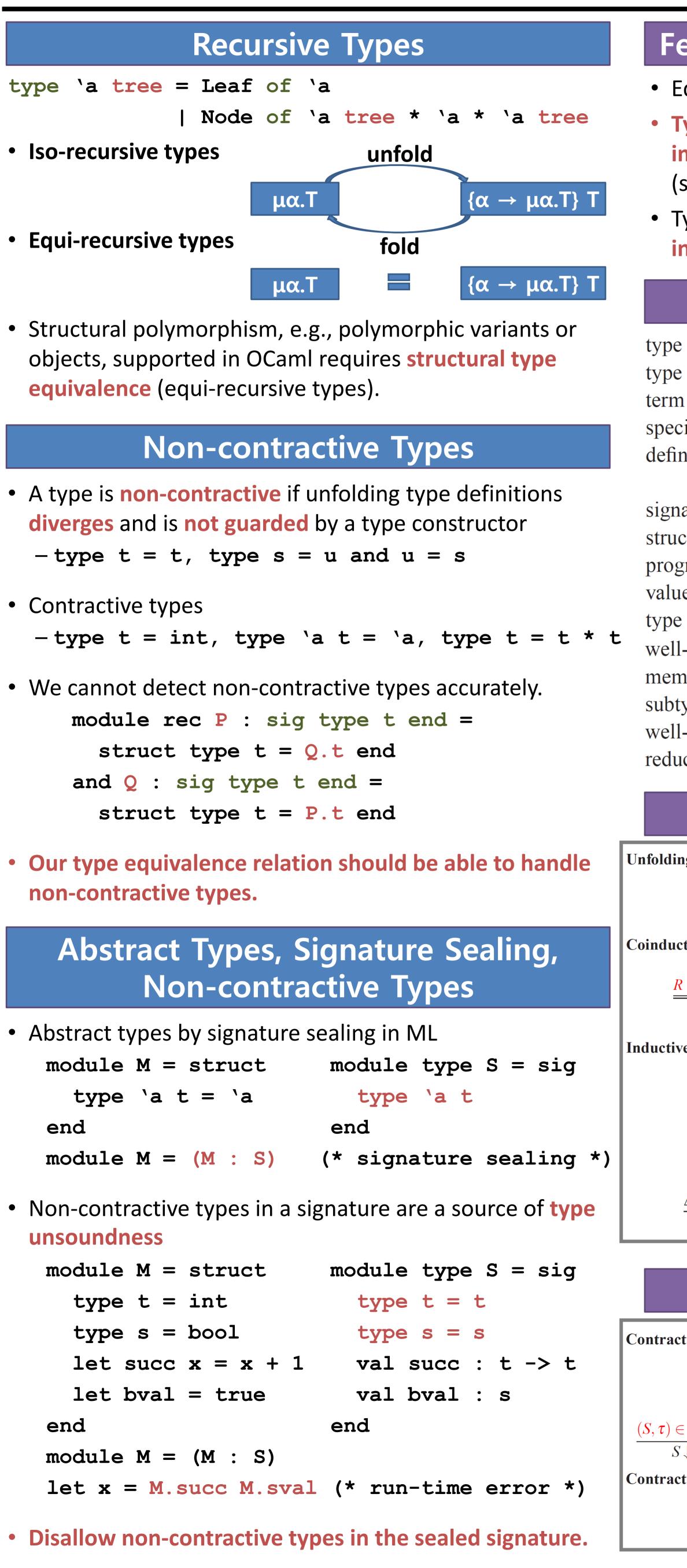
A Recursive Type System with Type Abbreviations and Abstract Types 타입에 이름 붙이기와 타입의 속내용 감추기를 지원하는 재귀 타입 시스템



임현승, Keiko Nakata, 박성우 제 8회 ROSAEC Center Workshop @ 이천, 25-28 July 2012

Proof

Proof

Features of Our Recursive Type System

- Equi-recursive types, structural type equivalence
- Type parameters, non-contractive types in the implementation, abstract types
- (supported in OCaml, but no sound type theory)
- Type equivalence, contractiveness defined in **mixed** induction and coinduction

