
GeneticAlgorithmsonGPUs
Sungjoo Ha

shurain@soar.snu.ac.kr

Introduction
• Using GPUs for general purpose computations is becoming increas-

ingly popular

– High performance

– Low cost

– Ubiquitous availability

• Genetic algorithm exhibits nice properties which promotes the use
of parallel computing platforms

– Each individual is independent of each other in evaluation of
fitness value

– Operators usually involve one or two individuals

GPU Execution & Memory Model
• Execution model

– Function/task run on GPU is called kernel

– Each kernel is distributed among blocks which makes up a grid

– Each block bundles a group of threads

• Memory model

– GPU have a global memory which is used to transfer data be-
tween host and device

– Threads in a block may communicate with each other using
shared memory

– Blocks cannot communicate with each other directly

Figure 1: CUDA Execution & Memory Model

Genetic Algorithm
• Inspired by natural selection and evolution

• Effective meta-heuristic for solving NP-hard problems

Create random population;
Evaluate fitness;
repeat

Select parents;
Crossover parents to obtain child;
Mutate child;
Evaluate fitness of child;
Replace child with an individual from population;

until Some condition;
Algorithm 1: Pseudo-code of GA

Master-slave GA

Master

Slave 1 Slave 2 ...

Figure 2: Master-Slave Model

• Single population

• Distribute fitness evaluation to slaves

• Possibly distribute genetic operators as well

Coarse-grained GA

deme deme

deme deme

Figure 3: Island Model

deme deme deme

Figure 4: Stepping-Stone Model

• Multiple subpopulations evolve in parallel

• Migration exchanges individuals in different subpopulations

Fine-grained GA

Figure 5: Toroidal Grid Model

• Single population

• Individuals limited to only interact with its neighbors

Challenges
• Careful planned memory access pattern

– Squeezing every necessary value into shared memory

– Concise representation of population

– Host/device memory tranfer pattern

– Exploiting parallel program patterns

• Fine tuning using device level knowledge

– Coalescing memory access

– Avoid bank conflict


