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Algorithm 의 기본 개념 

 An algorithm is a rule for solving a problem using          
finitely many pre-determined instructions. 

 

 예를 들어, 10진수 두 자연수의 곱을 구하는 문제를 위해 
우리는 다음과 같은 알고리즘을 사용한다.  

 

 

 

 

 

 다른 예: 주어진 자연수가 소수(prime number)인가? 
 알고리즘: Eratosthenes 의 채 

Xs

   23 × 45  

= 23 × 40 + 5  

=(20 + 3) × 40 + (20 + 3) × 5 

= 800 + 120 + 100 + 15 = 1035 
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결정 불가능한 문제 

잘 정의된 문제라도, 그 문제를 푸는 알고리즘이 항상 존재하는 

것은 아니다. (결정 불가능함 문제; undecidable problem). 

1.  Halting problem 

2. Hilbert’s 10th problem : Does there exist an algorithm to 

determine whether a given Diophantine equation has an 

integer solution? 

Diophantine equation : a polynomial equation that allows the 

variables to be integers only 

Ex1: 3𝑥 + 4𝑦 = 1 

Ex2: 𝑥2 − 5𝑦2 = 1 

Resolved: Matiyasevich's theorem(1970) implies that there is no 

such algorithm.  Kyomin Jung, KAIST 4 



효율적인 알고리즘? 

문제: compute the GCD(Greatest Common Divisor) of  integers A and B with   

A > B >= 0. 

Euclid Algorithm utilizes the theorem that GCD(A,B)=GCD(B, A-kB)              

for any integer k. 
 

Euclid Algorithm (A,B) 

a. If  B = 0 then output GCD(A,B) = A 

b. If  B > 0 then   

let C = A % B ( remainder of A divided by B) 

Output Euclid Algorithm (B,C) 

Example:   GCD(120,85)=GCD(85,35)=GCD(35,5)=GCD(5,0)=5 

120 = 85*1 + 35,              85 = 35*2 + 15,  

35 = 15*2 + 5,                   15 = 5*3 + 0 
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Hamiltonian Path Problem 

 Given a graph G, a Hamiltonian path is a path which visits 

each vertex exactly once. 

 Hamiltonian Path Problem 

 Decide whether a graph G has a hamiltonian path or not 

 

 Eulerian path 문제 와 달리 판별이 어려움 

a 

b 

d 

c 

e 
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Traveling Salesman Problem (TSP) 

 

 Given a graph with non-negative edge distance, find a 

shortest possible Hamiltonian path. 

a 

b 

c 

d 
2 

3 

3 

1 
1 
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Polynomial Time Reduction 

 Intuitively: If R reduces in polynomial time to Q, Q is “a     

more general problem than” R 

 

 A problem R can be reduced to another problem Q in        

polynomial time if  

 Any instance of R can be solved in polynomial time by using a       

polynomial time oracle for Q. 

 

 Denote R p Q (Q가 R보다 더 일반적이고 어려운 문제) 

 

 Ex: Hamiltonian Path can be reduced to TSP. 
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Algorithm 수행이 필요한 주요 문제들 

 결정 문제 (Decision Problem) 
 The answer is Yes or No. Ex: Hamiltonian path problem. 

 

 최적화 문제 (Optimization Problem) 

 Goal is to compute the optimal value, or the labeling 

 Ex: TSP problem (optimal value: length of the shortest  travel,              

labeling: the visiting order of the optimal travel) 

 Can be reduced to a decision problem by binary search 

 

 계산 문제 (Computation Problem) 

 Ex: Compute a solution of an equation 

 Ex: Compute eigenvalues of a matrix 

 Can be reduced to a decision problem by binary search 
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Turing Machine 

 Turing Machine 은 특정 프로그램을 돌리고 있는 컴퓨터 

 

 Church-Turing thesis: every decision problem that is 

computable by an “algorithm” can be computed by some 

Turing Machine 

 

 참고 자료: Introduction to the Theory of Computation, 2nd 

edition by Michael Sipser, Course Technology 
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P and NP 
 P = set of decision problems that can be solved in              

polynomial step of the input bit size by a TM 

 NP = set of decision problems for which any yes instance  

has some “proof” that verifies the problem to be yes in       

polynomial step  (ex: Hamiltonian path) 

 다른 정의: NP = set of decision problems that can be solved in              

polynomial step by a Nondeterministic TM 
 

 P is similar to a problem that a normal people can find its       

solution easily. 

 NP is a problem that a normal people can grade whether       

other person’s solution is correct or not easily. 

 P  NP 

 A big question: Does P ≠ NP?  
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NP-Hard and NP-Complete (NP 싹쓸이) 

 Definition of NP-Hard and NP-Complete :  

 If all problems R  NP are reducible to Q, then Q is    

NP-Hard 

We say Q is NP-Complete (NP 싹쓸이) if Q is NP-Hard 

and Q  NP 

 

 If R p Q, and R is NP-Complete, and Q  NP, then Q is 

also NP- Complete 

 

 참고: PSPACE-Complete, EXPTIME-Complete 
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Proving NP-Completeness 

 Is there at least one NP-complete problem? 

 Cook-Levin Theorem shows that SAT problem is           

NP-Complete 

 

 특정 문제 Q 가 NP-Complete 임을 증명하려면? 

 Prove Q  NP 

 Pick a known NP-Complete problem R 

 Reduce R to Q 

 Prove the reduction runs in polynomial time 
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SAT Problem 

 정의 

 Boolean variables: variables that can take the values 

TRUE(1) or FALSE(0) 

 

 Boolean operations: AND, OR, and NOT 

 

 Boolean formula: an expression involving Boolean 

variable and Boolean operations 
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SAT Problem 

 정의 

satisfiable: if some assignment of 0s and 1s to 

the variables make the Boolean formula True 

 

 Example of a satisfiable Boolean formula 

 φ=(¬x∧y)∨(x∧¬z) 

 x=0, y=1, and z=0 
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SAT Problem 

 Definition (SAT Problem) 

SAT = {<φ>|φ is a satisfiable Boolean 

formula}. 

