
NP-Completeness 와
Cook-Levin 정리

정교민, 응용 알고리즘 연구실

Computer Science, KAIST

Joint Appointments in Math and EE depts.

ERC 여름 워크샵
2012년 7월 27일

목차

 Algorithm 의 개념

 P, NP, 그리고 NP-complete (NP-싹쓸이)

 SAT problem

 NP-complete 문제의 예

 Cook-Levin 정리의 증명 스케치

정교민, KAIST 응용알고리즘 연구실 2

Algorithm 의 기본 개념

 An algorithm is a rule for solving a problem using
finitely many pre-determined instructions.

 예를 들어, 10진수 두 자연수의 곱을 구하는 문제를 위해
우리는 다음과 같은 알고리즘을 사용한다.

 다른 예: 주어진 자연수가 소수(prime number)인가?
 알고리즘: Eratosthenes 의 채

Xs

 23 × 45

= 23 × 40 + 5

=(20 + 3) × 40 + (20 + 3) × 5

= 800 + 120 + 100 + 15 = 1035

정교민, KAIST 응용알고리즘 연구실 3

결정 불가능한 문제

잘 정의된 문제라도, 그 문제를 푸는 알고리즘이 항상 존재하는

것은 아니다. (결정 불가능함 문제; undecidable problem).

1. Halting problem

2. Hilbert’s 10th problem : Does there exist an algorithm to

determine whether a given Diophantine equation has an

integer solution?

Diophantine equation : a polynomial equation that allows the

variables to be integers only

Ex1: 3𝑥 + 4𝑦 = 1

Ex2: 𝑥2 − 5𝑦2 = 1

Resolved: Matiyasevich's theorem(1970) implies that there is no

such algorithm. Kyomin Jung, KAIST 4

효율적인 알고리즘?

문제: compute the GCD(Greatest Common Divisor) of integers A and B with

A > B >= 0.

Euclid Algorithm utilizes the theorem that GCD(A,B)=GCD(B, A-kB)

for any integer k.

Euclid Algorithm (A,B)

a. If B = 0 then output GCD(A,B) = A

b. If B > 0 then

let C = A % B (remainder of A divided by B)

Output Euclid Algorithm (B,C)

Example: GCD(120,85)=GCD(85,35)=GCD(35,5)=GCD(5,0)=5

120 = 85*1 + 35, 85 = 35*2 + 15,

35 = 15*2 + 5, 15 = 5*3 + 0

정교민, KAIST 응용알고리즘 연구실 5

Hamiltonian Path Problem

 Given a graph G, a Hamiltonian path is a path which visits

each vertex exactly once.

 Hamiltonian Path Problem

 Decide whether a graph G has a hamiltonian path or not

 Eulerian path 문제 와 달리 판별이 어려움

a

b

d

c

e

정교민, KAIST 응용알고리즘 연구실 6

Traveling Salesman Problem (TSP)

 Given a graph with non-negative edge distance, find a

shortest possible Hamiltonian path.

a

b

c

d
2

3

3

1
1

정교민, KAIST 응용알고리즘 연구실 7

Polynomial Time Reduction

 Intuitively: If R reduces in polynomial time to Q, Q is “a

more general problem than” R

 A problem R can be reduced to another problem Q in

polynomial time if

 Any instance of R can be solved in polynomial time by using a

polynomial time oracle for Q.

 Denote R p Q (Q가 R보다 더 일반적이고 어려운 문제)

 Ex: Hamiltonian Path can be reduced to TSP.

정교민, KAIST 응용알고리즘 연구실 8

Algorithm 수행이 필요한 주요 문제들

 결정 문제 (Decision Problem)
 The answer is Yes or No. Ex: Hamiltonian path problem.

