
어휘 문자열 간의
유도 관계를 이용한

문맥자유 문법 부합 분석

김세원
PLASSE HYU
2012. 7. 28.

제목 분석 1

¥오토마타 수업 다 들으셨지요?

¥문맥자유 문법

¥어휘집합
¥어휘문자열 간의 유도관계

어휘 문자열 간의
유도 관계를 이용한

문맥자유 문법 부합 분석

structs that are not directly related to intra-procedural ßow of string
values. When a client analysis highly depends on the lost precision,
it can be difÞcult to recover the precision. Even worse, it can be im-
possible to reßect the lost precision in a context-free grammar be-
cause of the limited expressive power of context-free grammar. As
an example, let us consider the impact analysis in [15]. For this im-
pact analysis, procedural context-sensitivity is crucial to obtain use-
ful analysis result. They needed to approximate the program output
to a context-free grammar while retaining necessaryk-depth pro-
cedural context-sensitivity. This approach was not viable for them
and they resorted to use abstract domain for strings in [2]. [2] basi-
cally provides abstract domain for strings, and allows us to choose
appropriate techniques for other program constructs - for example,
introducing Þeld-sensitivity for objects and context-sensitivity for
procedural parameters and so on. However, this work approximates
the string values to arbitrary regular expression and does not exam-
ine the string values according to the reference grammar.

This also makes regaining lost precision from ignored branch
condition inherently difÞcult. Assume a variable can have two dif-
ferent values according to a branch condition. They usually rep-
resent those two values through alternatives of production rules
like A ! u1, A ! u2. However, note that there is no room for
the condition that governs the choice. Because of this, for various
string analysis, false alarms originated from ignored branch con-
dition were typical give-ups. As far as we know, only [need ref,
ext. AP] can specify the condition as guards on the alternatives like
A ! c(u1), A ! Âc(u2). However, the kinds of conditions are
restricted to predicates on strings. We believe that we should pro-
vide orthogonal string abstraction and let other program constructs
and expressions be dealt with their own abstractions suitable for the
client analysis.

There is one work that derives an abstract string domain from
any reference context-free language[13]. However, this one accepts
! -bounded pushdown automaton for the reference, and this makes it
unattractive. In theory, we can transform any given reference gram-
mar into an! -bounded pushdown transducer that outputs the parse
actions, and there is also a technique for constructing shared parse
forests from the output of pushdown transducers[1]. However, it
can be a long detour, where other problems might lurk in.

1.2 Our Approach

We seek to use the reference grammar directly for abstraction of
string values Our approach results in simpler solution than passing
through pushdown transducers and the abstraction using pushdown
automaton[13].

In this paper, we present an abstract string domain derived from
a reference context-free grammar. We do not put any restrictions on
reference grammar. Using abstract domain[6Ð8] for strings keeps
the string abstraction orthogonal with abstractions of other values
and program constructs. We can use the reference grammar as it is
and the abstract value has implication on its possible shape of parse
trees. This domain can be a starting point for obtaining static parse
trees from a string expression.

1.3 Outline

Here is the outline of the rest of the paper. We Þrst Þx some no-
tations in this paper, and show we can derive a domain from a
context-free grammar. Next, we show how the required computa-
tion can be done by several algorithms. We also tries to give intu-
itions behind our veriÞcation via simpler case of verifying context-
free grammar Ð i.e., checking language inclusion. Finally, we talk
about related work and conclude.

2. Preliminary
2.1 Context-free Grammar

A context free grammar(henceforth, CFG) is given as a quadruple
G = (N , T , P , S). N for the set of non-terminals,T for the set
of terminals,P for set of production rules, andS is for the starting
non-terminal. Here are the notational conventions:

¥ V = N " T

¥ a, b, c# T

¥ A, B, C # N

¥ x, y, z # T !

¥ X, Y, Z # V

¥ u, v, w # V!

For uAv # V! , if A ! w # P, we write

uAv $ G uwv,

The reßexive and transitive closure of$ G is denoted by$!
G,

which we call thederivation relation. If u $!
G v, we sayv is

derived fromu. If G is obvious from the context, we omit the
subscriptG.

Given a CFGG = (N , T , P , S), the language of the grammar
L (G) is deÞned by

L (G) = { w # T ! | S $! w}

We generalize the deÞnition for a vocabulary stringu # V! ,

L G(u) = { w # T ! | u $! w} .

2.2 Preorder and its Upperset Domain

A relation is a preorder if the relation is reßexive and transitive. We
assume a preorderD = (D, %).

DeÞnition 1(upperset). U & D is an upperset ofD if

d1 # U ' d1 % d2 impliesd2 # U.

DeÞnition 2 (upperset closure). The upperset closure of a set
S & D in D is deÞned as

S (= { d # D |) d0 # S. d0 % d} .

DeÞnition 3 (upperset domain). D (= (UD , *) is the upperset
domain ofD where

¥ UD is the collection of uppersets ofD.
¥ For U1, U2 # UD ,

U1 + U2 iff U1 * U2.

Theorem 4. The upperset domainD (is a complete lattice.

The top and bottom element ofD (are the empty set and the set
D , respectively. The least upper bound of subset ofUD is obtained
by the set intersection. You can Þnd much about uppersets and its
properties in [9].

3. Deriving an Abstract Domain from a
Context-free Grammar

3.1 Upperset Domain from the Derivation Relation

Assume we have a CFGG = (N , T , P , S). The derivation relation
of G leads to anincompletelanguage inclusion relation between its
vocabulary strings.

Lemma 5. For u, v # V ! , if u $! v,

L G(u) + L G(v).

2 2012/1/6

structs that are not directly related to intra-procedural ßow of string
values. When a client analysis highly depends on the lost precision,
it can be difÞcult to recover the precision. Even worse, it can be im-
possible to reßect the lost precision in a context-free grammar be-
cause of the limited expressive power of context-free grammar. As
an example, let us consider the impact analysis in [15]. For this im-
pact analysis, procedural context-sensitivity is crucial to obtain use-
ful analysis result. They needed to approximate the program output
to a context-free grammar while retaining necessaryk-depth pro-
cedural context-sensitivity. This approach was not viable for them
and they resorted to use abstract domain for strings in [2]. [2] basi-
cally provides abstract domain for strings, and allows us to choose
appropriate techniques for other program constructs - for example,
introducing Þeld-sensitivity for objects and context-sensitivity for
procedural parameters and so on. However, this work approximates
the string values to arbitrary regular expression and does not exam-
ine the string values according to the reference grammar.

