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Recursive Types to Express Type Equality

PPPP = { x: int, y: int, equals: PPPP�boolean, clone: ()�PPPP }

CCCC = { x: int, y: int, equals: CCCC�boolean, clone: ()�CCCC, color: RGB }
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Recursive Types to Express Type Equality

PPPP = { x: int, y: int, equals: PPPP�boolean, clone: ()�PPPP }

CCCC = { x: int, y: int, equals: CCCC�boolean, clone: ()�CCCC, color: RGB }

PPPP = µXXXX.{ x: int, y: int, equals: XXXX�boolean, clone: ()�XXXX }

CCCC = µXXXX.{ x: int, y: int, equals: XXXX�boolean, clone: ()�X, X, X, X, color: RGB }
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Problem of Recursive Types

� A recursive type breaks “subtyping-by-subclassing” when the 

recursion variable appears on a parameter type

� For example, 

µXXXX.{ x: int, y: int, equals: XXXX�boolean, color: RGB }

is not a subtype of 

XXXX.{ x: int, y: int, equals: XXXX boolean }µXXXX.{ x: int, y: int, equals: XXXX�boolean }
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Problem of Recursive Types

� A recursive type breaks “subtyping-by-subclassing” when the 

recursion variable appears on a parameter type

� For example, 

µXXXX.{ x: int, y: int, equals: XXXX�boolean, color: RGB }

is not a subtype of 

XXXX.{ x: int, y: int, equals: XXXX boolean }µXXXX.{ x: int, y: int, equals: XXXX�boolean }

(cf. Cardelli, 1984, 1986)

Record Types: Si ���� Ti for   i ∈ ∈ ∈ ∈ 1..n

{ai : Si 
i ∈∈∈∈ 1..n..m}   �  �  �  �  {ai : Ti 

i ∈∈∈∈ 1..n} 

Recursive Types: ΣΣΣΣ, X � � � � Y ⊢⊢⊢⊢ S � � � � T

ΣΣΣΣ ⊢ ⊢ ⊢ ⊢ µµµµX.S  �  �  �  �  µµµµY. T
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If We Ignore It And Just Use Recursive Types, A
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Is inheritance(subclassing) subtyping?
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So, Binary Method Problem

� No recursive types unless we abandon subtyping-by-subclassing
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So, Binary Method Problem

� No recursive types unless we abandon subtyping-by-subclassing

� However, the latter is more valuable than the former

� So, no recursive types in object-oriented languages

� Imprecise static typing for equal types

� Essence of Binary Method Problem 
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Our Solution: We Can Have Both!

� How to reject the problematic code?
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Our Solution: We Can Have Both!

� How to reject the problematic code?

� Traditionally, p.equals(q) is allowed, because  

“q’s compile-time type is a subtype of p’s compile-time type”

� We reject it, because

“p and q’s run-time classes may be different”
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Our Solution: We Can Have Both!

� How to reject the problematic code?

� Traditionally, p.equals(q) is allowed, because  

“q’s compile-time type is a subtype of p’s compile-time type”

� We reject it, because

“p and q’s run-time classes may be different”

� That is, a modified notion of This type
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Is Our Type System Too Restrictive?

� When is an invocation of equals() method allowed? 

� When it is certain at compile-time that 

the run-time classes of the receiver and argument match exactly.

� For example, 
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Exact Class Types and Named Wildcards
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Exact Type Capture
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Exact Type Capture

Declared type of p (Point) is internally converted to Point</X/>
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� Declared type of p (Point) is internally converted to Point</X/>

where X is a fresh exact type variable

� Similar to Java’s wildcard capture (unpacking of an existential type)

� Cannot capture exact types of a non-final field and an array element

� due to multi-threading
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Exact Type Inference
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Exact Type Inference

� Exact type inference is a data-flow analysis 

� based on reaching-definition analysis

� It should consider each flow separately

� Restricted within a method, and ignited only when exact type 

matching is necessary
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Run-time Type Recover Using ‘classesmatch’
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Run-time Type Recover Using ‘classesmatch’

� Run-time type recover is used in many languages

� e.g. type casting, pattern matching, typecase
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ThisJava

� A conservative extension of Java with the features described so far 

(+ virtual constructors) 

� Implementation

� Extending JastAddJ compiler

� JastAddJ 1.4/1.5 Frontend/Backend � ThisJava 1.4/1.5 Frontend/Backend

� Status

� Implementation done

� It well compiles Java class library (7636 .java files) obtained from 

OpenJDK 1.6

� Execution is as expected for small test programs

� Execution tests for big benchmark programs is to be done

� Added features seem to work well with existing various Java features

� mutable variables and arrays, nested classes, multi-threading, generics, etc
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Conclusion

� Run-time class matching seems to be the most desirable notion of 

This type

� Type safety is restored without further restriction

� “Inheritance is subtyping” with the notion

� For flexible use of This type, various typing scheme is necessary

named wildcards� named wildcards

� exact type capture

� exact type inference

� classesmatch construct

� We can have both recursive types and subtyping-by-inheritance 

in a non-toy object-oriented language
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Reference on 

“How to Write a Good Equals Method”
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