Syntax & Additional Judgments

e name	s, t, u		
e	$ au, oldsymbol{\sigma}$::=	unit $\mid lpha \mid au ightarrow \sigma \mid au$ t
n	е	::=	() $ a x \lambda a : \tau . e e_1 e_2 $ fix $a : \tau . e l$
cification	D	::=	type $lpha$ <i>t</i> type $lpha$ <i>t</i> = $ au$ val <i>l</i> : $ au$
inition	$d_{ au}$::=	type $lpha$ $t= au$
	d_e	::=	let $l = e$
nature	S	::=	$\cdot \mid S,D$
icture	M	::=	$(\overline{d_{\tau}}, \overline{d_{e}})$
gram	P	::=	$(M, S, e) \mid (M, e)$
ue context	Γ	::=	$\cdot \mid \Gamma, x : \tau$
e variable set	Σ	::=	$\cdot \mid \{\alpha\}$
l-formedness	$S; \alpha$	$\vdash \tau$ ty	$pe S \vdash D ok S ok$
mbership		5	$\alpha t = \sigma$
typing			$S \vdash D_1 \leq D_2$
l-typedness) $\vdash M: S S \vdash \overline{d_e}: S_e S; \Gamma \vdash e: \tau$
uction			$M \longmapsto M' \overline{d_v} \vdash e \longmapsto e'$
			r

Type Equivalence

	<i>Lemma A.5</i> (T
ng $S \vdash \tau$ -	
$\frac{S \ni type \; \alpha \; t = \sigma}{S \vdash \tau \; t \rightharpoonup \{\alpha \mapsto \tau\}\sigma} \; unfold$	
ctive type equivalence $S; \Sigma \vdash \tau_1 =$	
$\frac{R \subseteq \Xi S; \Sigma \vdash \tau \stackrel{R}{=} \sigma}{S; \Sigma \vdash \tau \equiv \sigma} \text{eq-ind} \frac{S \vdash \tau \rightharpoonup \tau' S \vdash \sigma \rightharpoonup \sigma' S; \Sigma \vdash \tau' \equiv \sigma'}{S; \Sigma \vdash \tau \equiv \sigma} \text{eq-coind}$	The proof is by where relation
ve type equivalence $S; \Sigma \vdash \tau_1 =$	$\stackrel{R}{=} \tau_2$
$\frac{1}{S;\Sigma \vdash unit \stackrel{R}{=} unit} eq-unit \frac{\alpha \in \Sigma}{S;\Sigma \vdash \alpha \stackrel{R}{=} \alpha} eq-var$	
$\frac{S; \Sigma \vdash \tau_1 R \sigma_1 S; \Sigma \vdash \tau_2 R \sigma_2}{S; \Sigma \vdash \tau_1 \to \tau_2 \stackrel{R}{=} \sigma_1 \to \sigma_2} \text{ eq-fun } \frac{S \ni \text{type } \alpha \ t S; \Sigma \vdash \tau R \sigma}{S; \Sigma \vdash \tau \ t \stackrel{R}{=} \sigma \ t} \text{ eq-abs}$	
$\frac{\Delta \vdash \tau \rightharpoonup \tau' \Delta; \Sigma \vdash \tau' \stackrel{R}{=} \sigma}{\Delta; \Sigma \vdash \tau \stackrel{R}{=} \sigma} \text{eq-lunfold} \frac{S \vdash \sigma \rightharpoonup \sigma' S; \Sigma \vdash \tau \stackrel{R}{=} \sigma'}{S; \Sigma \vdash \tau \stackrel{R}{=} \sigma} \text{eq-runfold}$	
	$(1) C \subseteq \Downarrow$
Contractive Types and Signatures	
ctive types $S \Downarrow \tau S$.	$\downarrow_C \tau$
$\frac{C \subseteq \Downarrow S \downarrow_C \tau}{S \Downarrow \tau} \text{ ctr-coind } {S \downarrow_C \text{ unit }} \text{ ctr-unit } {S \downarrow_C \alpha} \text{ ctr-var}$	
$\frac{\in C (S,\sigma) \in C}{S \downarrow_C \tau \to \sigma} \text{ ctr-fun } \frac{S \ni \text{type } \alpha t S \downarrow_C \tau}{S \downarrow_C \tau t} \text{ ctr-abs } \frac{S \vdash \tau \rightharpoonup \sigma S \downarrow_C \sigma}{S \downarrow_C \tau} \text{ ctr-tr}$	^{ype} • First so contra

Contractive signatures

BN(S) distinct \forall (type $\alpha t = \tau$) $\in S, S \Downarrow \tau$ — ctr-sig $S \Downarrow$

Type Soundness

value	V	::=	() λa : τ .e
definition value	d_{v}	::=	let $l = v$
module value	V	::=	$(\overline{d_{\tau}},\overline{d_{v}})$
program value	P_{v}	::=	(V, v)

Theorem A.1 (Progress)

If $\vdash P : (S, \tau)$, then either P is a program value or there exists P' such that $P \longmapsto P'$.

By induction on $\vdash P : (S, \tau)$.

