
NP-Completeness 와
Cook-Levin 정리

정교민, 응용 알고리즘 연구실

Computer Science, KAIST

Joint Appointments in Math and EE depts.

ERC 여름 워크샵
2012년 7월 27일

목차

 Algorithm 의 개념

 P, NP, 그리고 NP-complete (NP-싹쓸이)

 SAT problem

 NP-complete 문제의 예

 Cook-Levin 정리의 증명 스케치

정교민, KAIST 응용알고리즘 연구실 2

Algorithm 의 기본 개념

 An algorithm is a rule for solving a problem using
finitely many pre-determined instructions.

 예를 들어, 10진수 두 자연수의 곱을 구하는 문제를 위해
우리는 다음과 같은 알고리즘을 사용한다.

 다른 예: 주어진 자연수가 소수(prime number)인가?
 알고리즘: Eratosthenes 의 채

Xs

 23 × 45

= 23 × 40 + 5

=(20 + 3) × 40 + (20 + 3) × 5

= 800 + 120 + 100 + 15 = 1035

정교민, KAIST 응용알고리즘 연구실 3

결정 불가능한 문제

잘 정의된 문제라도, 그 문제를 푸는 알고리즘이 항상 존재하는

것은 아니다. (결정 불가능함 문제; undecidable problem).

1. Halting problem

2. Hilbert’s 10th problem : Does there exist an algorithm to

determine whether a given Diophantine equation has an

integer solution?

Diophantine equation : a polynomial equation that allows the

variables to be integers only

Ex1: 3𝑥 + 4𝑦 = 1

Ex2: 𝑥2 − 5𝑦2 = 1

Resolved: Matiyasevich's theorem(1970) implies that there is no

such algorithm. Kyomin Jung, KAIST 4

효율적인 알고리즘?

문제: compute the GCD(Greatest Common Divisor) of integers A and B with

A > B >= 0.

Euclid Algorithm utilizes the theorem that GCD(A,B)=GCD(B, A-kB)

for any integer k.

Euclid Algorithm (A,B)

a. If B = 0 then output GCD(A,B) = A

b. If B > 0 then

let C = A % B (remainder of A divided by B)

Output Euclid Algorithm (B,C)

Example: GCD(120,85)=GCD(85,35)=GCD(35,5)=GCD(5,0)=5

120 = 85*1 + 35, 85 = 35*2 + 15,

35 = 15*2 + 5, 15 = 5*3 + 0

정교민, KAIST 응용알고리즘 연구실 5

Hamiltonian Path Problem

 Given a graph G, a Hamiltonian path is a path which visits

each vertex exactly once.

 Hamiltonian Path Problem

 Decide whether a graph G has a hamiltonian path or not

 Eulerian path 문제 와 달리 판별이 어려움

a

b

d

c

e

정교민, KAIST 응용알고리즘 연구실 6

Traveling Salesman Problem (TSP)

 Given a graph with non-negative edge distance, find a

shortest possible Hamiltonian path.

a

b

c

d
2

3

3

1
1

정교민, KAIST 응용알고리즘 연구실 7

Polynomial Time Reduction

 Intuitively: If R reduces in polynomial time to Q, Q is “a

more general problem than” R

 A problem R can be reduced to another problem Q in

polynomial time if

 Any instance of R can be solved in polynomial time by using a

polynomial time oracle for Q.

 Denote R p Q (Q가 R보다 더 일반적이고 어려운 문제)

 Ex: Hamiltonian Path can be reduced to TSP.

정교민, KAIST 응용알고리즘 연구실 8

Algorithm 수행이 필요한 주요 문제들

 결정 문제 (Decision Problem)
 The answer is Yes or No. Ex: Hamiltonian path problem.

