ERC i S ® 3¢k
20125 7& 272

NP-Completeness 2}

Cook—Levin 32|

Xpo 2 g

Computer Science, KAIST

Joint Appointments in Math and EE depts.

" J
= Al
m Algorithm 2| Ji &
m P, NP, 212/ 1] NP-complete (NP-2£0])
m SAT problem
m NP-complete Al 2| 0

m Cook-Levin 2|2 =8 AN X

al
k]
e
X
>
n
_|
0l0
00
o
K
o
il
K%
4
>

" A
Algorithm 2| J| &2 i &

m An algorithm is a rule for solving a problem using
finitely many pre-determined instructions.

m HlE =0, 108+ 5 AAHF2 == +ote SN E Flol
Fcl= L3t ES 22| S= AtE st
23 X 45
=23 x (40 +5)

=(20+3) x40+ (20+ 3) x5
=800+ 120 + 100 + 15=1035

m LFE 0l =H & AA=IE A =2=(prime number) 2! Jt?
2t 12| S: Eratosthenes 2|

1l KAIST sE21c

Ol

o1 Al

" A
248 2Jtset =X
& doldE 2HMctk, 1 2HE F= €1elS0| ga EMot=
A2 OtLICH (Z2& 2Jts& &AMl; undecidable problem).
1. Halting problem

2. Hilbert’s 10" problem : Does there exist an algorithm to
determine whether a given Diophantine equation has an
Integer solution?

Diophantine equation : a polynomial equation that allows the
variables to be integers only

Ex1:3x+4y =1
Ex2: x2 —5y% =1

Resolved: Matiyasevich's theorem(1970) implies that there is no
such algorithm. Kyomin Jung, KAIST 4

"

SEX0 2D2E?

| [—

& NlI: compute the GCD(Greatest Common Divisor) of integers A and B with
A>B>=0.

Euclid Algorithm utilizes the theorem that GCD(A,B)=GCD(B, A-kB)
for any integer k.

Example: GCD(120,85)=GCD(85,35)=GCD(35,5)=GCD(5,0)=5
120 = 85*1 + 35, 85 = 35*2 + 15,
35 =15*2 + 5, 15=5*3+0

1o, KAIST 28¢ 112

il

oAl 5

Hamiltonian Path Problem

m Given a graph G, a Hamiltonian path is a path which visits
each vertex exactly once.

m Hamiltonian Path Problem
Decide whether a graph G has a hamiltonian path or not

m Eulerian path 2 Ml 2 &2l HEO0| HHS

(@ d

0
S
e
XN
>
wn
_|
0l0
0
N2
N
o
Ol
K%
1
2
o

Traveling Salesman Problem (TSP)

m Given a graph with non-negative edge distance, find a
shortest possible Hamiltonian path.

Polynomial Time Reduction

m Intuitively: If R reduces in polynomial time to Q, Q is “a
more general problem than” R

m A problem R can be reduced to another problem Q in
polynomial time if

Any instance of R can be solved in polynomial time by using a
polynomial time oracle for Q.

m Denote R<, Q (Q/IRELHH EZEtX0[1 A= =AX)

m EXx; Hamiltonian Path can be reduced to TSP.

Algorithm ==210| 2 st =R Z M=

m Z2& 2Hl (Decision Problem)
The answer is Yes or No. Ex: Hamiltonian path problem.

m X H3 2A (Optimization Problem)
Goal is to compute the optimal value, or the labeling

Ex: TSP problem (optimal value: length of the shortest travel,
labeling: the visiting order of the optimal travel)

Can be reduced to a decision problem by binary search

m H A2 (Computation Problem)
Ex: Compute a solution of an equation
Ex: Compute eigenvalues of a matrix
Can be reduced to a decision problem by binary search

1l KAIST sE21c

Ol

o1 Al

Turing Machine

m A Turing Machine (TM) is a device which manipulates

symbols on an (infinite) tape according to a finite
amount of manipulation rules.