 최적화 문제 (Optimization Problem)

 Goal is to compute the optimal value, or the labeling

 Ex: TSP problem (optimal value: length of the shortest travel,

labeling: the visiting order of the optimal travel)

 Can be reduced to a decision problem by binary search

 계산 문제 (Computation Problem)

 Ex: Compute a solution of an equation

 Ex: Compute eigenvalues of a matrix

 Can be reduced to a decision problem by binary search

 정교민, KAIST 응용알고리즘 연구실 9

정교민, KAIST 응용알고리즘 연구실 10

Turing Machine

 Turing Machine 은 특정 프로그램을 돌리고 있는 컴퓨터

 Church-Turing thesis: every decision problem that is

computable by an “algorithm” can be computed by some

Turing Machine

 참고 자료: Introduction to the Theory of Computation, 2nd

edition by Michael Sipser, Course Technology

정교민, KAIST 응용알고리즘 연구실 11

P and NP
 P = set of decision problems that can be solved in

polynomial step of the input bit size by a TM

 NP = set of decision problems for which any yes instance

has some “proof” that verifies the problem to be yes in

polynomial step (ex: Hamiltonian path)

 다른 정의: NP = set of decision problems that can be solved in

polynomial step by a Nondeterministic TM

 P is similar to a problem that a normal people can find its

solution easily.

 NP is a problem that a normal people can grade whether

other person’s solution is correct or not easily.

 P  NP

 A big question: Does P ≠ NP?

 정교민, KAIST 응용알고리즘 연구실 12

NP-Hard and NP-Complete (NP 싹쓸이)

 Definition of NP-Hard and NP-Complete :

 If all problems R  NP are reducible to Q, then Q is

NP-Hard

We say Q is NP-Complete (NP 싹쓸이) if Q is NP-Hard

and Q  NP

 If R p Q, and R is NP-Complete, and Q  NP, then Q is

also NP- Complete

 참고: PSPACE-Complete, EXPTIME-Complete

정교민, KAIST 응용알고리즘 연구실 13

Proving NP-Completeness

 Is there at least one NP-complete problem?

 Cook-Levin Theorem shows that SAT problem is

NP-Complete

 특정 문제 Q 가 NP-Complete 임을 증명하려면?

 Prove Q  NP

 Pick a known NP-Complete problem R

 Reduce R to Q

 Prove the reduction runs in polynomial time

정교민, KAIST 응용알고리즘 연구실 14

SAT Problem

 정의

 Boolean variables: variables that can take the values

TRUE(1) or FALSE(0)

 Boolean operations: AND, OR, and NOT

 Boolean formula: an expression involving Boolean

variable and Boolean operations

정교민, KAIST 응용알고리즘 연구실 15

SAT Problem

 정의

satisfiable: if some assignment of 0s and 1s to

the variables make the Boolean formula True

 Example of a satisfiable Boolean formula

 φ=(¬x∧y)∨(x∧¬z)

 x=0, y=1, and z=0

정교민, KAIST 응용알고리즘 연구실 16

SAT Problem

 Definition (SAT Problem)

SAT = {<φ>|φ is a satisfiable Boolean

formula}.

 Given a Boolean formula, is it satisfiable?

 Cook-Levin Theorem

SAT∈NPC

정교민, KAIST 응용알고리즘 연구실 17

Corollary: 3SAT∈NPC

 Any Boolean formula can be expressed as a

CNF (Conjunctive Normal Form)

 Ex: (¬x∨z) ⋀(x∨y∨w) ⋀(y∨¬z∨ ¬ x)

 CNFs can be converted into CNFs with three

literals per clause.

 Examples
 (x1∨x2)≡(x1∨x2∨x2)

 (x1∨x2∨x3∨x4)≡(x1∨x2∨z)∧(¬z∨x3∨x4)

 (x1∨x2∨x3∨x4∨x5)≡

(x1∨x2∨z1)∧(¬z1∨x3∨z2)∧(¬z2∨x4∨x5)

정교민, KAIST 응용알고리즘 연구실 18

Corollary: 3SAT∈NPC

 Hence, a SAT problem can be converted into a

equivalent 3SAT problem (in polynomial time).

 That is, SAT≤P3SAT.