This also makes regaining lost precision from ignored branch
condition inherently difÞcult. Assume a variable can have two dif-
ferent values according to a branch condition. They usually rep-
resent those two values through alternatives of production rules
like A ! u1, A ! u2. However, note that there is no room for
the condition that governs the choice. Because of this, for various
string analysis, false alarms originated from ignored branch con-
dition were typical give-ups. As far as we know, only [need ref,
ext. AP] can specify the condition as guards on the alternatives like
A ! c(u1), A ! Âc(u2). However, the kinds of conditions are
restricted to predicates on strings. We believe that we should pro-
vide orthogonal string abstraction and let other program constructs
and expressions be dealt with their own abstractions suitable for the
client analysis.

There is one work that derives an abstract string domain from
any reference context-free language[13]. However, this one accepts
! -bounded pushdown automaton for the reference, and this makes it
unattractive. In theory, we can transform any given reference gram-
mar into an! -bounded pushdown transducer that outputs the parse
actions, and there is also a technique for constructing shared parse
forests from the output of pushdown transducers[1]. However, it
can be a long detour, where other problems might lurk in.

1.2 Our Approach

We seek to use the reference grammar directly for abstraction of
string values Our approach results in simpler solution than passing
through pushdown transducers and the abstraction using pushdown
automaton[13].

In this paper, we present an abstract string domain derived from
a reference context-free grammar. We do not put any restrictions on
reference grammar. Using abstract domain[6Ð8] for strings keeps
the string abstraction orthogonal with abstractions of other values
and program constructs. We can use the reference grammar as it is
and the abstract value has implication on its possible shape of parse
trees. This domain can be a starting point for obtaining static parse
trees from a string expression.

1.3 Outline

Here is the outline of the rest of the paper. We Þrst Þx some no-
tations in this paper, and show we can derive a domain from a
context-free grammar. Next, we show how the required computa-
tion can be done by several algorithms. We also tries to give intu-
itions behind our veriÞcation via simpler case of verifying context-
free grammar Ð i.e., checking language inclusion. Finally, we talk
about related work and conclude.

2. Preliminary
2.1 Context-free Grammar

A context free grammar(henceforth, CFG) is given as a quadruple
G = (N , T , P , S). N for the set of non-terminals,T for the set
of terminals,P for set of production rules, andS is for the starting
non-terminal. Here are the notational conventions:

¥ V = N " T

¥ a, b, c# T

¥ A, B, C # N

¥ x, y, z # T !

¥ X, Y, Z # V

¥ u, v, w # V!

For uAv # V! , if A ! w # P, we write

uAv $ G uwv,

The reßexive and transitive closure of$ G is denoted by$!
G,

which we call thederivation relation. If u $!
G v, we sayv is

derived fromu. If G is obvious from the context, we omit the
subscriptG.

Given a CFGG = (N , T , P , S), the language of the grammar
L (G) is deÞned by

L (G) = { w # T ! | S $! w}

We generalize the deÞnition for a vocabulary stringu # V! ,

L G(u) = { w # T ! | u $! w} .

2.2 Preorder and its Upperset Domain

A relation is a preorder if the relation is reßexive and transitive. We
assume a preorderD = (D, %).

DeÞnition 1(upperset). U & D is an upperset ofD if

d1 # U ' d1 % d2 impliesd2 # U.

DeÞnition 2 (upperset closure). The upperset closure of a set
S & D in D is deÞned as

S (= { d # D |) d0 # S. d0 % d} .

DeÞnition 3 (upperset domain). D (= (UD , *) is the upperset
domain ofD where

¥ UD is the collection of uppersets ofD.
¥ For U1, U2 # UD ,

U1 + U2 iff U1 * U2.

Theorem 4. The upperset domainD (is a complete lattice.

The top and bottom element ofD (are the empty set and the set
D , respectively. The least upper bound of subset ofUD is obtained
by the set intersection. You can Þnd much about uppersets and its
properties in [9].

3. Deriving an Abstract Domain from a
Context-free Grammar

3.1 Upperset Domain from the Derivation Relation

Assume we have a CFGG = (N , T , P , S). The derivation relation
of G leads to anincompletelanguage inclusion relation between its
vocabulary strings.

Lemma 5. For u, v # V ! , if u $! v,

L G(u) + L G(v).

2 2012/1/6

Here the wordincompletemeans that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings ofG.

DeÞnition 6. DG = (V! , !) is an ordering between vocabulary
strings ofG, where the order is deÞned as follows: foru, v " V! ,

u # ! v iff v ! u.

You can see that the language of an element ofDG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not Þnitely accessible from the
minimals if there are cyclic unit productions or! productions. IfG
has no unit productions and! productions,DG is a well-founded
poset. However, for an arbitrary CFGG, we cannot say much about
DG.

Lemma 7. For anyG, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.

Fortunately, if we apply Theorem 4 toDG, we obtain a complete
lattice

DG $= (UD G , %).
In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation

We relate the concrete domain(2T !
, &) with the proposed abstract

domainDG $= (UD G , %) via Galois connection. We deÞne the
abstraction function" : 2T !

' UD G as follows:

" (S) = { u " V! | (w " S. u # ! w} .

Note the function" maps an arbitrary set of stringsS into an ele-
ment ofUD G . Thus, it is well-deÞned. The concretization function
: UD G ' 2T !

is deÞned as follows:

#(U) = { w " T ! | (u " U. u # ! w} .

Theorem 8. The Galois connection,(2T !
, &)))'*)) !

"
(UD G , %)

holds.

DeÞnition 9. For U1, U2 " UD G , the abstract concatenation
operation Ô+Õ is deÞned as follows :

U1 + U2 = (U1 áU2) $,

whereáis pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure(UD G , +) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator$ after pairwise string con-
catenation. ItÕs easy to check{ ! } $ is the identity. For associativ-
ity, it sufÞces to show that the inner upperset closure operator in
(((U1 áU2) $) áU3) $ and(U1 á((U2 áU3) $)) $ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, forU1, U2 " UD G ,

#(U1) á#(U2) & #(U1 + U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1, x2 " T ! ,

" ({ x1}) + " ({ x2}) = " ({ x1x2}).

When we want to verify an abstract valueÕs conformance ac-
cording toL (G), you can use the following:

Theorem 13. If U " UD G containsS,

#(U) & L (G).

Proof. We can rewrite#(U) as
!

u " U { w " T ! | u # ! w} , which
is

!
u " U L G(u). Therefore,#(U) & L G(S) = L (G) if S " U.

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG $.

4.1 Requirements

Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x " T ! , " ({ x}) = { x} $. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u " V! , { u} $ is inÞnite iffG has! productions.

Therefore, we need to invent areasonable representationthat
can Þnitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

¥ Join and concatenation should be computable and again result
in a Þnite representation.

¥ The order decision should be decidable using the Þnite repre-
sentation.