 

 Given a Boolean formula, is it satisfiable? 

 

 Cook-Levin Theorem 

SAT∈NPC 
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Corollary: 3SAT∈NPC 

 Any Boolean formula can be expressed as a 

CNF (Conjunctive Normal Form)  

 Ex: (¬x∨z) ⋀(x∨y∨w) ⋀(y∨¬z∨ ¬ x) 

 CNFs can be converted into CNFs with three 

literals per clause. 
 

 Examples 
 (x1∨x2)≡(x1∨x2∨x2) 

 (x1∨x2∨x3∨x4)≡(x1∨x2∨z)∧(¬z∨x3∨x4) 

 (x1∨x2∨x3∨x4∨x5)≡ 

(x1∨x2∨z1)∧(¬z1∨x3∨z2)∧(¬z2∨x4∨x5 ) 
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Corollary: 3SAT∈NPC 

 Hence, a SAT problem can be converted into a 

equivalent 3SAT problem (in polynomial time). 

 

 That is, SAT≤P3SAT. 

 

 Since SAT∈NPC, and 3SAT∈NP, we have 

3SAT∈NPC. 
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Example of NP-complete problem: Clique 

 CLIQUE = { <G,k> | G is a graph with a clique of 

size k } 

 A clique is a subset of vertices that are all 

connected. 

 Easy: CLIQUE ∈ NP. 
1 

3 

2 

6 

4 5 

7 
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Reduction of 3-SAT to Clique 

 Pick an instance of 3-SAT, Φ, with k 

clauses 

 Make a vertex for each literal 

 Connect each vertex to the literals in other 

clauses that are not the negation 

 Any k-clique in this graph corresponds to a 

satisfying assignment 
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An Example 
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Proof of Cook-Levin Theorem 

 What to prove is … 

SAT∈NP (clear) 

∀A∈NP, A≤PSAT 
 

The proof shows that for each problem 
A∈NP and a given input w to A, it is 
possible to produce a Boolean formula F 
(depending on A and w) in polynomial time 
of |w|  so that F is satisfiable if and only if w 
is a yes instance of A. 
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Proof of Cook-Levin Theorem 

 Proof 

A: a Problem 

w: an input 

N: NP Turing machine that decides A 

 Assume that N decides whether w∈A in nk steps, 

for some constant k. 

NP Turing machine : consists of states, tape 

alphabet, move rule, accept rule, and reject 

rule.  
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Proof of Cook-Levin Theorem 

Consider nk×nk-cell tableau of tape change 

history  for input w. (k is some constant) 

 

 
# q0 w1 w2 … wn ⊔ … ⊔ # 

# # 

# # 

 
 
 
 
 

# # 

nk 

 

(time) 

nk 

start configuration 

second configuration 

nk th configuration 
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Proof of Cook-Levin Theorem 

cell[i,j]: the cell located on the ith row and the 

jth column. 

 

variables of the Boolean formula: xi,j,s. 

xi,j,s: true if cell[i,j] is the symbol s. 
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Proof of Cook-Levin Theorem 

The tableau, without any restriction, may contain 

many invalid series of configurations. 

 E.g. cells containing multiple symbols, not starting with 

the input w, neighbor configurations not corresponding 

the transition rules, not resulting in the accept state, 

and etc. 

Produce a Boolean formula which  

 Forces the tableau to be valid according to the state 

change rules of the Nondeterministic Turing machine 

 And at least one of the configuration results in the 

accept state. 
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Proof of Cook-Levin Theorem 

One cell can contain exactly one symbol among a 
state, a tape alphabet, and  #.(φcell) 

The first configuration should correspond to input 
w. (φstart) 

A configuration is derivable from the immediately 
previous configuration according to the transition 
rule of the Nondeterministic Turing machine. 
(φmove) 

There must exist a cell containing the accept state. 
(φaccept) 

 

φ=φcell∧φstart∧φmove∧φaccept 
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Proof of Cook-Levin Theorem 

φ=φcell∧φstart∧φmove∧φaccept 

 

Each cell contain at 

least one symbol. 
Each cell contain at 

most one symbol. 
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Proof of Cook-Levin Theorem 

φ=φcell∧φstart∧φmove∧φaccept 

 

Each cell of the first row has a symbol 

corresponding to the start configuration 

with input w. 
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Proof of Cook-Levin Theorem 

φ=φcell∧φstart∧φmove∧φaccept 

At least one cell is the accept state. 
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Proof of Cook-Levin Theorem 

φ=φcell∧φstart∧φmove∧φaccept 

φmove checks whether  every 2×3 window of 

the tableau is legal according to the transition 

rule of the Nondeterministic Turing machine. 

 
# … # 

# # 

# # 

…  
 
 
 
 

… 

# … # 
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Proof of Cook-Levin Theorem 

• φ=φcell∧φstart∧φmove∧φaccept 

 

 Now, we have obtained φ as we wished. 

 I.e. φ is satisfiable, iff w∈A.  

 Also, size of φ is polynomial in n. Hence it is a 

polynomial time reduction.  

 Therefore, SAT is NP-complete. 
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참고 자료 

 Cook-Levin 정리의 자세한 증명은 Introduction to 

the Theory of Computation, Michael Sipser, 

Course Technology, 2nd edition 의 Theorem 

7.37 에 있습니다. 
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