 최적화 문제 (Optimization Problem)

 Goal is to compute the optimal value, or the labeling

 Ex: TSP problem (optimal value: length of the shortest travel,

labeling: the visiting order of the optimal travel)

 Can be reduced to a decision problem by binary search

 계산 문제 (Computation Problem)

 Ex: Compute a solution of an equation

 Ex: Compute eigenvalues of a matrix

 Can be reduced to a decision problem by binary search

 정교민, KAIST 응용알고리즘 연구실 9

정교민, KAIST 응용알고리즘 연구실 10

Turing Machine

 Turing Machine 은 특정 프로그램을 돌리고 있는 컴퓨터

 Church-Turing thesis: every decision problem that is

computable by an “algorithm” can be computed by some

Turing Machine

 참고 자료: Introduction to the Theory of Computation, 2nd

edition by Michael Sipser, Course Technology

정교민, KAIST 응용알고리즘 연구실 11

P and NP
 P = set of decision problems that can be solved in

polynomial step of the input bit size by a TM

 NP = set of decision problems for which any yes instance

has some “proof” that verifies the problem to be yes in

polynomial step (ex: Hamiltonian path)

 다른 정의: NP = set of decision problems that can be solved in

polynomial step by a Nondeterministic TM

 P is similar to a problem that a normal people can find its

solution easily.

 NP is a problem that a normal people can grade whether

other person’s solution is correct or not easily.

 P NP

 A big question: Does P ≠ NP?

 정교민, KAIST 응용알고리즘 연구실 12

NP-Hard and NP-Complete (NP 싹쓸이)

 Definition of NP-Hard and NP-Complete :

 If all problems R NP are reducible to Q, then Q is

NP-Hard

We say Q is NP-Complete (NP 싹쓸이) if Q is NP-Hard

and Q NP

 If R p Q, and R is NP-Complete, and Q NP, then Q is

also NP- Complete

 참고: PSPACE-Complete, EXPTIME-Complete

정교민, KAIST 응용알고리즘 연구실 13

Proving NP-Completeness

 Is there at least one NP-complete problem?

 Cook-Levin Theorem shows that SAT problem is

NP-Complete

 특정 문제 Q 가 NP-Complete 임을 증명하려면?

 Prove Q NP

 Pick a known NP-Complete problem R

 Reduce R to Q

 Prove the reduction runs in polynomial time

정교민, KAIST 응용알고리즘 연구실 14

SAT Problem

 정의

 Boolean variables: variables that can take the values

TRUE(1) or FALSE(0)

 Boolean operations: AND, OR, and NOT

 Boolean formula: an expression involving Boolean

variable and Boolean operations

정교민, KAIST 응용알고리즘 연구실 15

SAT Problem

 정의

satisfiable: if some assignment of 0s and 1s to

the variables make the Boolean formula True

 Example of a satisfiable Boolean formula

 φ=(¬x∧y)∨(x∧¬z)

 x=0, y=1, and z=0

정교민, KAIST 응용알고리즘 연구실 16

SAT Problem

 Definition (SAT Problem)

SAT = {<φ>|φ is a satisfiable Boolean

formula}.

 Given a Boolean formula, is it satisfiable?

 Cook-Levin Theorem

SAT∈NPC

정교민, KAIST 응용알고리즘 연구실 17

Corollary: 3SAT∈NPC

 Any Boolean formula can be expressed as a

CNF (Conjunctive Normal Form)

 Ex: (¬x∨z) ⋀(x∨y∨w) ⋀(y∨¬z∨ ¬ x)

 CNFs can be converted into CNFs with three

literals per clause.

 Examples
 (x1∨x2)≡(x1∨x2∨x2)

 (x1∨x2∨x3∨x4)≡(x1∨x2∨z)∧(¬z∨x3∨x4)

 (x1∨x2∨x3∨x4∨x5)≡

(x1∨x2∨z1)∧(¬z1∨x3∨z2)∧(¬z2∨x4∨x5)

정교민, KAIST 응용알고리즘 연구실 18

Corollary: 3SAT∈NPC

 Hence, a SAT problem can be converted into a

equivalent 3SAT problem (in polynomial time).

