {
if (o instanceof Point) {
Point other = (Point) o;
return (other.canEqual(this)
&& % == other.x
&& y == other.y)’
} else {
return false;

boolean canEqual (Object o) {
return (o instanceof Point) ;

}

class ColorPoint extends Point |{
RGB color:;

boolean equals(Object o) {
if (o instanceof ColorPoint) {
ColorPoint other = (ColorPoint) o;
return (other.canEqual (this)

&& x == other.x
&& y == other.y
&& color == other.color) !

} else |
return false;

boolean canEqual(Object o) {
return (o instanceof ColorPoint) ;

; class Object {

boolean equals(Object o) { ... }

ROSAEC 8th Workshop

equals() Method

class Object {

boolean equals(? o) { ... }

¥

ROSAEC 8th Workshop 5/36

clone() Method

Cc= H
C c2 = c.clone(); // rejected
C c3 = (C) c.clone(); // accepted

ROSAEC 8th Workshop 6/36

clone() Method

Cc = : :class Object { :
I I
L. |
C c2 = c.clone(); // rejected I Object clone() { ... } !
C c3 = (C) c.clone(); // accepted L) I
1

ROSAEC 8th Workshop 7/36

clone() Method

Cc-=
C c2 = c.clone(); // rejected
C c3 = (C) c.clone(); // accepted
class C {

C clone() { ... }
¥

Cc=...;

C c2 = c.clone();

vy

// accepted

ROSAEC 8th Workshop

8/36

clone() Method

class Object {

;.;lune(} ...}
¥

ROSAEC 8th Workshop 9/36

Recursive Types to Express Type Equality

P ={x: int, y: int, equals: P>boolean, clone:)>P }
C = { x:int, y: int, equals: C>boolean, clone: ()>C, color: RGB }

ROSAEC 8th Workshop 10/36

Recursive Types to Express Type Equality

P ={x: int, y: int, equals: P>boolean, clone:)>P }
C = { x:int, y: int, equals: C>boolean, clone: ()>C, color: RGB }

P = uX{ x: int, y: int, equals: X->boolean, clone:)>X }
C = uX{ x: int, y: int, equals: X>boolean, clone: 0->X, color: RGB }
ROSAEC 8th Workshop

11/36

Recursive Types to Express Type Equality

P ={x: int, y: int, equals: P>boolean, clone:)>P }
C = { x:int, y: int, equals: C>boolean, clone: ()>C, color: RGB }

P = uX{ x: int, y: int, equals: X->boolean, clone:)>X }
C = uX{ x: int, y: int, equals: X>boolean, clone: 0->X, color: RGB }

class Point {
int x, vy;

boolean equals(This other) {
return (x == other.x &&
y == other.y);

class ColorPoint extends Point {
RGB color;

boolean equals(This other) {
return (x == other.x &%&
y == other.y &&

} color == other.color);
h
This clone() { ... }
} This clone() { ... }
h
ROSAEC 8th Workshop 12/36

Problem of Recursive Types

A recursive type breaks “subtyping-by-subclassing” when the
recursion variable appears on a parameter type

For example,

uXJ{ x: int, y: int, equals: X=>boolean, color: RGB }
is not a subtype of

uX{ x: int, y: int, equals: X=>boolean }

ROSAEC 8th Workshop 13/36

Problem of Recursive Types

A recursive type breaks “subtyping-by-subclassing” when the
recursion variable appears on a parameter type

For example,

uXJ{ x: int, y: int, equals: X=>boolean, color: RGB }
is not a subtype of

uX{ x: int, y: int, equals: X=>boolean }

(cf. Cardelli, 1984, 1986)

Record Types: S;<T, for i€ l..n
{ai : Si i€ 1..n..m} < {ai : Ti S 1..n}

Recursive Types: Y, XLYEFSLZT
YEUXS < uy.T

ROSAEC 8th Workshop

14/36

If We Ignore It And Just Use Recursive Types, ...

boolean compare(Point p, Point g) {
return p.equals(q);

¥

compare(new ColorPoint(1,2,BLUE), new Point(1,2)); // type safety broken!