The tape corresponds to the memory
1 The manipulation rules corresponds to a program
-1 Each rule corresponds to each “line” of a program

-1 TM has stopping rules, and TM outputs either yes or no
when it stops

1 Hence TM solves a decision problem

0
S
e
XN
>
%)
_|
0l0
0
N2
N
o
ol
K%
1
2

10

" JE
Turing Machine

m Turing Machine 2 S& ZZ2 _J&#Hs =2|lJ U=

I)-
I

E

m Church-Turing thesis: every decision problem that is

computable by an “algorithm” can be computed by some
Turing Machine

m &) A2 Introduction to the Theory of Computation, 2nd
edition by Michael Sipser, Course Technology

al
K
e
X
>
n
_|
0l0
00
noe
I
o
il
K%
4
>

"
P and NP

P = set of decision problems that can be solved in
polynomial step of the input bit size by a TM

NP = set of decision problems for which any yes instance
has some “proof” that verifies the problem to be yes in
polynomial step (ex: Hamiltonian path)

CtE &2l NP = set of decision problems that can be solved in
polynomial step by a Nondeterministic TM

P is similar to a problem that a normal people can find its
solution easily.

NP is a problem that a normal people can grade whether
other person’s solution is correct or not easily.

Pc NP
A big question: Does P # NP?

1l KAIST s&& 128 a4 12

" A
NP-Hard and NP-Complete (NP 2= 0])

m Definition of NP-Hard and NP-Complete :

If all problems R € NP are reducible to Q, then Q is
NP-Hard

We say Q is NP-Complete (NP 2= 0]) if Q is NP-Hard
and Q € NP

m [fR <, Q,and R is NP-Complete, and Q € NP, then Q is
also NP- Complete

m & .): PSPACE-Complete, EXPTIME-Complete

al
k]
e
X
>
n
_|
0l0
00
o
K
o
il
K%
4
>

13

" JE
Proving NP-Completeness

m s there at least one NP-complete problem?

Cook-Levin Theorem shows that SAT problem is
NP-Complete

m S8 ZH Q Jt NP-Complete &= S ot H?
Prove Q € NP

Pick a known NP-Complete problem R
Reduce R to Q

= Prove the reduction runs in polynomial time

al
k]
e
X
>
n
_|
0l0
00
o
K
o
il
K%
4
>

14

"
SAT Problem

m MO

Boolean variables: variables that can take the values
TRUE(1) or FALSE(O)
Boolean operations: AND, OR, and NOT

Boolean formula: an expression involving Boolean
variable and Boolean operations

al
k]
e
X
>
n
_|
0l0
00
o
K
o
il
K%
4
>

15

"
SAT Problem

satisfiable: if some assignment of Os and 1s to
the variables make the Boolean formula True

m Example of a satisfiable Boolean formula
P=(XN\Y) V (X =Z)
x=0, y=1, and z=0

al
K
e
X
>
n
_|
0l0
00
noe
I
o
il
K%
4
>

16

"
SAT Problem
m Definition (SAT Problem)

SAT = {<@>|p is a satisfiable Boolean
formula}.

m Given a Boolean formula, is it satisfiable?

m Cook-Levin Theorem
SAT&ENPC

1l KAIST s&& 128 a4

17

" JJE
Corollary: 3SAT<=NPC

m Any Boolean formula can be expressed as a
CNF (Conjunctive Normal Form)

Ex: (-xVZ) AXVYyVWw) A(yV=zV =X)

m CNFs can be converted into CNFs with three
literals per clause.

m Examples
(X1 VXR)E (X V X5 V X))
(X{ VX VX3 VXg)E(X V X, VZ)A (22 V X5V Xy)
(X1 VX5 VX3V Xy V X5)=
(X VX, VZIN(Z,V X3V Z) AN (72, V Xy V Xz)

1l KAIST sE21c

[]IH

012 4l

" JJEE
Corollary: 3SAT<=NPC

m Hence, a SAT problem can be converted into a
equivalent 3SAT problem (in polynomial time).

m Thatis, SAT<,3SAT.

m Since SATENPC, and 3SAT=NP, we have
3SAT=NPC.

1l KAIST s&& 128 a4

19

" J
Example of NP-complete problem: Clique

m CLIQUE ={<G,k>| G Is a graph with a clique of
size k }

m A clique Is a subset of vertices that are all
connected.

m Easy: CLIQUE € NP.

1l KAIST s&& 128 a4 20

" JdE
Reduction of 3-SAT to Clique

m Pick an instance of 3-SAT, @, with k
clauses

m Make a vertex for each literal

m Connect each vertex to the literals in other
clauses that are not the negation

m Any k-clique In this graph corresponds to a
satisfying assignment

1l KAIST s&& 128 a4 21

" A
An Example

b= (1 VxiVa) A (*’ET\/'SC_Q\/TQ_) A (T1 Va2V zg)

T1 T2 To

X L1
X1 2
Ty %,

22

0
S
e
XN
>
wn
_|
0l0
0
ne
N
o
Ol
K%
1
2

"
Proof of Coohk-Levin Theorem

m \What to prove is ...
SATENP (clear)
VAENP, A< SAT

= The proof shows that for each problem
ASNP and a given input wto A, it is
possible to produce a Boolean formula F
(depending on A and w) in polynomial time
of |[w| so that F is satisfiable if and only if w
IS a yes instance of A.

