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Motivation e

* How to easily identify performance bottlenecks of modern CPU exactly? 14 = Resource Stall

* How to apply both performance modeling theory and simulation technique? g — —
“L2 D Cache Miss
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* We propose a new performance modeling method which combines critical-path >0 " e

analysis theory [3] and stall-based CPI stack analysis [1]. 0.6 Rk

* Our scheme can identify performance bottlenecks and their impacts using only a 121Gz Hise

minimal number of simulations. . =121 Cache Hit

* QOur result is similar to the result of full spectrum of design space explorations. 0.2 ® Branch

Background
 CPI: Cycles Per Instructions
> how many cycles to execute one instruction?

 FMT (interval analysis [1][2])
> CPI stack: ) (CPIl components per uArch stall event)
> how many cycles lost due to a specific stall event?
(e.g., cache miss, branch misprediction, slow execution)
However, inaccurate analysis due to overestimation
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Figure 2. interval analysis

* Critical-path instruction stream [3]
> a chain of events taking longest cycles
> shorter chains do not affect overall performance
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Figure 3. critical path
Current Work

* We are implementing our hybrid scheme on top of various
timing simulators (e.g., SimpleScalar, PTLsim, Marssx86.)

* We are extending our scheme to analyze the performance
multi-core, multi-threaded CPUs.
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Our Approach

» Trace-based CPI stacking
> use ‘event- tagged’ instruction traces.

> penalty is distributed into each component.
Penalty : 180 cycle
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» Critical-path awareness Penalty : 2 cycle

> apply different weights on different event streams
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