ROSAEC 8th Workshop 15/36

If We Ignore It And Just Use Recursive Types, ...

boolean compare(Point p, Point g) {
return p.equals(q);

¥

compare(new ColorPoint(1,2,BLUE), new Point(1,2)); // type safety broken!

Is inheritance(subclassing) subtyping?

ROSAEC 8th Workshop 16/36

So, Binary Method Problem

= No recursive types unless we abandon subtyping-by-subclassing

ROSAEC 8th Workshop 17/36

So, Binary Method Problem

No recursive types unless we abandon subtyping-by-subclassing

However, the latter is more valuable than the former

ROSAEC 8th Workshop 18/36

So, Binary Method Problem

No recursive types unless we abandon subtyping-by-subclassing
However, the latter is more valuable than the former

S0, no recursive types in object-oriented languages

ROSAEC 8th Workshop 19/36

So, Binary Method Problem

No recursive types unless we abandon subtyping-by-subclassing
However, the latter is more valuable than the former
S0, no recursive types in object-oriented languages

Imprecise static typing for equal types
=>» Essence of Binary Method Problem

ROSAEC 8th Workshop 20/36

Our Solution: We Can Have Both!

= How to reject the problematic code?

boolean compare(Point p, Point q) {
return p.equals(q);

¥

compare(new ColorPoint(1,2,BLUE), new Point(1,2));

ROSAEC 8th Workshop 21/36

Our Solution: We Can Have Both!

How to reject the problematic code?

boolean compare(Point p, Point q) {
return p.equals(q);

¥

compare(new ColorPoint(1,2,BLUE), new Point(1,2));

Traditionally, p.equals(q) is allowed, because

13)

g’'s compile-time type is a subtype of p’'s compile-time type”

We reject it, because
“p and q’s run-time classes may be different”

ROSAEC 8th Workshop 22/36

Our Solution: We Can Have Both!

How to reject the problematic code?

boolean compare(Point p, Point q) {
return p.equals(q);

¥

compare(new ColorPoint(1,2,BLUE), new Point(1,2));

Traditionally, p.equals(q) is allowed, because

13)

g’'s compile-time type is a subtype of p’'s compile-time type”

We reject it, because
“p and q’s run-time classes may be different”

That is, a modified notion of This type

ROSAEC 8th Workshop 23/36

Is Our Type System Too Restrictive?

When is an invocation of equals() method allowed?
o When it is certain at compile-time that
the run-time classes of the receiver and argument match exactly.

For example,

new Point(1,2).equals(new Point(3,4));

ROSAEC 8th Workshop 24/36

Exact Class Types and Named Wildcards

boolean compare(ﬁpaint P ﬁpnint q) {
return p.equals(q);

¥

boolean compare(ﬁtclnrpcint P ﬁtolarpaint q) {
return p.equals(q);

¥

boolean compare(ﬁtalnrpaintx P, ﬁtalnrpaintx q) {
return p.equals(q);

¥

boolean compare(ﬁCGlGPPGintXX Py ﬁtalorpnintxx q) {
return p.equals(q);

¥

Mpoint p = new ColorPoint(1,2,BLUE);
EPoint p = new Point(1,2);

// rejected
// accepted

ROSAEC 8th Workshop

Exact Class Types and Named Wildcards

boolean compare(ﬁpaint P ﬁpnint q) {
return p.equals(q);

¥

boolean compare(ﬁtclnrpcint P ﬁtolarpaint q) {
return p.equals(q);

¥

boolean compare(ﬁtalnrpaintx P, ﬁtalnrpaintx q) {
return p.equals(q);

¥

boolean compare(ﬁCGlGPPGintXX Py ﬁtalorpnintxx q) {
return p.equals(q);

¥

NS

boolean compareGeneric(Point</X/> p, Point</X/> q) {
return p.equals(q);

¥

ROSAEC 8th Workshop

26/36

Exact Type Capture

Point p; // local variable

p-equals(p);

ROSAEC 8th Workshop 27/36

Exact Type Capture

Point p; // local variable

p-equals(p);

Declared type of p (Point) is internally converted to Point</X/>
where X is a fresh exact type variable

Similar to Java’s wildcard capture (unpacking of an existential type)

Cannot capture exact types of a non-final field and an array element
o due to multi-threading

