
ThisJava:
An Extension of Java with Recursive Types

2012.7.25~28

Hyunik Na

PL Lab@KAIST

ROSAEC 8th Workshop

equals() Method

ROSAEC 8th Workshop 2/36

equals() Method

ROSAEC 8th Workshop 3/36

equals() Method

ROSAEC 8th Workshop 4/36

equals() Method

ROSAEC 8th Workshop 5/36

clone() Method

ROSAEC 8th Workshop 6/36

clone() Method

ROSAEC 8th Workshop 7/36

clone() Method

ROSAEC 8th Workshop 8/36

clone() Method

ROSAEC 8th Workshop 9/36

Recursive Types to Express Type Equality

PPPP = { x: int, y: int, equals: PPPP�boolean, clone: ()�PPPP }

CCCC = { x: int, y: int, equals: CCCC�boolean, clone: ()�CCCC, color: RGB }

ROSAEC 8th Workshop 10/36

Recursive Types to Express Type Equality

PPPP = { x: int, y: int, equals: PPPP�boolean, clone: ()�PPPP }

CCCC = { x: int, y: int, equals: CCCC�boolean, clone: ()�CCCC, color: RGB }

PPPP = µXXXX.{ x: int, y: int, equals: XXXX�boolean, clone: ()�XXXX }

CCCC = µXXXX.{ x: int, y: int, equals: XXXX�boolean, clone: ()�X, X, X, X, color: RGB }

ROSAEC 8th Workshop 11/36

Recursive Types to Express Type Equality

PPPP = { x: int, y: int, equals: PPPP�boolean, clone: ()�PPPP }

CCCC = { x: int, y: int, equals: CCCC�boolean, clone: ()�CCCC, color: RGB }

PPPP = µXXXX.{ x: int, y: int, equals: XXXX�boolean, clone: ()�XXXX }

CCCC = µXXXX.{ x: int, y: int, equals: XXXX�boolean, clone: ()�X, X, X, X, color: RGB }

ROSAEC 8th Workshop

This

This This

This

12/36

Problem of Recursive Types

� A recursive type breaks “subtyping-by-subclassing” when the

recursion variable appears on a parameter type

� For example,

µXXXX.{ x: int, y: int, equals: XXXX�boolean, color: RGB }

is not a subtype of

XXXX.{ x: int, y: int, equals: XXXX boolean }µXXXX.{ x: int, y: int, equals: XXXX�boolean }

ROSAEC 8th Workshop 13/36

Problem of Recursive Types

� A recursive type breaks “subtyping-by-subclassing” when the

recursion variable appears on a parameter type

� For example,

µXXXX.{ x: int, y: int, equals: XXXX�boolean, color: RGB }

is not a subtype of

XXXX.{ x: int, y: int, equals: XXXX boolean }µXXXX.{ x: int, y: int, equals: XXXX�boolean }

(cf. Cardelli, 1984, 1986)

Record Types: Si ���� Ti for i ∈ ∈ ∈ ∈ 1..n

{ai : Si
i ∈∈∈∈ 1..n..m} � � � � {ai : Ti

i ∈∈∈∈ 1..n}

Recursive Types: ΣΣΣΣ, X � � � � Y ⊢⊢⊢⊢ S � � � � T

ΣΣΣΣ ⊢ ⊢ ⊢ ⊢ µµµµX.S � � � � µµµµY. T

ROSAEC 8th Workshop 14/36

If We Ignore It And Just Use Recursive Types, A

ROSAEC 8th Workshop 15/36

If We Ignore It And Just Use Recursive Types, A

ROSAEC 8th Workshop

Is inheritance(subclassing) subtyping?