Theorem A.2 (**Preservation**)

(1) If $\vdash (\overline{d_{\tau}}, \overline{d_{\nu}}) : S, S; \cdot \vdash e : \tau, \text{ and } \overline{d_{\nu}} \vdash e \longmapsto e', \text{ then } S; \cdot \vdash e' : \tau.$ (2) If $\vdash M : S$ and $M \mapsto M'$, then $\vdash M' : S$. (3) If $P = (M, e), \vdash P : (S, \tau)$ and $P \longmapsto P'$, then $\vdash P' : (S, \tau)$. (4) If $\vdash (M, S, e) : (S, \tau)$, then there exists S' such that $\vdash M : S', S' \leq S$, and $S'; \cdot \vdash e : \tau$.

(1) By induction on a derivation of $S; \cdot \vdash e : \tau$. (2) By case analysis using (1). (3) By case analysis using (1) and (2). (4) By using the signature elimination lemma.

Key Difficulty in Soundness Proofs

 $\vdash M: S' \quad S \Downarrow \quad S' \leq S \quad S; \cdot \vdash e: \tau$ typ-prog-seal $\vdash (M, S, e) : (S, \tau)$

 $\frac{\vdash M : S \quad S; \cdot \vdash e : \tau}{\vdash (M, e) : (S, \tau)} \text{ typ-prog}$

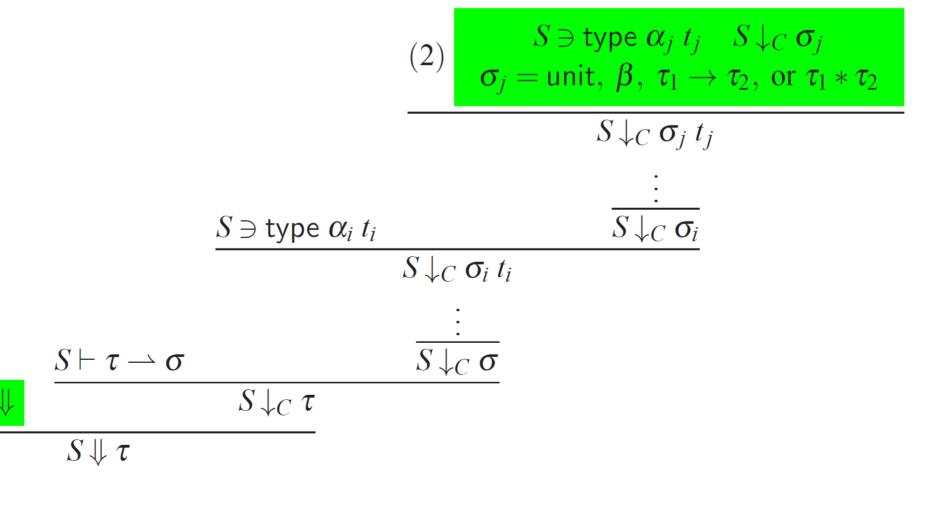
Lemma A.3 (Signature elimination) If $\vdash (M, S, e) : (S, \tau)$, then $\exists S'$ such that $\vdash (M, e) : (S', \tau)$ and $S' \leq S$.

Lemma A.4 (Typing is preserved by signature elimination) If $S_1 \leq S_2$, $S_2 \Downarrow$ and S_2 ; $\Gamma \vdash e : \tau$, then S_1 ; $\Gamma \vdash e : \tau$.

> (Type equivalence is preserved by signature elimination) \Downarrow and S_2 ; $\Sigma \vdash \tau \equiv \sigma$, then S_1 ; $\Sigma \vdash \tau \equiv \sigma$.

(Well-formed types are contractive) $\mathsf{K}, S \Downarrow$, and $S; \Sigma \vdash \tau$ type. Then $S \Downarrow \tau$.

by coinduction. The derivation tree below illustrates the key idea of the proof on C is defined as $\{(S_0, \tau_0) \mid S_0 \text{ ok}, S_0 \Downarrow, \text{ and } S_0; \Sigma_0 \vdash \tau_0 \text{ type}\}$.