When these requirements are satisÞed, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of InÞnite Upperset

We investigate the problem of Lemma 14 through an example and
Þnd out what makes an upperset of a singleton string set inÞnite.
LetÕs consider the following grammar :

S ' [S]
S ' A

A ' !

The upperset of singleton{ []} is,

{ S, AS, SA, SS}
, AAS, ASA, ASS, SAA, SAS, SSA, SSS, . . . }
, { [], A[], [A], []A, S [], [S], []S, . . .}

If you look into the upperset, you will Þnd out that the set becomes
inÞnite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

Here the wordincompletemeans that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings ofG.

DeÞnition 6. DG = (V! , !) is an ordering between vocabulary
strings ofG, where the order is deÞned as follows: foru, v " V! ,

u # ! v iff v ! u.

You can see that the language of an element ofDG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not Þnitely accessible from the
minimals if there are cyclic unit productions or! productions. IfG
has no unit productions and! productions,DG is a well-founded
poset. However, for an arbitrary CFGG, we cannot say much about
DG.

Lemma 7. For anyG, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.

Fortunately, if we apply Theorem 4 toDG, we obtain a complete
lattice

DG $= (UD G , %).
In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation

We relate the concrete domain(2T !
, &) with the proposed abstract

domainDG $= (UD G , %) via Galois connection. We deÞne the
abstraction function" : 2T !

' UD G as follows:

" (S) = { u " V! | (w " S. u # ! w} .

Note the function" maps an arbitrary set of stringsS into an ele-
ment ofUD G . Thus, it is well-deÞned. The concretization function
: UD G ' 2T !

is deÞned as follows:

#(U) = { w " T ! | (u " U. u # ! w} .

Theorem 8. The Galois connection,(2T !
, &)))'*)) !

"
(UD G , %)

holds.

DeÞnition 9. For U1, U2 " UD G , the abstract concatenation
operation Ô+Õ is deÞned as follows :

U1 + U2 = (U1 áU2) $,

whereáis pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure(UD G , +) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator$ after pairwise string con-
catenation. ItÕs easy to check{ ! } $ is the identity. For associativ-
ity, it sufÞces to show that the inner upperset closure operator in
(((U1 áU2) $) áU3) $ and(U1 á((U2 áU3) $)) $ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, forU1, U2 " UD G ,

#(U1) á#(U2) & #(U1 + U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1, x2 " T ! ,

" ({ x1}) + " ({ x2}) = " ({ x1x2}).

When we want to verify an abstract valueÕs conformance ac-
cording toL (G), you can use the following:

Theorem 13. If U " UD G containsS,

#(U) & L (G).

Proof. We can rewrite#(U) as
!

u " U { w " T ! | u # ! w} , which
is

!
u " U L G(u). Therefore,#(U) & L G(S) = L (G) if S " U.

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG $.

4.1 Requirements

Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x " T ! , " ({ x}) = { x} $. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u " V! , { u} $ is inÞnite iffG has! productions.

Therefore, we need to invent areasonable representationthat
can Þnitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

¥ Join and concatenation should be computable and again result
in a Þnite representation.

¥ The order decision should be decidable using the Þnite repre-
sentation.

When these requirements are satisÞed, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of InÞnite Upperset

We investigate the problem of Lemma 14 through an example and
Þnd out what makes an upperset of a singleton string set inÞnite.
LetÕs consider the following grammar :

S ' [S]
S ' A

A ' !

The upperset of singleton{ []} is,

{ S, AS, SA, SS}
, AAS, ASA, ASS, SAA, SAS, SSA, SSS, . . . }
, { [], A[], [A], []A, S [], [S], []S, . . .}

If you look into the upperset, you will Þnd out that the set becomes
inÞnite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

2

제목 분석 2

¥부합 분석

¥뭐가? 주어진 프로그램의 출력

¥언제? 항상

¥어디에? 주어진 문맥자유 문법

어휘 문자열 간의
유도 관계를 이용한

문맥자유 문법 부합 분석

3

제목 분석 3

¥앞의 두 장이 제목의 22/25

¥나머지가 3/25

어휘 문자열 간의
유도 관계를 이용한

문맥자유 문법 부합 분석

4

동기
¥학회에서

¥문법에 기대하는 바

¥직접적인 분석 / 직관적인 요약값

왜 문법으로
안하고 PDA로?

PDA에서는 쓸만한 순서관계
를 발견했는데, 문법에서는
그런 순서관계를 못찾았어요.

P. Cousot

5

첫번째 예제

x := [a
while ... do
 x := [. x .]
od
x := x .]
print x

S → a | [S]

6

답변 1

¥딱보니, 출력 되는 것이 어떤 자연수 n에
대해 [^n a]^n 모양. 문법에 늘 맞겠네요

¥인간적으로 너무 똑똑하십니다.

¥머릿속에 일어난 일을 분석기로?

¥좀 더 기계적인 차원으로

7

답변 2

¥x의 내용이 마지막 할당문 전까지는 항
상 [S로부터 유도되고, 마지막에]를 덧붙
이니 S로 유도되는 문자열이 나오네요

¥불변값을 이용한 답변

¥분석도 결국 불변값 찾기 아닌가?

¥어휘문자열 간 유도 개념을 잘 다듬으
면 분석이?

8

두번째 예제

x := if ... then a else b
y := x . x
print y

S → AB
A → a | b
B → a | b

9

아하
¥요약값: 어휘문자열의 집합

¥문자열 상수: 그 문자열을 유도하는 어휘
문자열의 모음으로 요약

¥접합: 요소끼리 접합해서 모음, 그 안의
것을 유도하는 어휘문자열 추가

¥합류점: !

10

된 듯?

11

얼렁뚱땅 아님?

12

AI 틀에 끼우기
어휘 문자열 간의
유도 관계를 이용한

문맥자유 문법 부합 분석
안전
한

¥도메인 구체화

¥Galois 연결

¥안전한 접합 연산

13

구체 도메인

¥가능한 문자열의 값의 모임

¥작은 집합으로 좁게 알려줄수록 좋다

Here the word incomplete means that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings of G.
Definition 6. DG = (V∗,!) is an ordering between vocabulary
strings of G, where the order is defined as follows: for u, v ∈ V∗,

u⇒∗ v iff v ! u.

You can see that the language of an element of DG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not finitely accessible from the
minimals if there are cyclic unit productions or ! productions. If G
has no unit productions and ! productions, DG is a well-founded
poset. However, for an arbitrary CFG G, we cannot say much about
DG .
Lemma 7. For any G, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.
Fortunately, if we apply Theorem 4 toDG , we obtain a complete

lattice
DG ↑= (UDG ,%).