ROSAEC 8th Workshop 28/36

Exact Type Inference

Point p, q;
if (...) {
p = new Point(1,2);
q = new Point(3,4);
} else {
p = new ColorPoint(1,2,BLUE);
q = new ColorPoint(3,4,RED);
¥

p.equals(q);

ROSAEC 8th Workshop 29/36

Exact Type Inference

Point p, q;
if (...) {
p = new Point(1,2);
q = new Point(3,4);
} else {
p = new ColorPoint(1,2,BLUE);
q = new ColorPoint(3,4,RED);
¥

p.equals(q);

Exact type inference is a data-flow analysis
o based on reaching-definition analysis

It should consider each flow separately

Restricted within a method, and ignited only when exact type
matching is necessary

ROSAEC 8th Workshop 30/36

Run-time Type Recover Using ‘classesmatch’

boolean compare(Point p, Point g) {
return p.equals(q); // rejected

¥

ROSAEC 8th Workshop 31/36

Run-time Type Recover Using ‘classesmatch’

boolean compare(Point p, Point g) {
return p.equals(q); // rejected

¥

N

boolean compare(Point p, Point q) {
classesmatch (p, q) {
return p.equals(q); // allowed
} else {
return false;

¥
¥

ROSAEC 8th Workshop 32/36

Run-time Type Recover Using ‘classesmatch’

boolean compare(Point p, Point g) {
return p.equals(q); // rejected

¥

N

boolean compare(Point p, Point q) {
classesmatch (p, q) {
return p.equals(q); // allowed
} else {
return false;

¥
¥

= Run-time type recover is used in many languages
o e.g. type casting, pattern matching, typecase

ROSAEC 8th Workshop

33/36

Thisdava

A conservative extension of Java with the features described so far
(+ virtual constructors)

Implementation

o Extending JastAddJ compiler
JastAddJ 1.4/1.5 Frontend/Backend =» Thisdava 1.4/1.5 Frontend/Backend

Status

o Implementation done

o It well compiles Java class library (7636 .java files) obtained from
OpendDK 1.6

o Execution is as expected for small test programs
Execution tests for big benchmark programs is to be done

o Added features seem to work well with existing various Java features
mutable variables and arrays, nested classes, multi-threading, generics, etc

ROSAEC 8th Workshop 34/36

Conclusion

Run-time class matching seems to be the most desirable notion of
This type
o Type safety is restored without further restriction

“Inheritance is subtyping” with the notion

For flexible use of This type, various typing scheme is necessary
o named wildcards

o exact type capture

o exact type inference

o classesmatch construct

We can have both recursive types and subtyping-by-inheritance
iIn @ non-toy object-oriented language

ROSAEC 8th Workshop 35/36

‘ Reference on
“How to Write a Good Equals Method”

A comprehensive step-by-step guide Chapter 28

:) Object Equality
Programming in

Comparing two values for equality is ubiquitous in programming. It is also

more tricky than it looks at first glance. This chapter looks at object equality
in detail and gives some recommendations to consider when you design your
own equality tests.

28.1 Equality in Scala

As mentioned in Section 11.2, the definition of equality is different in Scala
and Java. Java has two equality comparisons: the == operator, which is the
natural equality for value types and object identity for reference types, and
the equals method, which is (user-defined) canonical equality for reference
types. This convention is problematic, because the more natural symbol, ==,
does not always correspond to the natural notion of equality. When program-
ming in Java, a common pitfall for beginners is to compare objects with ==
when they should have been compared with equals. For instance, compar-
ing two strings x and y using “x == y”" might well yield false in Java, even
if x and y have exactly the same characters in the same order,

Scala also has an equality method signifying object identity, but it is
not used much. That kind of equality, written “x eq y”, is true if x and
y reference the same object. The == equality is reserved in Scala for the
“natural” equality of each type. For value types, == is value comparison, just
like in Java. For reference types, == is the same as equals in Scala. You can
redefine the behavior of == for new types by overriding the equals method,

Martin Odersky which is always inherited from class Any. The inherited equals, which takes
Lex Spoon effect unless overridden, is object identity, as is the case in Java. So equals
artima Bill Venners Zin

ROSAEC 8th Workshop 36/36

