Provable SW Lab, KAIST
South Korea

KAIST

Industrial Software in 2 Different Domains

Consumer Safety
Electronics Critical
Systems
Examples Smartphones, Nuclear
flash memory reactors,
platforms avionics,
cars
Market High Low
competition
Life cycle Short Long
Developme Short Long
nt time
Model- None Yes
based
developme
nt
Important Time-to- Safety

2/25 value market KAIST

Common Characteristics between
Testing OSS Testing and CE SW

1. Testers do not know the target program in detail
— Developers and testers are separated

2. Testing effort and time should be light
— For OSS, no one is responsible for the quality
— For CE SW, time-to-market is a critical factor

3. Small bugs are not considered seriously
— Code quality matters not much

I:> Thus, we need a cost-effective testing strategy

KAIST

CE Industry Situation

e Industry builds products based on OSS heavily

* Concolic testing is a good technique for testing
open source programs with modest effort

— We applied concolic testing to an open-source
program 1 1bexi1T and detected 6 crash bugs in 4

man-week

4/25 : o l\l.l.lST

Provable SW Lab

Motivation

Effective SW code testing is expensive

— Test oracle should be defined
e Explicit high-level requirements are necessary

e Target code knowledge is necessary to insert
concrete low-level assert

—High test coverage should be achieved

* Deep understanding of target code is necessary
to write test cases that achieve high coverage

KAIST

Problems in the Current Industrial Practice

e Industry uses many open source software(OSS) in
their smartphone platforms

— Android(30+ OSS packages), Tizen(40+ OSS packages)

e Most of OSS are shipped in smartphones without
high quality assurance

* Industry does not have enough resources to test open source
program code due to time constraints

— Field engineers do not have deep knowledge of target program code
— Writing effective test cases is a time-consuming task

Automated software testing techniques with

modest testing setup effort to test open
| source program

Project Scope

Goal: To evaluate effectiveness and efficiency of concolic testing for
testing open source programs

Our team: 1 professor, 2 graduate students, and 1 Samsung
Electronics senior engineer

— Total M/M: 4 persons x 1 week

We tested an open source program I 1bexiT used by Samsung
smart phones

— B 1bex1T consists of 238 functions in C (14KLOC, 3696 branches)

We used CREST-BV and KLEE as concolic testing tools and Coverity
and Sparrow as static analysis tools

— We compared the concolic testing tools and the static analyzers in terms
of bug detection capability

— We compared the two concolic testing tools in terms of TC generation
speed and bug detection capability

7/25 Moonzoo Kim KAIST

Provable SW Lab

Concolic Testing

:) // Test input a, b, c
e Combine concrete execution .y g : .
; : void f(int a, int b, int c) {
and symbolic execution flaz=1)
— Concrete + Symbolic = Concolic i (b ==2){
* Automated test case if (c == 3*a + b) {
generation technique target();
— All possible execution paths are 11 1)
to be explored
— Higher branch coverage than

random testing

e Two approaches in terms of
extracting symbolic path
formula

— Instrumentations-based
approach

— VM-based approach

Moonzoo Kim KAIST

8/25 Provable SW Lab

CREST-BV and KLEE

e CREST-BV and KLEE are concolic testing tools
— They can analyze target C programs
— They are open source tools

* CREST-BV

— An extended version of CREST with bit-vector support

— Instrumentation-based concolic testing tool
* Insert probes to extract symbolic path formula

 KLEE

— Implemented on top of the LLVM virtual machine
 Modify VM to extract symbolic path formula

— Implements POSIX file system environment model

KAIST

EXchangeable Image file Format(EXIF)

e EXIF is a standard that specifies metadata for

image and sound files

EXIF defines image

10/25

structure, characteristics,
Width | 200 ‘« and picture-taking
Height | 430 conditions
Date 110522
Maker note is manufacturer-
specific metadata
ISO 200 — Camera manufactures define a
large number of their own
Focus | Al Focus « maker note tags
— Ex. Canon has 400+ tags, Fuiji

has 200+ tags, and so on
— No standard

Moonzoo Kim KAIST

Provable SW Lab

Test Experiment Setting

e Max time is set to 15, 30 and 60 minutes

 We used test-mnote.cin libexifasa
test driver program

e HW setting
— Intel Core2duo 3.6 GHz, 16GB RAM running Fedora
9 64bit

KAIST

Testing Strategies

e Open source oriented approach for test oracles

— Focusing on runtime failure/crash bugs only

* Null-pointer dereference, divide-by-zero, out-of-bound
memory accesses, etc

e How to setup effective and efficient symbolic
input?
1. Baseline concolic testing