Contributions

sound type system with type parameters, nonractive types, and abstract types

• Interesting proof techniques

 $S\downarrow$

• Whole system and proofs are formalized in Coq

	Strong Contractiveness
l	Strong unfolding $S \vdash \tau \Rightarrow \sigma$
	$\frac{S \vdash \tau \Rightarrow \sigma}{S \vdash \tau t \Rightarrow \sigma t} \text{ sunfold-abs } \frac{S \ni \text{type } \alpha t = \sigma}{S \vdash \tau t \Rightarrow \{\alpha \mapsto \tau\}\sigma} \text{ sunfold-type}$
l	
l	Strong contractive types $S \Downarrow^{s} \tau S \downarrow^{s}_C \tau$
	$\frac{C \subseteq \Downarrow^{s} S \vdash \tau \Rightarrow^{*} \sigma S \downarrow_{C}^{s} \sigma}{S \Downarrow^{s} \tau} \text{ sctr-coind } \frac{1}{S \downarrow_{C}^{s} unit} \text{ sctr-unit } \frac{1}{S \downarrow_{C}^{s} \alpha} \text{ sctr-var}$
	$\frac{(S,\tau)\in C (S,\sigma)\in C}{S\downarrow_C^{\mathbf{s}}\tau\to\sigma} \text{ sctr-fun } \frac{S\ni \text{type }\alpha t S\downarrow_C^{\mathbf{s}}\tau}{S\downarrow_C^{\mathbf{s}}\tau t} \text{ sctr-abs}$
l	$S \downarrow_C^{\circ} \tau \to \sigma$ Strong contractive signature $S \downarrow_C^{\circ} \tau I$
	$\frac{\mathrm{BN}(S) \ \mathrm{distinct} \forall (type \ \alpha \ t = \tau) \in S, \ S \Downarrow^{s} \tau}{S \Downarrow^{s}} \ \mathrm{sctr-sig}$
	<i>Lemma A.7</i> (Equivalence between contractiveness and strong contractiveness) Suppose <i>S</i> ok. Then $S \Downarrow \tau$ if and only if $S \Downarrow^s \tau$. <i>Proof</i> The proof is by induction nested into coinduction. \Box <i>Corollary A.8</i>
	$S \Downarrow$ if and only if $S \Downarrow^{s}$.
	Proof Corollary of Lemma A.7
	Type Soundness Again!
	Original subtyping
	$\frac{S_1 \text{ ok } S_2 \text{ ok } \forall n \in \text{dom}(S_2), \ S_1 \vdash S_1(n) \leq S_2(n)}{S_1 \leq S_2} \text{ sub-sig}$
	Refined subtyping
	$S_1 \text{ ok} S_2 \text{ ok} \operatorname{dom}(S_1) = \operatorname{dom}(S_2) \forall n \in \operatorname{dom}(S_2), S_1 \vdash S_1(n) \leq S_2(n)$
	$S_1 \leq S_2$ sub-sigeq
	Signature extension
	$\begin{array}{rcl} SigExt(S_1,S_2) & := & (S_1/S_2)^{\circ} \cup S_2 \\ & S_1/S_2 & := & \{D_1 \mid D_1 \in S_1, \ \forall D_2 \in S_2, \ BN(D_1) \neq BN(D_2)\} \\ & (D_1,\ldots,D_n)^{\circ} & := & (D_1)^{\circ},\ldots,(D_n)^{\circ} \\ & (type \ \alpha \ t = \tau)^{\circ} & := & type \ \alpha \ t \\ & (D)^{\circ} & := & D \text{where } D \text{ is not a type equation} \end{array}$
	Lemma A.9 If $S_1 \leq S_2$ then $S_1 \leq SigExt(S_1, S_2)$.
	Proof By the definition of SigExt and subtyping.
	<i>Lemma A.10</i> (Type equivalence is preserved by signature elimination) If $S_1 \leq S_2$, $S_2 \downarrow ^{s}$ and S_2 ; $\Sigma \vdash \tau \equiv \sigma$, then S_1 ; $\Sigma \vdash \tau \equiv \sigma$.
	Proof The proof is by coinduction and various properties on $S_2 \Downarrow^{s}$
	Lemma A.11 (Typing is preserved by signature elimination)
	If $S_1 \leq S_2$, $S_2 \downarrow^{s}$ and S_2 ; $\Gamma \vdash e : \tau$, then S_1 ; $\Gamma \vdash e : \tau$.
	Proof By rule induction on S_2 ; $\Gamma \vdash e : \tau$
	Proof of Lemma A.3 (Signature elimination)
	• $\vdash M : S', S' \leq S, S \Downarrow$, and $S; \cdot \vdash e : \tau$ • $S' \leq SigExt(S', S)$ By inversion on $\vdash (M, S, e) : (S, \tau)$ By Lemma A.9 with $S' \leq S$

- $SigExt(S', S) \Downarrow^{s}$
- $SigExt(S', S); \cdot \vdash e : \tau$
- S'; $\cdot \vdash e : \tau$
- $\vdash (M, e) : (S', \tau)$

From $S \downarrow$ By weakening with $S; \cdot \vdash e : \tau$ By Lemma A.11 By the rule typ-prog with $\vdash M : S'$ and $S'; \cdot \vdash e : \tau$