1l KAIST s&& 128 a4 23

Proof of Coohk-Levin Theorem

m Proof
A: a Problem
w: an input
N: NP Turing machine that decides A

= Assume that N decides whether wE A in n¥ steps,
for some constant k.
NP Turing machine : consists of states, tape
alphabet, move rule, accept rule, and reject
rule.

0
S

e

, KAIST S 24

0
e
N
o
Ol
K%
1
>

Proof of Coohk-Levin Theorem

Consider nkx nk-cell tableau of tape change
history for input w. (k Is some constant)

| Qg | Wy | Wy | 0w, | u |- 1| # | start configuration
¥ # | second configuration
i #
nk
(time)
| nkth configuration
nk

1l KAIST s&& 128 a4 25

Proof of Coohk-Levin Theorem

cell[i,j]: the cell located on the ith row and the
jth column.

variables of the Boolean formula: x
. true if cell[i,]] is the symbol s.

,j,S"

IJS

1l KAIST s&& 128 a4

26

"
Proof of Cook-Levin Theorem

The tableau, without any restriction, may contain
many invalid series of configurations.

m E.g. cells containing multiple symbols, not starting with
the input w, neighbor configurations not corresponding
the transition rules, not resulting in the accept state,
and etc.

Produce a Boolean formula which

m Forces the tableau to be valid according to the state
change rules of the Nondeterministic Turing machine

= And at least one of the configuration results in the
accept state.

0
S
e
XN
>
%)
_|
0l0
0
N2
N
o
ol
K%
1
2

27

"
Proof of Coohk-Levin Theorem

One cell can contain exactly one symbol among a
state, a tape alphabet, and #.=2» (@)
The first configuration should correspond to input

W. 9((PStar'[)

A configuration is derivable from the immediately
previous configuration according to the transition
rule of the Nondeterministic Turing machine.

e(q)move)
There must exist a cell containing the accept state.

> ((paccept)

(Pz(PceII A (Pstart A (Pmove A (paccept

al
k]
e
X
>
n
_|
0l0
00
o
K
o
il
K%
4
>

28

" N

Proof of Coohk-Levin Theorem

L] (p:q)cell A (pstart A (pmove A (Paccept

= N\ (Vo) a| Acsavamn

1=i,j=nk | \s€C 5teC

SFL

Jull, KAIST SE2 128 a4

" N

Proof of Coohk-Levin Theorem

L] (p:(pcell A (pstart A (pmove A (paccept

Dstart = X1,1,8 NX1,2,9, N X1,3w, NX1aw, N AX1pio2w,
h xl,n_l_BJu h v ﬂ xl,‘ﬂ,k—l,u ﬂ xljnkj#

Jull, KAIST SE2 128 a4

30

" N

Proof of Coohk-Levin Theorem

[(P:(pcell A (pstart A (pmove A (Paccept

(obaccept — v xi,j,qﬂccept

1=i,j=nk

Jull, KAIST SE2 128 a4

31

Proof of Coohk-Levin Theorem

P=Pcel A\ Pstart A\ Prmove A\ (paccept
@®.ove Checks whether every 2x3 window of
the tableau is legal according to the
rule of the Nondeterministic Turing

al

El

e

#

#

, KAIST S

00
|'|_|O

IJ

Ol

K%

2

2 fransition
machine.

32

Proof of Coohk-Levin Theorem

(p:(pcell A\ (Pstart A (pmove A (Paccept

m Now, we have obtained ¢ as we wished.

m |.e. ¢ is satisfiable, iff WEA.

m Also, size of ¢ Is polynomial in n. Hence it is a
polynomial time reduction.

m Therefore, SAT is NP-complete.

1l KAIST s&& 128 a4

33

=
SN =
m Cook-Levin &2|2] AtANlet &Y 2 Introduction to

the Theory of Computation, Michael Sipser,

Course Technology, 2nd edition 2| Theorem
7.37 0l }_A=sLILL.

1l KAIST s82 128 H+4 34

