Critical-path Aware Performance Analysis

Dongju Chae Hanhwi Jang Jangwoo Kim
High Performance Computing Lab., POSTECH

Motivation e

* How to easily identify performance bottlenecks of modern CPU exactly? 14 = Resource Stall

* How to apply both performance modeling theory and simulation technique? g — —
“L2 D Cache Miss

Goal 1 %2 D Cache Hit

* We propose a new performance modeling method which combines critical-path >0 " e

analysis theory [3] and stall-based CPI stack analysis [1]. 0.6 Rk

* Our scheme can identify performance bottlenecks and their impacts using only a 121Gz Hise

minimal number of simulations. . =121 Cache Hit

* QOur result is similar to the result of full spectrum of design space explorations. 0.2 ® Branch

Background
 CPI: Cycles Per Instructions
> how many cycles to execute one instruction?

 FMT (interval analysis [1][2])
> CPI stack:) (CPIl components per uArch stall event)
> how many cycles lost due to a specific stall event?
(e.g., cache miss, branch misprediction, slow execution)
However, inaccurate analysis due to overestimation

Branch mispredict | cache miss Long d-cache miss

IPC ¢ P s

<€ > <€ >€ >

Interval O Interval 1 § Interval 2

Figure 2. interval analysis

* Critical-path instruction stream [3]
> a chain of events taking longest cycles
> shorter chains do not affect overall performance

ROB size = 4
Do D+ D2 D3 D4 Ds De D~
0:M=0
.13 =1d[r2]
,:r1=r3"6 e
5. M6 =1d[r1] | Eo E1 E: Es = Es Ee E7
413 =r3+1
5. 1D =r6+rd5
5. Ccmpro, 0
Co C1 C2 3 4 5 6 C~
l |, , ., l, | | -
Figure 3. critical path
Current Work

* We are implementing our hybrid scheme on top of various
timing simulators (e.g., SimpleScalar, PTLsim, Marssx86.)

* We are extending our scheme to analyze the performance
multi-core, multi-threaded CPUs.

Misprediction
H |deal

Figure 1. CPI| Stack

Our Approach

» Trace-based CPI stacking
> use ‘event- tagged’ instruction traces.

> penalty is distributed into each component.
Penalty : 180 cycle

afetch | fetch | dispatch | ready issue complete | commit J/ info[3] | dep|3]

I, 104 104 111 111 112 120 124! 000 301

1, 104 104 111 120 120 300 304 050 1 06

I, 104 113 120 120 121 122 304 102 303

I, 113 113 120 300 301 302 306 500 565
\

» Critical-path awareness Penalty : 2 cycle

> apply different weights on different event streams

Critical path
l, L2 miss —> commit
|4 L1 miss * commit
A Jl
|5 / Wait ‘ ADD | — commit

/

Potential critical path

« Simulation and analysis process

W Instruction stream >
l tagged trace ltagged trace
Critical-path Analvzer
Generator Criticality of y
Instruction

l

Mapped Penalty

References

[1] S. Eyerman, et al, “A performance counter architecture for computing accurate
CPI components” ACM international Conference on Architectural Support for P
rogramming Languages and operating Systems, 2006, p175-184

[2] S. Eyerman, et al, “A Mechanistic Performance Model for Superscalar Out-of-
Order Processors” ACM Transactions on Computer Systems, 2009, p3:1~3:36

[3] Brian Fields, et al, “Focusing Processor Policies via Critical-Path Prediction” IS
CA, 2001, p1~12

