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Motivation Experimental Results

* How to reduce the burden of multi-GPU programming?

» How to guarantee functional correctness on multi-GPU? * Existing multi-CPU programming model

* How to achieve the optimal performance on multi-GPU? 2. modify(a)
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« We analyze the burden of multi-GPU programming. 3. update(a)
* We are working on static code analysis & architectural 4 re-execute

supports to achieve functional correctness & optimal

performance. GPU #1 GPU #2

Figure 4. Inter-GPU communications through a host
Background

. _ _  New programming model
* Higher throughput with multiple GPUs
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* Non-optimal performance with multi-GPU “Logical” large GPU

Figure 2. Speedup versus a single GPU [1]}
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Not all applications take advantage of multiple GPUs!
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Figure 3. Execution time analysis [1]

Current Work

> Keeping data consistency across GPUs degrades

performance. We are currently implementing static code analysis (front-
> Data and thread assignment cannot be changed during end data and thread assignment) and architectural
program execution. supports (inter-GPU synchronization, atomics, data
> Lack of atomic operations forces programmers to replication) to guarantee functional correctness and
modify their codes. optimal performance based on OpenCL [2].
Problem: —_—
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