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Algorithm 의 기본 개념 

 An algorithm is a rule for solving a problem using          
finitely many pre-determined instructions. 

 

 예를 들어, 10진수 두 자연수의 곱을 구하는 문제를 위해 
우리는 다음과 같은 알고리즘을 사용한다.  

 

 

 

 

 

 다른 예: 주어진 자연수가 소수(prime number)인가? 
 알고리즘: Eratosthenes 의 채 

Xs

   23 × 45  

= 23 × 40 + 5  

=(20 + 3) × 40 + (20 + 3) × 5 

= 800 + 120 + 100 + 15 = 1035 
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결정 불가능한 문제 

잘 정의된 문제라도, 그 문제를 푸는 알고리즘이 항상 존재하는 

것은 아니다. (결정 불가능함 문제; undecidable problem). 

1.  Halting problem 

2. Hilbert’s 10th problem : Does there exist an algorithm to 

determine whether a given Diophantine equation has an 

integer solution? 

Diophantine equation : a polynomial equation that allows the 

variables to be integers only 

Ex1: 3𝑥 + 4𝑦 = 1 

Ex2: 𝑥2 − 5𝑦2 = 1 

Resolved: Matiyasevich's theorem(1970) implies that there is no 

such algorithm.  Kyomin Jung, KAIST 4 



효율적인 알고리즘? 

문제: compute the GCD(Greatest Common Divisor) of  integers A and B with   

A > B >= 0. 

Euclid Algorithm utilizes the theorem that GCD(A,B)=GCD(B, A-kB)              

for any integer k. 
 

Euclid Algorithm (A,B) 

a. If  B = 0 then output GCD(A,B) = A 

b. If  B > 0 then   

let C = A % B ( remainder of A divided by B) 

Output Euclid Algorithm (B,C) 

Example:   GCD(120,85)=GCD(85,35)=GCD(35,5)=GCD(5,0)=5 

120 = 85*1 + 35,              85 = 35*2 + 15,  

35 = 15*2 + 5,                   15 = 5*3 + 0 
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Hamiltonian Path Problem 

 Given a graph G, a Hamiltonian path is a path which visits 

each vertex exactly once. 

 Hamiltonian Path Problem 

 Decide whether a graph G has a hamiltonian path or not 

 

 Eulerian path 문제 와 달리 판별이 어려움 

a 

b 

d 

c 

e 
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Traveling Salesman Problem (TSP) 

 

 Given a graph with non-negative edge distance, find a 

shortest possible Hamiltonian path. 

a 

b 

c 

d 
2 

3 

3 

1 
1 
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Polynomial Time Reduction 

 Intuitively: If R reduces in polynomial time to Q, Q is “a     

more general problem than” R 

 

 A problem R can be reduced to another problem Q in        

polynomial time if  

 Any instance of R can be solved in polynomial time by using a       

polynomial time oracle for Q. 

 

 Denote R p Q (Q가 R보다 더 일반적이고 어려운 문제) 

 

 Ex: Hamiltonian Path can be reduced to TSP. 
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Algorithm 수행이 필요한 주요 문제들 

 결정 문제 (Decision Problem) 
 The answer is Yes or No. Ex: Hamiltonian path problem. 

 

 최적화 문제 (Optimization Problem) 

 Goal is to compute the optimal value, or the labeling 

 Ex: TSP problem (optimal value: length of the shortest  travel,              

labeling: the visiting order of the optimal travel) 

 Can be reduced to a decision problem by binary search 

 

 계산 문제 (Computation Problem) 

 Ex: Compute a solution of an equation 

 Ex: Compute eigenvalues of a matrix 

 Can be reduced to a decision problem by binary search 
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Turing Machine 

 Turing Machine 은 특정 프로그램을 돌리고 있는 컴퓨터 

 

 Church-Turing thesis: every decision problem that is 

computable by an “algorithm” can be computed by some 

Turing Machine 

 

 참고 자료: Introduction to the Theory of Computation, 2nd 

edition by Michael Sipser, Course Technology 
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P and NP 
 P = set of decision problems that can be solved in              

polynomial step of the input bit size by a TM 

 NP = set of decision problems for which any yes instance  

has some “proof” that verifies the problem to be yes in       

polynomial step  (ex: Hamiltonian path) 

 다른 정의: NP = set of decision problems that can be solved in              

polynomial step by a Nondeterministic TM 
 

 P is similar to a problem that a normal people can find its       

solution easily. 

 NP is a problem that a normal people can grade whether       

other person’s solution is correct or not easily. 

 P  NP 

 A big question: Does P ≠ NP?  
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NP-Hard and NP-Complete (NP 싹쓸이) 

 Definition of NP-Hard and NP-Complete :  

 If all problems R  NP are reducible to Q, then Q is    

NP-Hard 

We say Q is NP-Complete (NP 싹쓸이) if Q is NP-Hard 

and Q  NP 

 

 If R p Q, and R is NP-Complete, and Q  NP, then Q is 

also NP- Complete 

 

 참고: PSPACE-Complete, EXPTIME-Complete 

정교민, KAIST 응용알고리즘 연구실 13 



Proving NP-Completeness 

 Is there at least one NP-complete problem? 

 Cook-Levin Theorem shows that SAT problem is           

NP-Complete 

 

 특정 문제 Q 가 NP-Complete 임을 증명하려면? 