In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation
We relate the concrete domain (2T

!
,⊆) with the proposed abstract

domain DG ↑= (UDG ,%) via Galois connection. We define the
abstraction function " : 2T

!
→ UDG as follows:

" (S) = {u ∈ V∗ | ∀w ∈ S. u⇒∗ w}.

Note the function " maps an arbitrary set of strings S into an ele-
ment of UDG . Thus, it is well-defined. The concretization function
: UDG → 2T

!
is defined as follows:

#(U) = {w ∈ T ∗ | ∀u ∈ U. u⇒∗ w}.

Theorem 8. The Galois connection, (2T
!
,⊆) −−→←−−!

"
(UDG ,%)

holds.

Definition 9. For U1 , U2 ∈ UDG , the abstract concatenation
operation ‘◦’ is defined as follows :

U1 ◦ U2 = (U1 · U2) ↑,

where · is pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure (UDG , ◦) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator ↑ after pairwise string con-
catenation. It’s easy to check {!} ↑ is the identity. For associativ-
ity, it suffices to show that the inner upperset closure operator in
(((U1 · U2) ↑) · U3) ↑ and (U1 · ((U2 · U3) ↑)) ↑ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, for U1 , U2 ∈ UDG ,

#(U1) · #(U2) ⊆ #(U1 ◦ U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1 , x2 ∈ T ∗,

" ({x1}) ◦ " ({x2}) = " ({x1x2}).

When we want to verify an abstract value’s conformance ac-
cording to L(G), you can use the following:

Theorem 13. If U ∈ UDG contains S,

#(U) ⊆ L(G).

Proof. We can rewrite #(U) as
!

u∈U {w ∈ T ∗ | u⇒∗ w}, which
is

!
u∈U LG(u). Therefore, #(U) ⊆ LG(S) = L(G) if S ∈ U .

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG ↑.

4.1 Requirements
Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x ∈ T ∗, " ({x}) = {x} ↑. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u ∈ V∗, {u} ↑ is infinite iff G has ! productions.

Therefore, we need to invent a reasonable representation that
can finitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

¥ Join and concatenation should be computable and again result
in a finite representation.

¥ The order decision should be decidable using the finite repre-
sentation.

When these requirements are satisfied, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of Infinite Upperset
We investigate the problem of Lemma 14 through an example and
find out what makes an upperset of a singleton string set infinite.
Let’s consider the following grammar :

S → [S]

S → A

A → !

The upperset of singleton {[]} is,

{S,AS, SA, SS}

∪ AAS,ASA,ASS, SAA, SAS, SSA, SSS, . . .}

∪ {[], A[], [A], []A,S[], [S], []S, . . .}

If you look into the upperset, you will find out that the set becomes
infinite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

14

요약 도메인 1

¥ , 일 때

¥문제점: poset ✕ / 단일 어휘 (집합 ✕) /
전역 최소 ✕

Here the word incomplete means that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings of G.
Definition 6. DG = (V∗,!) is an ordering between vocabulary
strings of G, where the order is defined as follows: for u, v ∈ V∗,

u⇒∗ v iff v ! u.

You can see that the language of an element of DG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not finitely accessible from the
minimals if there are cyclic unit productions or ε productions. If G
has no unit productions and ε productions, DG is a well-founded
poset. However, for an arbitrary CFG G, we cannot say much about
DG .
Lemma 7. For any G, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.
Fortunately, if we apply Theorem 4 toDG , we obtain a complete

lattice
DG ↑= (UDG

,%).
In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation
We relate the concrete domain (2T

∗

,⊆) with the proposed abstract
domain DG ↑= (UDG

,%) via Galois connection. We define the
abstraction function α : 2T

∗

→ UDG
as follows:

α(S) = {u ∈ V∗ | ∀w ∈ S. u⇒∗ w}.

Note the function α maps an arbitrary set of strings S into an ele-
ment of UDG

. Thus, it is well-defined. The concretization function
γ : UDG

→ 2T
∗

is defined as follows:

γ(U) = {w ∈ T ∗ | ∀u ∈ U. u⇒∗ w}.

Theorem 8. The Galois connection, (2T
∗

,⊆) −−→←−−α
γ

(UDG
,%)

holds.

Definition 9. For U1, U2 ∈ UDG
, the abstract concatenation

operation ‘◦’ is defined as follows :

U1 ◦ U2 = (U1 · U2) ↑,

where · is pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure (UDG
, ◦) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator ↑ after pairwise string con-
catenation. It’s easy to check {ε} ↑ is the identity. For associativ-
ity, it suffices to show that the inner upperset closure operator in
(((U1 · U2) ↑) · U3) ↑ and (U1 · ((U2 · U3) ↑)) ↑ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, for U1, U2 ∈ UDG

,

γ(U1) · γ(U2) ⊆ γ(U1 ◦ U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1, x2 ∈ T ∗,

α({x1}) ◦ α({x2}) = α({x1x2}).

When we want to verify an abstract value’s conformance ac-
cording to L(G), you can use the following:

Theorem 13. If U ∈ UDG
contains S,

γ(U) ⊆ L(G).

Proof. We can rewrite γ(U) as
⋂

u∈U{w ∈ T ∗ | u⇒∗ w}, which
is
⋂

u∈U LG(u). Therefore, γ(U) ⊆ LG(S) = L(G) if S ∈ U .

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG ↑.

4.1 Requirements
Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x ∈ T ∗, α({x}) = {x} ↑. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u ∈ V∗, {u} ↑ is infinite iff G has ε productions.

Therefore, we need to invent a reasonable representation that
can finitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

• Join and concatenation should be computable and again result
in a finite representation.

• The order decision should be decidable using the finite repre-
sentation.

When these requirements are satisfied, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of Infinite Upperset
We investigate the problem of Lemma 14 through an example and
find out what makes an upperset of a singleton string set infinite.
Let’s consider the following grammar :

S → [S]

S → A

A → ε

The upperset of singleton {[]} is,

{S,AS, SA, SS}

∪ AAS,ASA,ASS, SAA, SAS, SSA, SSS, . . .}

∪ {[], A[], [A], []A,S[], [S], []S, . . .}

If you look into the upperset, you will find out that the set becomes
infinite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

Here the word incomplete means that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings of G.
Definition 6. DG = (V∗,!) is an ordering between vocabulary
strings of G, where the order is defined as follows: for u, v ∈ V∗,

u⇒∗ v iff v ! u.

You can see that the language of an element of DG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not finitely accessible from the
minimals if there are cyclic unit productions or ε productions. If G
has no unit productions and ε productions, DG is a well-founded
poset. However, for an arbitrary CFG G, we cannot say much about
DG .
Lemma 7. For any G, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.
Fortunately, if we apply Theorem 4 toDG , we obtain a complete

lattice
DG ↑= (UDG

,%).
In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation
We relate the concrete domain (2T

∗

,⊆) with the proposed abstract
domain DG ↑= (UDG

,%) via Galois connection. We define the
abstraction function α : 2T

∗

→ UDG
as follows:

α(S) = {u ∈ V∗ | ∀w ∈ S. u⇒∗ w}.