 That is, SAT≤P3SAT.

 Since SAT∈NPC, and 3SAT∈NP, we have

3SAT∈NPC.

정교민, KAIST 응용알고리즘 연구실 19

Example of NP-complete problem: Clique

 CLIQUE = { <G,k> | G is a graph with a clique of

size k }

 A clique is a subset of vertices that are all

connected.

 Easy: CLIQUE ∈ NP.
1

3

2

6

4 5

7
정교민, KAIST 응용알고리즘 연구실 20

Reduction of 3-SAT to Clique

 Pick an instance of 3-SAT, Φ, with k

clauses

 Make a vertex for each literal

 Connect each vertex to the literals in other

clauses that are not the negation

 Any k-clique in this graph corresponds to a

satisfying assignment

정교민, KAIST 응용알고리즘 연구실 21

An Example

정교민, KAIST 응용알고리즘 연구실 22

Proof of Cook-Levin Theorem

 What to prove is …

SAT∈NP (clear)

∀A∈NP, A≤PSAT

The proof shows that for each problem
A∈NP and a given input w to A, it is
possible to produce a Boolean formula F
(depending on A and w) in polynomial time
of |w| so that F is satisfiable if and only if w
is a yes instance of A.

23 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

 Proof

A: a Problem

w: an input

N: NP Turing machine that decides A

 Assume that N decides whether w∈A in nk steps,

for some constant k.

NP Turing machine : consists of states, tape

alphabet, move rule, accept rule, and reject

rule.

24 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

Consider nk×nk-cell tableau of tape change

history for input w. (k is some constant)

q0 w1 w2 … wn ⊔ … ⊔ #

nk

(time)

nk

start configuration

second configuration

nk th configuration

25 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

cell[i,j]: the cell located on the ith row and the

jth column.

variables of the Boolean formula: xi,j,s.

xi,j,s: true if cell[i,j] is the symbol s.

26 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

The tableau, without any restriction, may contain

many invalid series of configurations.

 E.g. cells containing multiple symbols, not starting with

the input w, neighbor configurations not corresponding

the transition rules, not resulting in the accept state,

and etc.

Produce a Boolean formula which

 Forces the tableau to be valid according to the state

change rules of the Nondeterministic Turing machine

 And at least one of the configuration results in the

accept state.

27 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

One cell can contain exactly one symbol among a
state, a tape alphabet, and #.(φcell)

The first configuration should correspond to input
w. (φstart)

A configuration is derivable from the immediately
previous configuration according to the transition
rule of the Nondeterministic Turing machine.
(φmove)

There must exist a cell containing the accept state.
(φaccept)

φ=φcell∧φstart∧φmove∧φaccept

28 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

φ=φcell∧φstart∧φmove∧φaccept

Each cell contain at

least one symbol.
Each cell contain at

most one symbol.

29 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

φ=φcell∧φstart∧φmove∧φaccept

Each cell of the first row has a symbol

corresponding to the start configuration

with input w.

30 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

φ=φcell∧φstart∧φmove∧φaccept

At least one cell is the accept state.

31 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

φ=φcell∧φstart∧φmove∧φaccept

φmove checks whether every 2×3 window of

the tableau is legal according to the transition

rule of the Nondeterministic Turing machine.

… #

…

…

… #

32 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

• φ=φcell∧φstart∧φmove∧φaccept

 Now, we have obtained φ as we wished.

 I.e. φ is satisfiable, iff w∈A.

 Also, size of φ is polynomial in n. Hence it is a

polynomial time reduction.

 Therefore, SAT is NP-complete.

33 정교민, KAIST 응용알고리즘 연구실

참고 자료

 Cook-Levin 정리의 자세한 증명은 Introduction to

the Theory of Computation, Michael Sipser,

Course Technology, 2nd edition 의 Theorem

7.37 에 있습니다.

정교민, KAIST 응용알고리즘 연구실 34

감사합니다.

