A Recursive Type System with Type Abbreviations and Abstract Types

EtQi0]l Ol & =0[7]2t Ete S E Tx7|S X|&ot= M EfR A AE

Ol A
ﬂ?_:IOI

Keiko Nakata, B

K| 82| ROSAEC Center Workshop @ O™, 25-28 July 2012

Features of Our Recursive Type System

* Equi-recursive types, structural type equivalence

Recursive Types

type ‘a tree = Leaf of ‘a
| Node of

2

‘a tree * ‘a * ‘a tree

* Type parameters, non-contractive types in the
implementation, abstract types
(supported in OCaml, but no sound type theory)

unfold

ot

* |so-recursive types

* Type equivalence, contractiveness defined in mixed

* Equi-recursive types fold induction and coinduction
= KKaItul

Syntax & Additional Judgments

e Structural polymorphism, e.g., polymorphic variants or

. . . t 7t7
objects, supported in OCaml requires structural type ybe e S B .
ival (equi-recursive types) ype no E= unit|o T 0T
equivaience (eq yRES). term e = ()|al|x|Aa:tel|lerer|fixa:tel|l
. specification D = typeoat|typeat=71|vall:t
Non-contractive Types definition d; = typeoili=1
A type is non-contractive if unfolding type definitions -~ Cif - |e|t5{ l:)e
. : signature = |3,
dlvterges inf Ii no"cc guardeo_l by a tyc|loe co_nstructor rcture Moo= ()
—type = t, typé s = uandu=s=s program P = (M,S,e) | (M,e)
. Contractive types value context I = |Ix:71
_ ‘ ‘ . type variableset X = -|{a}
~type t = int, type ‘a t = ‘a, type t =t T ill-formedness S:oo - Ttype SHDok Sok
* We cannot detect non-contractive types accurately. membeerhlp Sotype ol =0
module rec P sig type t end = subtyping Srsd SEDsD) e
g tYP well-typedness ~ FP:(S,1) FM:S Skd,:S. STre:t
struct type t = Q.t end reduction P—P M—M dFe—¢

and O
struct type t =

sig type t end =
P.t end

Type Equivalence

Unfolding

* Our type equivalence relation should be able to handle

So>typeat=0
SFtt—~{a—r1}o

non-contractive types.

unfold

AbStI‘aCt TypeS' Sig natu re Sealing’ Coinductive type equivalence S:ZET1 =1
Non-contractive Types S 5000 SETST i
* Abstract types by signature sealing in ML Inductive type equivalence estnfo
module M = struct module type S = sig
t ‘a t =" t ‘a t eq-unit acx eq-var
ype 'a t = ‘a ype 'a $:3 F unit £ unit ssThafa
end end

S: 21RO S;ZFTDRO Sotypeat S;ZFTRO

eqg-fun eqg-abs

module M = (M : S) (* signature sealing *)

R R
S:Z2FET =T =07 —> 0 S:2FTttr=0t

SFo—0o SIrtle

&ZFTig

* Non-contractive types in a signature are a source of type
unsoundness

eqg-runfold

eqg-lunfold

module M = struct module type S = sig . :
type t = int type t = t Contractive Types and Signatures
type s = bool type s = s Contractive types
let sucec x = x + 1 val succ t >t CCl Slet
let bval = true val bval : s SUT ctr-coind S Te unit ctr-unit Sl ctr-var
end end (S,7)eC (S,0)eC f S>typeot Slet] Stt—=0 Sleo
module M = (M : S) Slect—o Sicti ctr-abs Slct TP
let x = M.succ M.sval (* run-time error *) |Lonfractivesignatures SV

BN(S) distinct V(typeat=71)€ S, S|
* Disallow non-contractive types in the sealed sighature. 54

ctr-sig

Type Soundness

value v
definition value d,
module value V
program value A,

Theorem A.1 (Progress)
If= P: (S, 7), then either P is a program value or there exists P’ such that P — P’

Proof
By inductionon - P: (S,7). [

Theorem A.2 (Preservation)
(1) Ift- (d;,dy) : S, S;-Fe:t,andd, -er— ¢, then S;- ¢ : 7.
(2) f-M:Sand M+—— M, thent M : S.
(3) IfP=(M,e),-P:(S,7)and P— P, thent P : (S, 7).
(4) If= (M, S,e) : (S, 1), then there exists &' such that - M : 8, 8" < S and ;- Fe: 7.