Note the function α maps an arbitrary set of strings S into an ele-
ment of UDG

. Thus, it is well-defined. The concretization function
γ : UDG

→ 2T
∗

is defined as follows:

γ(U) = {w ∈ T ∗ | ∀u ∈ U. u⇒∗ w}.

Theorem 8. The Galois connection, (2T
∗

,⊆) −−→←−−α
γ

(UDG
,%)

holds.

Definition 9. For U1, U2 ∈ UDG
, the abstract concatenation

operation ‘◦’ is defined as follows :

U1 ◦ U2 = (U1 · U2) ↑,

where · is pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure (UDG
, ◦) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator ↑ after pairwise string con-
catenation. It’s easy to check {ε} ↑ is the identity. For associativ-
ity, it suffices to show that the inner upperset closure operator in
(((U1 · U2) ↑) · U3) ↑ and (U1 · ((U2 · U3) ↑)) ↑ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, for U1, U2 ∈ UDG

,

γ(U1) · γ(U2) ⊆ γ(U1 ◦ U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1, x2 ∈ T ∗,

α({x1}) ◦ α({x2}) = α({x1x2}).

When we want to verify an abstract value’s conformance ac-
cording to L(G), you can use the following:

Theorem 13. If U ∈ UDG
contains S,

γ(U) ⊆ L(G).

Proof. We can rewrite γ(U) as
⋂

u∈U{w ∈ T ∗ | u⇒∗ w}, which
is
⋂

u∈U LG(u). Therefore, γ(U) ⊆ LG(S) = L(G) if S ∈ U .

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG ↑.

4.1 Requirements
Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x ∈ T ∗, α({x}) = {x} ↑. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u ∈ V∗, {u} ↑ is infinite iff G has ε productions.

Therefore, we need to invent a reasonable representation that
can finitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

¥ Join and concatenation should be computable and again result
in a finite representation.

¥ The order decision should be decidable using the finite repre-
sentation.

When these requirements are satisfied, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of Infinite Upperset
We investigate the problem of Lemma 14 through an example and
find out what makes an upperset of a singleton string set infinite.
Let’s consider the following grammar :

S → [S]

S → A

A → ε

The upperset of singleton {[]} is,

{S,AS, SA, SS}

∪ AAS,ASA,ASS, SAA, SAS, SSA, SSS, . . .}

∪ {[], A[], [A], []A,S[], [S], []S, . . .}

If you look into the upperset, you will find out that the set becomes
infinite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

Here the word incomplete means that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings of G.
Definition 6. DG = (V∗,!) is an ordering between vocabulary
strings of G, where the order is defined as follows: for u, v ∈ V∗,

u ⇒∗ v iff v ! u.

You can see that the language of an element of DG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not finitely accessible from the
minimals if there are cyclic unit productions or ε productions. If G
has no unit productions and ε productions, DG is a well-founded
poset. However, for an arbitrary CFG G, we cannot say much about
DG .
Lemma 7. For any G, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.
Fortunately, if we apply Theorem 4 toDG , we obtain a complete

lattice
DG ↑= (UDG

,%).
In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation
We relate the concrete domain (2T

!
,⊆) with the proposed abstract

domain DG ↑= (UDG
,%) via Galois connection. We define the

abstraction function α : 2T
!
→ UDG

as follows:

α(S) = {u ∈ V∗ | ∀w ∈ S. u⇒∗ w}.

Note the function α maps an arbitrary set of strings S into an ele-
ment of UDG

. Thus, it is well-defined. The concretization function
γ : UDG

→ 2T
!
is defined as follows:

γ(U) = {w ∈ T ∗ | ∀u ∈ U. u⇒∗ w}.

Theorem 8. The Galois connection, (2T
!
,⊆) −−→←−−α

γ
(UDG

,%)
holds.

Definition 9. For U1, U2 ∈ UDG
, the abstract concatenation

operation ‘◦’ is defined as follows :

U1 ◦ U2 = (U1 · U2) ↑,

where · is pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure (UDG
, ◦) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator ↑ after pairwise string con-
catenation. It’s easy to check {ε} ↑ is the identity. For associativ-
ity, it suffices to show that the inner upperset closure operator in
(((U1 · U2) ↑) · U3) ↑ and (U1 · ((U2 · U3) ↑)) ↑ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, for U1, U2 ∈ UDG

,

γ(U1) · γ(U2) ⊆ γ(U1 ◦ U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1, x2 ∈ T ∗,

α({x1}) ◦ α({x2}) = α({x1x2}).

When we want to verify an abstract value’s conformance ac-
cording to L(G), you can use the following:

Theorem 13. If U ∈ UDG
contains S,

γ(U) ⊆ L(G).

Proof. We can rewrite γ(U) as
!

u∈U {w ∈ T ∗ | u ⇒∗ w}, which
is

!
u∈U LG(u). Therefore, γ(U) ⊆ LG(S) = L(G) if S ∈ U .

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG ↑.

4.1 Requirements
Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x ∈ T ∗, α({x}) = {x} ↑. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u ∈ V∗, {u} ↑ is infinite iff G has ε productions.

Therefore, we need to invent a reasonable representation that
can finitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

¥ Join and concatenation should be computable and again result
in a finite representation.

¥ The order decision should be decidable using the finite repre-
sentation.

When these requirements are satisfied, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of Infinite Upperset
We investigate the problem of Lemma 14 through an example and
find out what makes an upperset of a singleton string set infinite.
Let’s consider the following grammar :