2. Focus on the maker note tags with concrete image
files

KAIST

Baseline Concolic Testing

e Input EXIF metadata size fixed at 244 bytes

— Minimal size of a valid EXIF metadata generated by
a test program in L1bexifT

e 244 bytes long
€@ minimal symbolic
input file

In CREST-BV

1:char array|[244];
2:Ffor (1=0;1<244;i1++)
3: sym _char(array[i]);

Moonzoo Kim KAIST

13/25 Provable SW Lab

Testing Result of Baseline (1/2)

Branch Coverage of CREST-BV and KLEE

(Sum of all search strategies for each tool)

Test case generation speed

(Avg. of the all search strategies for each tool)

25 25
S Q
5 R
%& 20 ;; 20
© @
g a
o
<
o
2 10 5 10
o =
[
5 5
0 0
CREST-BV KLEE CREST-BV KLEE
m Branch Coverage(%) 22.3 204 B TC gen. speed 20.6 0.7

* One out-of-bound memory access bug was

detected

exif _data load data() in exif-data.c

1:1f (offset + 6 + 2 > ds) { return; }
2:n = exift _get short(d+6+offset, ...)

14/25

KLEE is slower due to

— Overhead of VM

— Complex symbolic execution
features such as symbolic
pointer dereference

Moonzoo Kim KAIST

Provable SW Lab

Testing Result of Baseline (2/2)

 We analyzed uncovered code to improve
branch coverage

— 5 among 238 functions take 27% of total branches

e Baseline concolic testing could not generate
maker notes in a given time

— We focused on maker notes to improve code
coverage

KAIST

Focus on the Maker Note

 Focus on the maker note tags with concrete image

files.
— We used 6 image files from http://exif.org

— We used concrete header and standard EXIF metadata and
set maker note as symbolic inputs

e Header and
Width | 200 « standard EXIF

Height 430
Date | 110522 metadata are
concrete
1SO 200 e Set maker note

Focus | Al Focus « tags in the image
as symbolic inputs

Moonzoo Kim KAIST

16/25 Provable SW Lab

Testing Result of Maker Note (1/2)

Test case generation speed

Branch Coverage of CREST-BV and KLEE

(Sum of all search strategies for each tool)

80

(o))
o

N
o

Branch Coverage(%)

N
o

0

CREST-BV

KLEE

(Avg. of the all search strategies for each tool)

m Branch Coverage(%)

68.1

49.5

20
2 15
p
5]
()]
(<))
& 10
c
o
o D
-
|
0
CREST-BV KLEE
B TC gen. speed 16.4 13

e KLEE detected 1 null-pointer-dereference

e CREST-BV detected the null-pointer-
dereference bug and 4 divide-by-zero bugs

17/25

Moonzoo Kim
Provable SW Lab

KAIST

Testing Result of Maker Note (2/2)

* Null-pointer-dereference bug

mnote_canon_tag_get description() in mnote-canon-tag.c

1: table[] = { ..

2: {MNOTE_CANON_TAG_CUSTOM_FUNCS, "CustomFunctions',
N_(*'Custom Functions'), "'},

3: {0, NULL, NULL, NULL} // Last table entry

4:for(1=0; 1<sizeof(table)/sizeof(table[0]);i1++)

5: //t 1s a maker note tag read from an image

6: 1f (table[i]-tag==t) {

7: //Null-pointer dereference occurs when t i1s 0!!!

8: iT(1*table|1].description)

9: return "'"';

e Divide-by-zero bug

mnote_olympus_entry_get value() in mnote-olympus-entry.c
1:vr=exift _get rational(...);

2://Added for concolic testing
3:assert(vr.denominator!=0);

4-a = vr.numerator / vr.denominator;

KAIST

Comparison between CREST-BV and Prevent

* Prevent failed to detect bugs detected by concolic

testing

— Prevent generated 3 false warnings out of total 4 warnings

* Prevent detected the following null-pointer
dereference bug in 5 minutes

— KLEE/CREST-BV did not detect the bug because our test

driver program does not call the buggy function

CID 10002: Dereference after null check (FORWARD_NULL)
Comparing "loader” to null implies that "loader” might be null.

Dereferencing null variable "loader”.
& exif_log (loader-zlog, EXIF_LOG_CODE_DEBUG,
"Loader format unknown");

A if (!loader || (loader->data_format == EL_DATA_FORMAT_UNKNOWN)) {

nme L
CH1

Loader",

19/25

Moonzoo Kim
Provable SW Lab

KAIST

Comparison between Prevent and Sparrow

e Sparrow failed to detect bugs detected by concolic
testing

* However, Sparrow detected 5 null-pointer dereference bugs and
generated 1 false alarm

— CREST and KLEE did not detect those 5 bugs
— Sparrow detected the same bug detected by Prevent

20/25

236.
237.
238.
239.