Proof
(1) By induction on a derivation of §;- e : 7.
(2) By case analysis using (1).
(3) By case analysis using (1) and (2).
(4) By using the signature elimination lemma.
[]

Key Difficulty in Soundness Proofs

~M:S S <SS

= (M,S,e): (S,7)

~FM:S S;-Fe:T
= (M,e): (S,7)

typ-prog-seal typ-prog

Lemma A.3 (Signature elimination)
If (M.Se): (S,7), then 35 such that - (M.e) : (5, 7) and &' < S.

Lemma A.4 (Typing is preserved by signature elimination)
£S5 <S5, S and S;T'Fe:7,thenS;;I'Fe: 1.

Lemma A.5 (Type equivalence is preserved by signature elimination)
IS <85, land ;X F1t=0,then S1;2 - 17=0.

Lemma A.6 (Well-formed types are contractive)
Suppose S ok, S}, and §; X+ 7 type. Then S} 7.

Proof
The proof 1s by coinduction. The derivation tree below 1llustrates the key 1dea of the proof

where relation C is defined as {(So, 79) | So ok, So I}, and Sy; 2o F 79 type}.

S>3 type ¢ {; SJ,(‘ O;

Slcoit;

SicG

Contributions

* First sound type system with type parameters, non-
contractive types, and abstract types

* |Interesting proof techniques
* Whole system and proofs are formalized in Coq

Strong Contractiveness

Strong unfolding

S>typeoat=0
SkFrtr={a—rt}o

SFT1=0
SHEFTtr=01t

sunfold-type

sunfold-abs

Strong contractive types

ccy BRSNS sio

S|°t

sctr-var

sctr-unit

sctr-coind
Sle o

S 1 unit

(S,7)eC (S,0)eC
Slgt—0

S>type ot
SleTt

Sl T

sctr-fun sctr-abs

Strong contractive signature

BN(S) distinct V(typeat=71) €S, S{§°7
S|°

sctr-sig

Lemma A.7 (Equivalence between contractiveness and strong contractiveness)
Suppose S ok. Then S |} 7 1f and only 1f §'|}° 7.

Proof
The proof 1s by induction nested into coinduction. []

Corollary A.8
S|} if and only 1f § J°.

Proof
Corollary of Lemma A.7 [

Type Soundness Again!

Original subtyping
Sy ok Sy ok Vmnedom(S,), S)FSi(n) <8 (n) _
sub-sig
S51< 5
Refined subtyping
S1 ok S5 ok _ Vi € dom(Sh), S - S1(n) < S5 (n)
sub-sige
5159 Ies

Signature extension

Sigkxt(S1,8) = (51/%2)°US

S]/S2 = {Dl ’Dl e Sy, VDy, € 55, BN(Dl) 75 BN(DZ)}
(D1,...,Dp)° = (D1)°%,...,(Dy)°
(typex t =7)° = typeot
(D)° = D where D is not a type equation

Lemma A.9
If §1 <8 then S7 = Sigkxt(S1,5,).

Proof
By the definition of Sigkxt and subtyping. [

Lemma A.10 (Type equivalence is preserved by signature elimination)
IfS, 5,5 Pand $2;XF 1t=0,then S|;ZF T=0.

Proof
The proof is by coinduction and various properties on 5> {}> []

Lemma A.11 (Typing is preserved by signature elimination)
£S5, =95,5 °Pand ;T +e: 7, thenS|; T Fe: 1.

Proof
By rule inductionon S>;I'Fe: 7 [

Proof of Lemma A.3 (Signature elimination)
o M5, 8<S S,andS;-Fe:1

S < Sighkxt(S',S)
Sigkxt(S',S) |°
Sigkxt(S',S);-Fe:t
S ket
= (M,e): (5,71)
[]

By inversion on - (M, S.e) : (S, 1)
By Lemma A.9 with §' < §

From § |}

By weakening with §;-Fe: T

By Lemma A.11

By the rule typ-prog with= M : S8 and §';-Fe: 7

