ERC 여름 워크샵 2012년 7월 27일

NP-Completeness 와 Cook-Levin 경리

정교민, 응용 알고리즘 연구실

Computer Science, KAIST

Joint Appointments in Math and EE depts.

- Algorithm 의 개념
- P, NP, 그리고 NP-complete (NP-싹쓸이)
- SAT problem
- NP-complete 문제의 예
- Cook-Levin 정리의 증명 스케치

Algorithm 의 기본 개념

- An algorithm is a rule for solving a problem using finitely many pre-determined instructions.
- 예를 들어, 10진수 두 자연수의 곱을 구하는 문제를 위해 우리는 다음과 같은 알고리즘을 사용한다.

 23×45 = 23 × (40 + 5) =(20 + 3) × 40 + (20 + 3) × 5 = 800 + 120 + 100 + 15 = 1035

다른 예: 주어진 자연수가 소수(prime number)인가?
 말고리즘: Eratosthenes 의 채

결정 불가능한 문제

- 잘 정의된 문제라도, 그 문제를 푸는 알고리즘이 항상 존재하는 것은 아니다. (결정 불가능함 문제; undecidable problem).
- 1. Halting problem
- 2. Hilbert's 10th problem : Does there exist an algorithm to determine whether a given Diophantine equation has an integer solution?
- Diophantine equation : a polynomial equation that allows the variables to be integers only
- Ex1: 3x + 4y = 1
- Ex2: $x^2 5y^2 = 1$

Resolved: Matiyasevich's theorem(1970) implies that there is no such algorithm.

효율적인 알고리즘**?**

문제: compute the GCD(Greatest Common Divisor) of integers A and B with A > B >= 0.

Euclid Algorithm utilizes the theorem that GCD(A,B)=GCD(B, A-kB) for any integer k.

Euclid Algorithm (A,B)

a. If B = 0 then output GCD(A,B) = A

b. If B > 0 then

let C = A % B (remainder of A divided by B)

Output Euclid Algorithm (B,C)

Example: GCD(120,85)=GCD(85,35)=GCD(35,5)=GCD(5,0)=5

 $120 = 85^{*}1 + 35,$ $85 = 35^{*}2 + 15,$

 $35 = 15^{*}2 + 5$, $15 = 5^{*}3 + 0$

정교민, KAIST 응용알고리즘 연구실

Hamiltonian Path Problem

- Given a graph G, a Hamiltonian path is a path which visits each vertex exactly once.
- Hamiltonian Path Problem
 - Decide whether a graph G has a hamiltonian path or not
- Eulerian path 문제 와 달리 판별이 어려움

Traveling Salesman Problem (TSP)

Given a graph with non-negative edge distance, find a shortest possible Hamiltonian path.

정교민, KAIST 응용알고리즘 연구실

Polynomial Time Reduction

- Intuitively: If R reduces in polynomial time to Q, Q is "a more general problem than" R
- A problem R can be reduced to another problem Q in polynomial time if
 - Any instance of R can be solved in polynomial time by using a polynomial time oracle for Q.
- Denote R ≤_p Q (Q가 R보다 더 일반적이고 어려운 문제)
- Ex: Hamiltonian Path can be reduced to TSP.

Algorithm 수행이 필요한 주요 문제들

■ 결정 문제 (Decision Problem)

The answer is Yes or No. Ex: Hamiltonian path problem.

최적화 문제 (Optimization Problem)

- Goal is to compute the optimal value, or the labeling
- Ex: TSP problem (optimal value: length of the shortest travel, labeling: the visiting order of the optimal travel)
- Can be reduced to a decision problem by binary search

계산 문제 (Computation Problem)

- □ Ex: Compute a solution of an equation
- □ Ex: Compute eigenvalues of a matrix
- □ Can be reduced to a decision problem by binary search

Turing Machine

A Turing Machine (TM) is a device which manipulates symbols on an (infinite) tape according to a finite amount of manipulation rules.