 Since SAT∈NPC, and 3SAT∈NP, we have

3SAT∈NPC.

정교민, KAIST 응용알고리즘 연구실 19

Example of NP-complete problem: Clique

 CLIQUE = { <G,k> | G is a graph with a clique of

size k }

 A clique is a subset of vertices that are all

connected.

 Easy: CLIQUE ∈ NP.
1

3

2

6

4 5

7
정교민, KAIST 응용알고리즘 연구실 20

Reduction of 3-SAT to Clique

 Pick an instance of 3-SAT, Φ, with k

clauses

 Make a vertex for each literal

 Connect each vertex to the literals in other

clauses that are not the negation

 Any k-clique in this graph corresponds to a

satisfying assignment

정교민, KAIST 응용알고리즘 연구실 21

An Example

정교민, KAIST 응용알고리즘 연구실 22

Proof of Cook-Levin Theorem

 What to prove is …

SAT∈NP (clear)

∀A∈NP, A≤PSAT

The proof shows that for each problem
A∈NP and a given input w to A, it is
possible to produce a Boolean formula F
(depending on A and w) in polynomial time
of |w| so that F is satisfiable if and only if w
is a yes instance of A.

23 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

 Proof

A: a Problem

w: an input

N: NP Turing machine that decides A

 Assume that N decides whether w∈A in nk steps,

for some constant k.

NP Turing machine : consists of states, tape

alphabet, move rule, accept rule, and reject

rule.

24 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

Consider nk×nk-cell tableau of tape change

history for input w. (k is some constant)

q0 w1 w2 … wn ⊔ … ⊔ #

nk

(time)

nk

start configuration

second configuration

nk th configuration

25 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

cell[i,j]: the cell located on the ith row and the

jth column.

variables of the Boolean formula: xi,j,s.

xi,j,s: true if cell[i,j] is the symbol s.

26 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

The tableau, without any restriction, may contain

many invalid series of configurations.

 E.g. cells containing multiple symbols, not starting with

the input w, neighbor configurations not corresponding

the transition rules, not resulting in the accept state,

and etc.

Produce a Boolean formula which

 Forces the tableau to be valid according to the state

change rules of the Nondeterministic Turing machine

 And at least one of the configuration results in the

accept state.

27 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

One cell can contain exactly one symbol among a
state, a tape alphabet, and #.(φcell)

The first configuration should correspond to input
w. (φstart)

A configuration is derivable from the immediately
previous configuration according to the transition
rule of the Nondeterministic Turing machine.
(φmove)

There must exist a cell containing the accept state.
(φaccept)

φ=φcell∧φstart∧φmove∧φaccept

28 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

φ=φcell∧φstart∧φmove∧φaccept

Each cell contain at

least one symbol.
Each cell contain at

most one symbol.

29 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

φ=φcell∧φstart∧φmove∧φaccept

Each cell of the first row has a symbol

corresponding to the start configuration

with input w.

30 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

φ=φcell∧φstart∧φmove∧φaccept

At least one cell is the accept state.

31 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

φ=φcell∧φstart∧φmove∧φaccept

φmove checks whether every 2×3 window of

the tableau is legal according to the transition

rule of the Nondeterministic Turing machine.

… #

…

…

… #

32 정교민, KAIST 응용알고리즘 연구실

Proof of Cook-Levin Theorem

• φ=φcell∧φstart∧φmove∧φaccept

 Now, we have obtained φ as we wished.

 I.e. φ is satisfiable, iff w∈A.

 Also, size of φ is polynomial in n. Hence it is a

polynomial time reduction.

 Therefore, SAT is NP-complete.

33 정교민, KAIST 응용알고리즘 연구실

참고 자료

 Cook-Levin 정리의 자세한 증명은 Introduction to

the Theory of Computation, Michael Sipser,

Course Technology, 2nd edition 의 Theorem

7.37 에 있습니다.

정교민, KAIST 응용알고리즘 연구실 34

감사합니다.