 Prove Q  NP 

 Pick a known NP-Complete problem R 

 Reduce R to Q 

 Prove the reduction runs in polynomial time 
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SAT Problem 

 정의 

 Boolean variables: variables that can take the values 

TRUE(1) or FALSE(0) 

 

 Boolean operations: AND, OR, and NOT 

 

 Boolean formula: an expression involving Boolean 

variable and Boolean operations 
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SAT Problem 

 정의 

satisfiable: if some assignment of 0s and 1s to 

the variables make the Boolean formula True 

 

 Example of a satisfiable Boolean formula 

 φ=(¬x∧y)∨(x∧¬z) 

 x=0, y=1, and z=0 
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SAT Problem 

 Definition (SAT Problem) 

SAT = {<φ>|φ is a satisfiable Boolean 

formula}. 

 

 Given a Boolean formula, is it satisfiable? 

 

 Cook-Levin Theorem 

SAT∈NPC 
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Corollary: 3SAT∈NPC 

 Any Boolean formula can be expressed as a 

CNF (Conjunctive Normal Form)  

 Ex: (¬x∨z) ⋀(x∨y∨w) ⋀(y∨¬z∨ ¬ x) 

 CNFs can be converted into CNFs with three 

literals per clause. 
 

 Examples 
 (x1∨x2)≡(x1∨x2∨x2) 

 (x1∨x2∨x3∨x4)≡(x1∨x2∨z)∧(¬z∨x3∨x4) 

 (x1∨x2∨x3∨x4∨x5)≡ 

(x1∨x2∨z1)∧(¬z1∨x3∨z2)∧(¬z2∨x4∨x5 ) 
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Corollary: 3SAT∈NPC 

 Hence, a SAT problem can be converted into a 

equivalent 3SAT problem (in polynomial time). 

 

 That is, SAT≤P3SAT. 

 

 Since SAT∈NPC, and 3SAT∈NP, we have 

3SAT∈NPC. 
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Example of NP-complete problem: Clique 

 CLIQUE = { <G,k> | G is a graph with a clique of 

size k } 

 A clique is a subset of vertices that are all 

connected. 

 Easy: CLIQUE ∈ NP. 
1 

3 

2 

6 
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7 
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Reduction of 3-SAT to Clique 

 Pick an instance of 3-SAT, Φ, with k 

clauses 

 Make a vertex for each literal 

 Connect each vertex to the literals in other 

clauses that are not the negation 

 Any k-clique in this graph corresponds to a 

satisfying assignment 
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An Example 
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Proof of Cook-Levin Theorem 

 What to prove is … 

SAT∈NP (clear) 

∀A∈NP, A≤PSAT 
 

The proof shows that for each problem 
A∈NP and a given input w to A, it is 
possible to produce a Boolean formula F 
(depending on A and w) in polynomial time 
of |w|  so that F is satisfiable if and only if w 
is a yes instance of A. 
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Proof of Cook-Levin Theorem 

 Proof 

A: a Problem 

w: an input 

N: NP Turing machine that decides A 

 Assume that N decides whether w∈A in nk steps, 

for some constant k. 

NP Turing machine : consists of states, tape 

alphabet, move rule, accept rule, and reject 

rule.  

 
24 정교민, KAIST 응용알고리즘 연구실 



Proof of Cook-Levin Theorem 

Consider nk×nk-cell tableau of tape change 

history  for input w. (k is some constant) 

 

 
# q0 w1 w2 … wn ⊔ … ⊔ # 

# # 

# # 

 
 
 
 
 

# # 

nk 

 

(time) 

nk 

start configuration 

second configuration 

nk th configuration 
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Proof of Cook-Levin Theorem 

cell[i,j]: the cell located on the ith row and the 

jth column. 

 

variables of the Boolean formula: xi,j,s. 

xi,j,s: true if cell[i,j] is the symbol s. 
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Proof of Cook-Levin Theorem 

The tableau, without any restriction, may contain 

many invalid series of configurations. 

 E.g. cells containing multiple symbols, not starting with 

the input w, neighbor configurations not corresponding 

the transition rules, not resulting in the accept state, 

and etc. 

Produce a Boolean formula which  

 Forces the tableau to be valid according to the state 

change rules of the Nondeterministic Turing machine 

 And at least one of the configuration results in the 

accept state. 
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Proof of Cook-Levin Theorem 

One cell can contain exactly one symbol among a 
state, a tape alphabet, and  #.(φcell) 

The first configuration should correspond to input 
w. (φstart) 

A configuration is derivable from the immediately 
previous configuration according to the transition 
rule of the Nondeterministic Turing machine. 
(φmove) 

There must exist a cell containing the accept state. 
(φaccept) 

 

φ=φcell∧φstart∧φmove∧φaccept 
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Proof of Cook-Levin Theorem 

φ=φcell∧φstart∧φmove∧φaccept 

 

Each cell contain at 

least one symbol. 
Each cell contain at 

most one symbol. 
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Proof of Cook-Levin Theorem 

φ=φcell∧φstart∧φmove∧φaccept 

 

Each cell of the first row has a symbol 

corresponding to the start configuration 

with input w. 
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Proof of Cook-Levin Theorem 

φ=φcell∧φstart∧φmove∧φaccept 

At least one cell is the accept state. 
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Proof of Cook-Levin Theorem 

φ=φcell∧φstart∧φmove∧φaccept 

φmove checks whether  every 2×3 window of 

the tableau is legal according to the transition 

rule of the Nondeterministic Turing machine. 

 
# … # 

# # 

# # 

…  
 
 
 
 

… 

# … # 
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Proof of Cook-Levin Theorem 

• φ=φcell∧φstart∧φmove∧φaccept 

 

 Now, we have obtained φ as we wished. 

 I.e. φ is satisfiable, iff w∈A.  

 Also, size of φ is polynomial in n. Hence it is a 

polynomial time reduction.  

 Therefore, SAT is NP-complete. 
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Course Technology, 2nd edition 의 Theorem 
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