□ The tape corresponds to the memory

- The manipulation rules corresponds to a program
- □ Each rule corresponds to each "line" of a program
- TM has stopping rules, and TM outputs either yes or no when it stops
- □ Hence TM solves a decision problem

Turing Machine

- Turing Machine 은 특정 프로그램을 돌리고 있는 컴퓨터
- Church-Turing thesis: every decision problem that is computable by an "algorithm" can be computed by some Turing Machine
- 참고 자료: Introduction to the Theory of Computation, 2nd edition by Michael Sipser, Course Technology

P and NP

- P = set of decision problems that can be solved in polynomial step of the input bit size by a TM
- NP = set of decision problems for which any yes instance has some "proof" that verifies the problem to be yes in polynomial step (ex: Hamiltonian path)
 - □ 다른 정의: NP = set of decision problems that can be solved in polynomial step by a Nondeterministic TM
- P is similar to a problem that a normal people can find its solution easily.
- NP is a problem that a normal people can grade whether other person's solution is correct or not easily.

• $\mathbf{P} \subseteq \mathbf{NP}$

■ A big question: Does **P** ≠ **NP**?

NP-Hard and NP-Complete (NP 싹쓸이)

- Definition of NP-Hard and NP-Complete :
 - □ If all problems $R \in NP$ are reducible to Q, then Q is NP-Hard
 - □ We say Q is NP-Complete (NP 싹쓸이) if Q is NP-Hard and Q ∈ NP
- If R ≤_p Q, and R is NP-Complete, and Q ∈ NP, then Q is also NP- Complete
- 참고: PSPACE-Complete, EXPTIME-Complete

Proving NP-Completeness

- Is there at least one NP-complete problem?
 Cook-Levin Theorem shows that SAT problem is NP-Complete
- 특정 문제 Q 가 NP-Complete 임을 증명하려면?
 - $\Box Prove Q \in \mathbf{NP}$
 - □ Pick a known NP-Complete problem R
 - Reduce R to Q
 - Prove the reduction runs in polynomial time

SAT Problem

■ 정의

Boolean variables: variables that can take the values TRUE(1) or FALSE(0)

□ Boolean operations: AND, OR, and NOT

Boolean formula: an expression involving Boolean variable and Boolean operations

SAT Problem

■ 정의

□ satisfiable: if some assignment of 0s and 1s to the variables make the Boolean formula True

Example of a satisfiable Boolean formula

 φ=(¬x ∧ y) ∨ (x ∧ ¬z)
 x=0, y=1, and z=0

SAT Problem

Definition (SAT Problem) SAT = {<φ>|φ is a satisfiable Boolean formula}.

Given a Boolean formula, is it satisfiable?

 Any Boolean formula can be expressed as a CNF (Conjunctive Normal Form)

 $\Box \mathsf{Ex:} (\neg x \lor z) \land (x \lor y \lor w) \land (y \lor \neg z \lor \neg x)$

CNFs can be converted into CNFs with three literals per clause.

Examples

 $\Box (\mathbf{x}_{1} \lor \mathbf{x}_{2}) \equiv (\mathbf{x}_{1} \lor \mathbf{x}_{2} \lor \mathbf{x}_{2})$ $\Box (\mathbf{x}_{1} \lor \mathbf{x}_{2} \lor \mathbf{x}_{3} \lor \mathbf{x}_{4}) \equiv (\mathbf{x}_{1} \lor \mathbf{x}_{2} \lor \mathbf{z}) \land (\neg \mathbf{z} \lor \mathbf{x}_{3} \lor \mathbf{x}_{4})$ $\Box (\mathbf{x}_{1} \lor \mathbf{x}_{2} \lor \mathbf{x}_{3} \lor \mathbf{x}_{4} \lor \mathbf{x}_{5}) \equiv$

 $(\mathsf{x}_1 \lor \mathsf{x}_2 \lor \mathsf{z}_1) \land (\neg \mathsf{z}_1 \lor \mathsf{x}_3 \lor \mathsf{z}_2) \land (\neg \mathsf{z}_2 \lor \mathsf{x}_4 \lor \mathsf{x}_5)$

Hence, a SAT problem can be converted into a equivalent 3SAT problem (in polynomial time).