16/36

So, Binary Method Problem

� No recursive types unless we abandon subtyping-by-subclassing

ROSAEC 8th Workshop 17/36

So, Binary Method Problem

� No recursive types unless we abandon subtyping-by-subclassing

� However, the latter is more valuable than the former

ROSAEC 8th Workshop 18/36

So, Binary Method Problem

� No recursive types unless we abandon subtyping-by-subclassing

� However, the latter is more valuable than the former

� So, no recursive types in object-oriented languages

ROSAEC 8th Workshop 19/36

So, Binary Method Problem

� No recursive types unless we abandon subtyping-by-subclassing

� However, the latter is more valuable than the former

� So, no recursive types in object-oriented languages

� Imprecise static typing for equal types

� Essence of Binary Method Problem

ROSAEC 8th Workshop 20/36

Our Solution: We Can Have Both!

� How to reject the problematic code?

ROSAEC 8th Workshop 21/36

Our Solution: We Can Have Both!

� How to reject the problematic code?

� Traditionally, p.equals(q) is allowed, because

“q’s compile-time type is a subtype of p’s compile-time type”

� We reject it, because

“p and q’s run-time classes may be different”

ROSAEC 8th Workshop 22/36

Our Solution: We Can Have Both!

� How to reject the problematic code?

� Traditionally, p.equals(q) is allowed, because

“q’s compile-time type is a subtype of p’s compile-time type”

� We reject it, because

“p and q’s run-time classes may be different”

� That is, a modified notion of This type

ROSAEC 8th Workshop 23/36

Is Our Type System Too Restrictive?

� When is an invocation of equals() method allowed?

� When it is certain at compile-time that

the run-time classes of the receiver and argument match exactly.

� For example,

ROSAEC 8th Workshop 24/36

Exact Class Types and Named Wildcards

ROSAEC 8th Workshop 25/36

Exact Class Types and Named Wildcards

ROSAEC 8th Workshop 26/36

Exact Type Capture

ROSAEC 8th Workshop 27/36

Exact Type Capture

Declared type of p (Point) is internally converted to Point</X/>

ROSAEC 8th Workshop

� Declared type of p (Point) is internally converted to Point</X/>

where X is a fresh exact type variable

� Similar to Java’s wildcard capture (unpacking of an existential type)

� Cannot capture exact types of a non-final field and an array element

� due to multi-threading

28/36

Exact Type Inference

ROSAEC 8th Workshop 29/36

Exact Type Inference

� Exact type inference is a data-flow analysis

� based on reaching-definition analysis

� It should consider each flow separately

� Restricted within a method, and ignited only when exact type

matching is necessary

ROSAEC 8th Workshop 30/36

Run-time Type Recover Using ‘classesmatch’

ROSAEC 8th Workshop 31/36

Run-time Type Recover Using ‘classesmatch’

ROSAEC 8th Workshop 32/36

Run-time Type Recover Using ‘classesmatch’

� Run-time type recover is used in many languages

� e.g. type casting, pattern matching, typecase

ROSAEC 8th Workshop 33/36

ThisJava

� A conservative extension of Java with the features described so far

(+ virtual constructors)

� Implementation

� Extending JastAddJ compiler

� JastAddJ 1.4/1.5 Frontend/Backend � ThisJava 1.4/1.5 Frontend/Backend

� Status

� Implementation done

� It well compiles Java class library (7636 .java files) obtained from

OpenJDK 1.6

� Execution is as expected for small test programs

� Execution tests for big benchmark programs is to be done

� Added features seem to work well with existing various Java features

� mutable variables and arrays, nested classes, multi-threading, generics, etc

ROSAEC 8th Workshop 34/36

Conclusion

� Run-time class matching seems to be the most desirable notion of

This type

� Type safety is restored without further restriction

� “Inheritance is subtyping” with the notion

� For flexible use of This type, various typing scheme is necessary

named wildcards� named wildcards

� exact type capture

� exact type inference

� classesmatch construct

� We can have both recursive types and subtyping-by-inheritance

in a non-toy object-oriented language

ROSAEC 8th Workshop 35/36

Reference on

“How to Write a Good Equals Method”

ROSAEC 8th Workshop 36/36

