
A Recursive Type System with Type Abbreviations and Abstract Types

타입에 이름 붙이기와 타입의 속내용 감추기를 지원하는 재귀 타입 시스템

임현승, Keiko Nakata, 박성우
제 8회 ROSAEC Center Workshop @ 이천, 25-28 July 2012

type ‘a tree = Leaf of ‘a

 | Node of ‘a tree * ‘a * ‘a tree

• Iso-recursive types

• Equi-recursive types

• Structural polymorphism, e.g., polymorphic variants or

objects, supported in OCaml requires structural type
equivalence (equi-recursive types).

{α → μα.T} T μα.T

unfold

fold

μα.T

Recursive Types

{α → μα.T} T

Non-contractive Types

• A type is non-contractive if unfolding type definitions
diverges and is not guarded by a type constructor
– type t = t, type s = u and u = s

• Contractive types
– type t = int, type ‘a t = ‘a, type t = t * t

• We cannot detect non-contractive types accurately.
 module rec P : sig type t end =

 struct type t = Q.t end

 and Q : sig type t end =

 struct type t = P.t end

• Our type equivalence relation should be able to handle
non-contractive types.

Abstract Types, Signature Sealing,
Non-contractive Types

• Abstract types by signature sealing in ML
 module M = struct module type S = sig

 type ‘a t = ‘a type ‘a t

 end end

 module M = (M : S) (* signature sealing *)

• Non-contractive types in a signature are a source of type
unsoundness

 module M = struct module type S = sig

 type t = int type t = t

 type s = bool type s = s

 let succ x = x + 1 val succ : t -> t

 let bval = true val bval : s

 end end

 module M = (M : S)

 let x = M.succ M.sval (* run-time error *)

• Disallow non-contractive types in the sealed signature.

Syntax & Additional Judgments

Features of Our Recursive Type System

• Equi-recursive types, structural type equivalence

• Type parameters, non-contractive types in the
implementation, abstract types
(supported in OCaml, but no sound type theory)

• Type equivalence, contractiveness defined in mixed
induction and coinduction

Type Equivalence

Contractive Types and Signatures

Type Soundness Strong Contractiveness

Key Difficulty in Soundness Proofs

Type Soundness Again!

Contributions

• First sound type system with type parameters, non-
contractive types, and abstract types

• Interesting proof techniques

• Whole system and proofs are formalized in Coq