S → [S]
S → A

A → ε

The upperset of singleton {[]} is,

{S, AS, SA, SS}

∪ AAS, ASA, ASS, SAA, SAS, SSA, SSS, . . . }

∪ {[], A [], [A], []A, S [], [S], []S, . . .}

If you look into the upperset, you will find out that the set becomes
infinite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

structs that are not directly related to intra-procedural flow of string
values. When a client analysis highly depends on the lost precision,
it can be difficult to recover the precision. Even worse, it can be im-
possible to reflect the lost precision in a context-free grammar be-
cause of the limited expressive power of context-free grammar. As
an example, let us consider the impact analysis in [15]. For this im-
pact analysis, procedural context-sensitivity is crucial to obtain use-
ful analysis result. They needed to approximate the program output
to a context-free grammar while retaining necessary k-depth pro-
cedural context-sensitivity. This approach was not viable for them
and they resorted to use abstract domain for strings in [2]. [2] basi-
cally provides abstract domain for strings, and allows us to choose
appropriate techniques for other program constructs - for example,
introducing field-sensitivity for objects and context-sensitivity for
procedural parameters and so on. However, this work approximates
the string values to arbitrary regular expression and does not exam-
ine the string values according to the reference grammar.
This also makes regaining lost precision from ignored branch

condition inherently difficult. Assume a variable can have two dif-
ferent values according to a branch condition. They usually rep-
resent those two values through alternatives of production rules
like A → u1, A → u2. However, note that there is no room for
the condition that governs the choice. Because of this, for various
string analysis, false alarms originated from ignored branch con-
dition were typical give-ups. As far as we know, only [need ref,
ext. AP] can specify the condition as guards on the alternatives like
A → c(u1), A → ¬c(u2). However, the kinds of conditions are
restricted to predicates on strings. We believe that we should pro-
vide orthogonal string abstraction and let other program constructs
and expressions be dealt with their own abstractions suitable for the
client analysis.
There is one work that derives an abstract string domain from

any reference context-free language[13]. However, this one accepts
ε-bounded pushdown automaton for the reference, and this makes it
unattractive. In theory, we can transform any given reference gram-
mar into an ε-bounded pushdown transducer that outputs the parse
actions, and there is also a technique for constructing shared parse
forests from the output of pushdown transducers[1]. However, it
can be a long detour, where other problems might lurk in.

1.2 Our Approach

We seek to use the reference grammar directly for abstraction of
string values Our approach results in simpler solution than passing
through pushdown transducers and the abstraction using pushdown
automaton[13].
In this paper, we present an abstract string domain derived from

a reference context-free grammar. We do not put any restrictions on
reference grammar. Using abstract domain[6–8] for strings keeps
the string abstraction orthogonal with abstractions of other values
and program constructs. We can use the reference grammar as it is
and the abstract value has implication on its possible shape of parse
trees. This domain can be a starting point for obtaining static parse
trees from a string expression.

1.3 Outline

Here is the outline of the rest of the paper. We first fix some no-
tations in this paper, and show we can derive a domain from a
context-free grammar. Next, we show how the required computa-
tion can be done by several algorithms. We also tries to give intu-
itions behind our verification via simpler case of verifying context-
free grammar – i.e., checking language inclusion. Finally, we talk
about related work and conclude.

2. Preliminary
2.1 Context-free Grammar

A context free grammar(henceforth, CFG) is given as a quadruple
G = (N , T ,P,S). N for the set of non-terminals, T for the set
of terminals, P for set of production rules, and S is for the starting
non-terminal. Here are the notational conventions:
• V = N ∪ T

• a, b, c ∈ T

• A,B,C ∈ N

• x, y, z ∈ T ∗

• X,Y, Z ∈ V

• u, v, w ∈ V∗

For uAv ∈ V∗, if A→ w ∈ P , we write

uAv ⇒G uwv,

The reflexive and transitive closure of ⇒G is denoted by ⇒∗
G ,

which we call the derivation relation. If u ⇒∗
G v, we say v is

derived from u. If G is obvious from the context, we omit the
subscript G.
Given a CFG G = (N , T ,P,S), the language of the grammar

L(G) is defined by

L(G) = {w ∈ T ∗ | S ⇒∗ w}

We generalize the definition for a vocabulary string u ∈ V∗,

LG(u) = {w ∈ T ∗ | u⇒∗ w}.

2.2 Preorder and its Upperset Domain

A relation is a preorder if the relation is reflexive and transitive. We
assume a preorder D = (D,%).

DeÞnition 1(upperset). U ⊆ D is an upperset of D if

d1 ∈ U ∧ d1 % d2 implies d2 ∈ U.

DeÞnition 2 (upperset closure). The upperset closure of a set
S ⊆ D in D is defined as

S ↑= {d ∈ D | ∃d0 ∈ S. d0 % d}.

DeÞnition 3 (upperset domain). D ↑= (UD,*) is the upperset
domain of D where
• UD is the collection of uppersets of D.
• For U1, U2 ∈ UD ,

U1 ⊇ U2 iff U1 * U2.

Theorem 4. The upperset domain D ↑ is a complete lattice.

The top and bottom element ofD ↑ are the empty set and the set
D, respectively. The least upper bound of subset of UD is obtained
by the set intersection. You can find much about uppersets and its
properties in [9].

3. Deriving an Abstract Domain from a
Context-free Grammar

3.1 Upperset Domain from the Derivation Relation

Assume we have a CFG G = (N , T ,P,S). The derivation relation
of G leads to an incomplete language inclusion relation between its
vocabulary strings.

Lemma 5. For u, v ∈ V ∗, if u⇒∗ v,

LG(u) ⊇ LG(v).

2 2012/1/6

15

요약 도메인 2

¥ 의 upperset 도메인

¥ 는 위로 닫혀있는 집합들의 모임

¥ = " = ! # = $ = !

¥ 는 complete lattice / 어휘집합 표현

Here the word incomplete means that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings of G.
Definition 6. DG = (V∗,!) is an ordering between vocabulary
strings of G, where the order is defined as follows: for u, v ∈ V∗,

u⇒∗ v iff v ! u.

You can see that the language of an element of DG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not finitely accessible from the
minimals if there are cyclic unit productions or ε productions. If G
has no unit productions and ε productions, DG is a well-founded
poset. However, for an arbitrary CFG G, we cannot say much about
DG .
Lemma 7. For any G, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.
Fortunately, if we apply Theorem 4 toDG , we obtain a complete

lattice
DG ↑= (UDG

,%).
In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation
We relate the concrete domain (2T

∗

,⊆) with the proposed abstract
domain DG ↑= (UDG

,%) via Galois connection. We define the
abstraction function α : 2T

∗

→ UDG
as follows:

α(S) = {u ∈ V∗ | ∀w ∈ S. u⇒∗ w}.

Note the function α maps an arbitrary set of strings S into an ele-
ment of UDG

. Thus, it is well-defined. The concretization function
γ : UDG

→ 2T
∗

is defined as follows:

γ(U) = {w ∈ T ∗ | ∀u ∈ U. u⇒∗ w}.

Theorem 8. The Galois connection, (2T
∗

,⊆) −−→←−−α
γ

(UDG
,%)

holds.

Definition 9. For U1, U2 ∈ UDG
, the abstract concatenation

operation ‘◦’ is defined as follows :

U1 ◦ U2 = (U1 · U2) ↑,

where · is pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure (UDG
, ◦) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator ↑ after pairwise string con-
catenation. It’s easy to check {ε} ↑ is the identity. For associativ-
ity, it suffices to show that the inner upperset closure operator in
(((U1 · U2) ↑) · U3) ↑ and (U1 · ((U2 · U3) ↑)) ↑ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, for U1, U2 ∈ UDG

,

γ(U1) · γ(U2) ⊆ γ(U1 ◦ U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1, x2 ∈ T ∗,

α({x1}) ◦ α({x2}) = α({x1x2}).