■ That is, SAT≤_P3SAT.

■ Since SAT∈NPC, and 3SAT∈NP, we have 3SAT∈NPC.

Example of NP-complete problem: Clique

- CLIQUE = { <G,k> | G is a graph with a clique of size k }
- A clique is a subset of vertices that are all connected.
- Easy: CLIQUE \in NP.

Reduction of 3-SAT to Clique

- Pick an instance of 3-SAT, Φ, with k clauses
- Make a vertex for each literal
- Connect each vertex to the literals in other clauses that are not the negation
- Any k-clique in this graph corresponds to a satisfying assignment

An Example

 $\phi = (x_1 \lor x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_2}) \land (\overline{x_1} \lor x_2 \lor x_2)$

What to prove is …
 □SAT∈NP (clear)
 □∀A∈NP, A≤_PSAT

■ The proof shows that for each problem A∈NP and a given input w to A, it is possible to produce a Boolean formula F (depending on A and w) in polynomial time of |w| so that F is satisfiable if and only if w is a yes instance of A.

Proof

- □A: a Problem
- □w: an input
- □ N: NP Turing machine that decides A
 - Assume that N decides whether w∈A in n^k steps, for some constant k.
- NP Turing machine : consists of states, tape alphabet, move rule, accept rule, and reject rule.

Consider n^k×n^k-cell tableau of tape change history for input w. (k is some constant)

cell[i,j]: the cell located on the ith row and the jth column.

□ variables of the Boolean formula: $x_{i,j,s}$. □ $x_{i,j,s}$: true if cell[i,j] is the symbol s.

- The tableau, without any restriction, may contain many invalid series of configurations.
 - E.g. cells containing multiple symbols, not starting with the input w, neighbor configurations not corresponding the transition rules, not resulting in the accept state, and etc.
- Produce a Boolean formula which
 - Forces the tableau to be valid according to the state change rules of the Nondeterministic Turing machine
 - And at least one of the configuration results in the accept state.

- □ One cell can contain exactly one symbol among a state, a tape alphabet, and #.→(φ_{cell})
- □ The first configuration should correspond to input w. $\rightarrow(\phi_{start})$
- □ A configuration is derivable from the immediately previous configuration according to the transition rule of the Nondeterministic Turing machine. \rightarrow (ϕ _{move})

There must exist a cell containing the accept state. $\rightarrow(\phi_{accept})$

$$\Box \phi = \phi_{cell} \land \phi_{start} \land \phi_{move} \land \phi_{accept}$$

 $\Box \phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{move}} \land \phi_{\text{accept}}$

 $\Box \phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{move}} \land \phi_{\text{accept}}$

$$\phi_{start} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \dots \wedge x_{1,n+2,w_n}$$
$$\wedge x_{1,n+3,\sqcup} \wedge \dots \wedge x_{1,n^{k}-1,\sqcup} \wedge x_{1,n^{k},\#}$$
Each cell of the first row has a symbol corresponding to the start configuration with input w.

$$\Box \phi = \phi_{cell} \land \phi_{start} \land \phi_{move} \land \phi_{accept}$$

φ=φ_{cell} ^ φ_{start} ^ φ_{move} ^ φ_{accept}
 φ_{move} checks whether every 2×3 window of the tableau is legal according to the transition rule of the Nondeterministic Turing machine.

- $\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{move}} \land \phi_{\text{accept}}$
- Now, we have obtained φ as we wished.
- I.e. ϕ is satisfiable, iff w \in A.
- Also, size of φ is polynomial in n. Hence it is a polynomial time reduction.
- Therefore, SAT is NP-complete.

참고 자료

 Cook-Levin 정리의 자세한 증명은 Introduction to the Theory of Computation, Michael Sipser, Course Technology, 2nd edition 의 Theorem 7.37 에 있습니다.