240.
241.
242,
243.

244,

245.
246.
247.
2448,

static woid

exif mnote_data olympus load (ExifMnotelata

{
Appeat 0

const unsigned char *buf, unsigmed int buf_zi=e)

ExifMnotelatallyonpus *n = (ExifMnoteDatallympus *) en;

Exifihort o

gize_t i, tocount,

& CheckingMNull {n==0)

(7] True n==10
if ('n [| 'buf ||

& Dereferencing without Null Check en

returmn;

o, 02, datao = 6, base = 0;

'buf size) {

EXIF_LOG_CODE CORRUPT DATA,
"ExifMunotelbatallympus™, "Short MakerNote™)

ponzoo Kim KAIST

Provable SW Lab

Developers Loved Bug Detection Results

i
i
=
ik
-

Fwd:|Security issues in libexif nbox % A

5 Yunho Kim kimyunho@kaist.ac kr
to Moonzoo -

---------- Forwarded message -——--—-

From: Dan Fandrich <dfandrich@users sourceforge net=
Date: 2012/7/2

Subject: Securnty issues in libexf

To: Yunho Kim =cocas@users sourceforge net=

Cc: Dan Fandrich =dfandrich{@users sourceforge net>

Hella, Yunho. You reported a couple of issues with libexif to the SourceForge bug tracker
late last year. Unfortunately. | didn't investigate them until just now| They are severe
enough that they\ve been assigned CVE IDs to help track them. |They\Vll be fixed in the next
release of libexif, which should happen within the week. Would vou mind heing
acknowledged as the discoverer of these problems in the publich secunty advisories that
will be published?

Thanks for reporting these issues, and sorry about the delays in following up

===> [an

21/25 Moonzoo Kim KAIST

Provable SW Lab

Security Experts Considered the Bugs Serious

sy
| *{\ - Common Vulnerabilities and Exposures
| The Standard for Information Security Vulnerability Names
"'I_ﬂ'l ey

Full-Screen \ie

CVE-ID
CVE-2012-2836 Learn more at National Vulnerability Database (NYD)

+ Seyerity Rating » Fix Information « Yulnerable Software Versions « SCAP Mappings

(Under review)

Description

The exif data_load data function in exif-data.c in the EXIF Tag Parsing Library (aka libexif) before 0.6.21 allows remote
attackers to cause a denial of service {out-of-bounds read) or possibly obtain sensitive infarmation from process memary via
crafted EXIF tags in an image,

References

Mote: References are provided for the convenience of the reader to help distinguish between vulnerabilities, The list s not intended to
be complete,

¢ MLIST[libexif-deyvel] 20120712 libexif project secunty advisory July 12, 2012
¢ LRL:http:/fsourceforge.net/mailarchive/message.php?msg id=29534027

Moonzoo Kim
22/25 Provable SW Lab WMIST

Lessons Learned from Real-world Application

e Practical strength of concolic testing

— 1 null-pointer dereference, 1 out-of-bound memory access, and 4
divide-by-zero in 4 man-weeks

— Note that

o libexiTisvery popular OSS used by millions of users
* we did not have background on I thexif!!!

 |mportance of testing strategy
— Still state space explosion is a big obstacle
— Average length of symbolic path formula = 100(baseline strategy)
=> In theory, there can exist 21%° different execution paths

e Concolic testing is complementary to static analysis

— It is recommended to apply both techniques, since they detected
different kinds of bugs

— Even tight integration of Concolic testing and static analyzers can be
interesting.

KAIST

Industrial Application of Concolic Testing

Target system: Smartphone Platform

e Unit-level testing
— Busybox Is (1100 LOC)

e 98% of branches covered and 4 bugs detected

— Security library (2300 LOC)
e 73% of branches covered and a memory violation bug detected
— S project (10 MLOC)

* detected dozens of crash bugs with many false alarms

e System level testing

— Samsung Linux Platform (SLP) file manager
e detected an infinite loop bug

— 10 Busybox utilities
* Covered 80% of the branches with 40,000 TCs in 1 hour
e A buffer overflow bug in grep was detected

— Libexif
e 300,000 TCsin 4 hours

e 1 out-of-bound memory access bug, 1 null pointer dereferences, and 4 divide-by-0 bugs
were detected

KAIST

Conclusion

 Automated testing techniques are effective in IT industry

— Successfully applied to 10 MLOC industry project and open-source software

 The benefit of automated testing techniques can be extended by

1. Following the well-established SE principles

. Requirement analysis, modular designs, documentation, etc.

2. Educating field engineers to become knowledgeable testing experts

* Even automated techniques should be carefully managed by human engineers

3. Close collaboration with the original target developers

. Domain knowledge is significantly important to improve software quality

KAIST