When we want to verify an abstract value’s conformance ac-
cording to L(G), you can use the following:

Theorem 13. If U ∈ UDG
contains S,

γ(U) ⊆ L(G).

Proof. We can rewrite γ(U) as
⋂

u∈U{w ∈ T ∗ | u⇒∗ w}, which
is
⋂

u∈U LG(u). Therefore, γ(U) ⊆ LG(S) = L(G) if S ∈ U .

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG ↑.

4.1 Requirements
Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x ∈ T ∗, α({x}) = {x} ↑. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u ∈ V∗, {u} ↑ is infinite iff G has ε productions.

Therefore, we need to invent a reasonable representation that
can finitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

• Join and concatenation should be computable and again result
in a finite representation.

• The order decision should be decidable using the finite repre-
sentation.

When these requirements are satisfied, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of Infinite Upperset
We investigate the problem of Lemma 14 through an example and
find out what makes an upperset of a singleton string set infinite.
Let’s consider the following grammar :

S → [S]

S → A

A → ε

The upperset of singleton {[]} is,

{S,AS, SA, SS}

∪ AAS,ASA,ASS, SAA, SAS, SSA, SSS, . . .}

∪ {[], A[], [A], []A,S[], [S], []S, . . .}

If you look into the upperset, you will find out that the set becomes
infinite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

Here the wordincompletemeans that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings ofG.

DeÞnition 6. DG = (V! , !) is an ordering between vocabulary
strings ofG, where the order is deÞned as follows: foru, v " V! ,

u # ! v iff v ! u.

You can see that the language of an element ofDG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not Þnitely accessible from the
minimals if there are cyclic unit productions or! productions. IfG
has no unit productions and! productions,DG is a well-founded
poset. However, for an arbitrary CFGG, we cannot say much about
DG.

Lemma 7. For anyG, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.

Fortunately, if we apply Theorem 4 toDG, we obtain a complete
lattice

DG $= (UD G , %).
In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation

We relate the concrete domain(2T !
, &) with the proposed abstract

domainDG $= (UD G , %) via Galois connection. We deÞne the
abstraction function" : 2T !

' UD G as follows:

" (S) = { u " V! | (w " S. u # ! w} .

Note the function" maps an arbitrary set of stringsS into an ele-
ment ofUD G . Thus, it is well-deÞned. The concretization function
: UD G ' 2T !

is deÞned as follows:

#(U) = { w " T ! | (u " U. u # ! w} .

Theorem 8. The Galois connection,(2T !
, &)))'*)) α

γ
(UD G , %)

holds.

DeÞnition 9. For U1, U2 " UD G , the abstract concatenation
operation Ô+Õ is deÞned as follows :

U1 + U2 = (U1 áU2) $,

whereáis pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure(UD G , +) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator$ after pairwise string con-
catenation. ItÕs easy to check{ ! } $ is the identity. For associativ-
ity, it sufÞces to show that the inner upperset closure operator in
(((U1 áU2) $) áU3) $ and(U1 á((U2 áU3) $)) $ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, forU1, U2 " UD G ,

#(U1) á#(U2) & #(U1 + U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1, x2 " T ! ,

" ({ x1}) + " ({ x2}) = " ({ x1x2}).

When we want to verify an abstract valueÕs conformance ac-
cording toL (G), you can use the following:

Theorem 13. If U " UD G containsS,

#(U) & L (G).

Proof. We can rewrite#(U) as
⋂

u" U { w " T ! | u # ! w} , which
is
⋂

u" U L G(u). Therefore,#(U) & L G(S) = L (G) if S " U.

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG $.

4.1 Requirements

Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x " T ! , " ({ x}) = { x} $. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u " V! , { u} $ is inÞnite iffG has! productions.

Therefore, we need to invent areasonable representationthat
can Þnitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

• Join and concatenation should be computable and again result
in a Þnite representation.

• The order decision should be decidable using the Þnite repre-
sentation.

When these requirements are satisÞed, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of InÞnite Upperset

We investigate the problem of Lemma 14 through an example and
Þnd out what makes an upperset of a singleton string set inÞnite.
LetÕs consider the following grammar :

S ' [S]
S ' A

A ' !

The upperset of singleton{ []} is,

{ S, AS, SA, SS}
, AAS, ASA, ASS, SAA, SAS, SSA, SSS, . . . }
, { [], A[], [A], []A, S [], [S], []S, . . .}

If you look into the upperset, you will Þnd out that the set becomes
inÞnite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

Here the wordincompletemeans that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings ofG.

DeÞnition 6. DG = (V! , !) is an ordering between vocabulary
strings ofG, where the order is deÞned as follows: foru, v " V! ,

u # ! v iff v ! u.

You can see that the language of an element ofDG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not Þnitely accessible from the
minimals if there are cyclic unit productions or! productions. IfG
has no unit productions and! productions,DG is a well-founded
poset. However, for an arbitrary CFGG, we cannot say much about
DG.

Lemma 7. For anyG, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.

Fortunately, if we apply Theorem 4 toDG, we obtain a complete
lattice

DG $= (UD G , %).
In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation

We relate the concrete domain(2T !
, &) with the proposed abstract

domainDG $= (UD G , %) via Galois connection. We deÞne the
abstraction function" : 2T !

' UD G as follows:

" (S) = { u " V! | (w " S. u # ! w} .

Note the function" maps an arbitrary set of stringsS into an ele-
ment ofUD G . Thus, it is well-deÞned. The concretization function
: UD G ' 2T !

is deÞned as follows:

#(U) = { w " T ! | (u " U. u # ! w} .

Theorem 8. The Galois connection,(2T !
, &)))'*)) !

"
(UD G , %)

holds.

DeÞnition 9. For U1, U2 " UD G , the abstract concatenation
operation Ô+Õ is deÞned as follows :

U1 + U2 = (U1 áU2) $,

whereáis pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure(UD G , +) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator$ after pairwise string con-
catenation. ItÕs easy to check{ ! } $ is the identity. For associativ-
ity, it sufÞces to show that the inner upperset closure operator in
(((U1 áU2) $) áU3) $ and(U1 á((U2 áU3) $)) $ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, forU1, U2 " UD G ,

#(U1) á#(U2) & #(U1 + U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1, x2 " T ! ,

" ({ x1}) + " ({ x2}) = " ({ x1x2}).

