Programming Multiple GPUs

Youngsok Kim Jaewon Lee Jangwoo Kim
High Performance Computing Lab., POSTECH

Motivation Experimental Results

* How to reduce the burden of multi-GPU programming?

» How to guarantee functional correctness on multi-GPU? * Existing multi-CPU programming model

* How to achieve the optimal performance on multi-GPU? 2. modify(a)
Host
Summar
y | | 1. send(a) 1. send(a)

« We analyze the burden of multi-GPU programming. 3. update(a)
* We are working on static code analysis & architectural 4 re-execute

supports to achieve functional correctness & optimal

performance. GPU #1 GPU #2

Figure 4. Inter-GPU communications through a host
Background

. _ _ New programming model
* Higher throughput with multiple GPUs

1) Programmers write their program

Host

o 6 02 GPUs ideal as if there is a single Iar'ge GPU.
2, o ohUe e (with many cores & large memory)
o B4 GPUs
g A . .
2) Static code-analysis
? BinomialOption Blackscholes CP EP for core-data mapping
Figure 1. Speedup versus a single GPU [1] to minimize infer-core

communications

* Non-optimal performance with multi-GPU “Logical” large GPU

Figure 2. Speedup versus a single GPU [1]}

02 GPUs ideal i GPU GPU Thread GPU |

@2 GPUs | migratio |

@4 GPUs ideal | i

m4 GPUs | c < - c > :

B8 GPUs ideal : ’ I

— s GPUsI : ores ores atomic ores i

— minls “=ii i A | ;

Correlator EigenValue MRI-Q RPES i |

Not all applications take advantage of multiple GPUs!

 Burden of multi-GPU programming Memory migration atomic
30

3) Locality-aware run-time thread & memory
B Data transfer

petween CPU migration for optimal performance
and GPUs

] — i— O Consistency . .
— m I -i|I= management 4) Guarantee atomic operations from

— - overhead) .
1] 2 48 1]12]4]8]1 4 sl1]2]4]s cores to be "atomic”

2
Correlator EigenValue MRI-Q RPES

Normalized

o

Execution Time
— N
(- (-
‘

Figure 3. Execution time analysis [1]

Current Work

> Keeping data consistency across GPUs degrades

performance. We are currently implementing static code analysis (front-
> Data and thread assignment cannot be changed during end data and thread assignment) and architectural
program execution. supports (inter-GPU synchronization, atomics, data
> Lack of atomic operations forces programmers to replication) to guarantee functional correctness and
modify their codes. optimal performance based on OpenCL [2].
Problem: —_—

> Programmers must redesign their algorithms and References

rewr‘l.re Thel r COdes fO r mu IT' -GPUS‘ [1] Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee, “Achieving a Single

> Pr‘og rammers lOSe per'fOr'mance When po r"l'ing Compute Device Image in OpenCL for Multiple GPUs,” In PPoPP’11.

: [2] Khronos Group, “OpenCL: The Open Standard for Parallel Programming of
Pr'Ogr'GmS To mUH-' pl e GPUs : Heterogeneous Systems,” http://www.khronos.org/opencl/

