컴퓨터시스템의 최신 변화와 이슈들

2012. 7.27

서울대학교

염헌영

What has changed ??

- Multi-core CPU
 - No faster CPUs
 - Moor's law still holds
- New Memory Technology
 - Flash Memory
 - Phase Change Memory

Multi-core CPU

- 4-core is norm,
 - -8,12 core readily available
 - -100 core available by the end of this year
 - 1000s of cores in near future
- Are applications scalable ?
- Are Oses scalable ?

Applications

- Parallel programming is hard
 - We still don't know how to do it right
 - High performance computing
 - Scientific computertiens
- Finding bugs is harder
 - How to find race conditions ?
 - How to find concurrency ?

OS scalability

- Linux was found pretty scalable up to ~20 cores.
- For more cores, even small critical sections can collapse the OS performance
 - Cache invalidation storm
 - Queueing effect
- Need lock-free mechanism

Virtualization

- When several virtual machines run on a physical machine, there's interference
 - Each core has private L1, L2 cache
 - LLC is shared
 - Memory controller is shared
- How can we identify/isolate VM performance ?

New Memory Technology(1)

- Flash memory
 - Read/write
 - No overwrite/block erase
 - Limited erase cycle
- Phase Change Memory
 - Can overwrite
 - Write is slower than read

New Memory Technology(2)

- Phase Change Memory
 - Can overwrite
 - Read is fast ~1us
 - Write is slow
 - 0 -> 1 ~10us
 - 1 -> 0 ~20us
 - Limited overwrite cycle (100,000-1,000,000)

PCM as fast storage

- Can we do more reads and writes less ?
- Wear-leveling
- Flash Translation Layer is too complex

PCM as Main Memory

- How to identify memory read/write pattern so that we can place less mutable data in PCM ?
- Wear-leveling
- Bigger cache for performance/endurance

Challenges

- Given a program written in some language, can we find out
 - How much memory it will use ?
 - For each variable, # of read/write
 - Cache access (hit/miss)
 - Concurrency ?
 - Race condition ?