
Summary
• We analyze the burden of multi-GPU programming.

• We are working on static code analysis & architectural

 supports to achieve functional correctness & optimal

 performance.

Programming Multiple GPUs

Youngsok Kim Jaewon Lee Jangwoo Kim

High Performance Computing Lab., POSTECH

Motivation
• How to reduce the burden of multi-GPU programming?

• How to guarantee functional correctness on multi-GPU?

• How to achieve the optimal performance on multi-GPU?

Background
• Higher throughput with multiple GPUs

• Non-optimal performance with multi-GPU

• Burden of multi-GPU programming

 > Keeping data consistency across GPUs degrades

 performance.

 > Data and thread assignment cannot be changed during

 program execution.

 > Lack of atomic operations forces programmers to

 modify their codes.

Problem:
 > Programmers must redesign their algorithms and
 rewrite their codes for multi-GPUs.
 > Programmers lose performance when porting
 programs to multiple GPUs.

Current Work

Experimental Results

References
[1] Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee, “Achieving a Single
Compute Device Image in OpenCL for Multiple GPUs,” In PPoPP’11.
[2] Khronos Group, “OpenCL: The Open Standard for Parallel Programming of
Heterogeneous Systems,” http://www.khronos.org/opencl/

• Existing multi-CPU programming model

• New programming model

4) Guarantee atomic operations from
 cores to be “atomic”

Figure 1. Speedup versus a single GPU [1]

Not all applications take advantage of multiple GPUs!

Figure 2. Speedup versus a single GPU [1]

GPU #1 GPU #2

Host

1. send(a) 1. send(a)
3. update(a)
4. re-execute

2. modify(a)

Host
1) Programmers write their program
 as if there is a single large GPU.
 (with many cores & large memory)

We are currently implementing static code analysis (front-

end data and thread assignment) and architectural

supports (inter-GPU synchronization, atomics, data

replication) to guarantee functional correctness and

optimal performance based on OpenCL [2].

“Logical” large GPU

2) Static code-analysis
 for core-data mapping
 to minimize inter-core
 communications

Cores

 Memory

Cores

 Memory

Cores

 Memory

….

GPU GPU GPU

Figure 4. Inter-GPU communications through a host

3) Locality-aware run-time thread & memory
 migration for optimal performance

Memory migration

Thread
migration

atomic

atomic

Figure 3. Execution time analysis [1]