When we want to verify an abstract valueÕs conformance ac-
cording toL (G), you can use the following:

Theorem 13. If U " UD G containsS,

#(U) & L (G).

Proof. We can rewrite#(U) as
!

u " U { w " T ! | u # ! w} , which
is

!
u " U L G(u). Therefore,#(U) & L G(S) = L (G) if S " U.

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG $.

4.1 Requirements

Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x " T ! , " ({ x}) = { x} $. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u " V! , { u} $ is inÞnite iffG has! productions.

Therefore, we need to invent areasonable representationthat
can Þnitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

¥ Join and concatenation should be computable and again result
in a Þnite representation.

¥ The order decision should be decidable using the Þnite repre-
sentation.

When these requirements are satisÞed, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of InÞnite Upperset

We investigate the problem of Lemma 14 through an example and
Þnd out what makes an upperset of a singleton string set inÞnite.
LetÕs consider the following grammar :

S ' [S]
S ' A

A ' !

The upperset of singleton{ []} is,

{ S, AS, SA, SS}
, AAS, ASA, ASS, SAA, SAS, SSA, SSS, . . . }
, { [], A[], [A], []A, S [], [S], []S, . . .}

If you look into the upperset, you will Þnd out that the set becomes
inÞnite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

structs that are not directly related to intra-procedural ßow of string
values. When a client analysis highly depends on the lost precision,
it can be difÞcult to recover the precision. Even worse, it can be im-
possible to reßect the lost precision in a context-free grammar be-
cause of the limited expressive power of context-free grammar. As
an example, let us consider the impact analysis in [15]. For this im-
pact analysis, procedural context-sensitivity is crucial to obtain use-
ful analysis result. They needed to approximate the program output
to a context-free grammar while retaining necessaryk-depth pro-
cedural context-sensitivity. This approach was not viable for them
and they resorted to use abstract domain for strings in [2]. [2] basi-
cally provides abstract domain for strings, and allows us to choose
appropriate techniques for other program constructs - for example,
introducing Þeld-sensitivity for objects and context-sensitivity for
procedural parameters and so on. However, this work approximates
the string values to arbitrary regular expression and does not exam-
ine the string values according to the reference grammar.

This also makes regaining lost precision from ignored branch
condition inherently difÞcult. Assume a variable can have two dif-
ferent values according to a branch condition. They usually rep-
resent those two values through alternatives of production rules
like A ! u1, A ! u2. However, note that there is no room for
the condition that governs the choice. Because of this, for various
string analysis, false alarms originated from ignored branch con-
dition were typical give-ups. As far as we know, only [need ref,
ext. AP] can specify the condition as guards on the alternatives like
A ! c(u1), A ! Âc(u2). However, the kinds of conditions are
restricted to predicates on strings. We believe that we should pro-
vide orthogonal string abstraction and let other program constructs
and expressions be dealt with their own abstractions suitable for the
client analysis.

There is one work that derives an abstract string domain from
any reference context-free language[13]. However, this one accepts
! -bounded pushdown automaton for the reference, and this makes it
unattractive. In theory, we can transform any given reference gram-
mar into an! -bounded pushdown transducer that outputs the parse
actions, and there is also a technique for constructing shared parse
forests from the output of pushdown transducers[1]. However, it
can be a long detour, where other problems might lurk in.

1.2 Our Approach

We seek to use the reference grammar directly for abstraction of
string values Our approach results in simpler solution than passing
through pushdown transducers and the abstraction using pushdown
automaton[13].

In this paper, we present an abstract string domain derived from
a reference context-free grammar. We do not put any restrictions on
reference grammar. Using abstract domain[6Ð8] for strings keeps
the string abstraction orthogonal with abstractions of other values
and program constructs. We can use the reference grammar as it is
and the abstract value has implication on its possible shape of parse
trees. This domain can be a starting point for obtaining static parse
trees from a string expression.

1.3 Outline

Here is the outline of the rest of the paper. We Þrst Þx some no-
tations in this paper, and show we can derive a domain from a
context-free grammar. Next, we show how the required computa-
tion can be done by several algorithms. We also tries to give intu-
itions behind our veriÞcation via simpler case of verifying context-
free grammar Ð i.e., checking language inclusion. Finally, we talk
about related work and conclude.

2. Preliminary
2.1 Context-free Grammar

A context free grammar(henceforth, CFG) is given as a quadruple
G = (N , T , P , S). N for the set of non-terminals,T for the set
of terminals,P for set of production rules, andS is for the starting
non-terminal. Here are the notational conventions:

¥ V = N " T

¥ a, b, c# T

¥ A, B, C # N

¥ x, y, z # T !

¥ X, Y, Z # V

¥ u, v, w # V!

For uAv # V! , if A ! w # P, we write

uAv $ G uwv,

The reßexive and transitive closure of$ G is denoted by$!
G,

which we call thederivation relation. If u $!
G v, we sayv is

derived fromu. If G is obvious from the context, we omit the
subscriptG.

Given a CFGG = (N , T , P , S), the language of the grammar
L (G) is deÞned by

L (G) = { w # T ! | S $! w}

We generalize the deÞnition for a vocabulary stringu # V! ,

L G(u) = { w # T ! | u $! w} .

2.2 Preorder and its Upperset Domain

A relation is a preorder if the relation is reßexive and transitive. We
assume a preorderD = (D, %).

DeÞnition 1(upperset). U & D is an upperset ofD if

d1 # U ' d1 % d2 impliesd2 # U.

DeÞnition 2 (upperset closure). The upperset closure of a set
S & D in D is deÞned as

S (= { d # D |) d0 # S. d0 % d} .

DeÞnition 3 (upperset domain). D (= (UD , *) is the upperset
domain ofD where

¥ UD is the collection of uppersets ofD.
¥ For U1, U2 # UD ,

U1 + U2 iff U1 * U2.

Theorem 4. The upperset domainD (is a complete lattice.

The top and bottom element ofD (are the empty set and the set
D , respectively. The least upper bound of subset ofUD is obtained
by the set intersection. You can Þnd much about uppersets and its
properties in [9].

3. Deriving an Abstract Domain from a
Context-free Grammar

3.1 Upperset Domain from the Derivation Relation

Assume we have a CFGG = (N , T , P , S). The derivation relation
of G leads to anincompletelanguage inclusion relation between its
vocabulary strings.

Lemma 5. For u, v # V ! , if u $! v,

L G(u) + L G(v).

2 2012/1/6

structs that are not directly related to intra-procedural flow of string
values. When a client analysis highly depends on the lost precision,
it can be difficult to recover the precision. Even worse, it can be im-
possible to reflect the lost precision in a context-free grammar be-
cause of the limited expressive power of context-free grammar. As
an example, let us consider the impact analysis in [15]. For this im-
pact analysis, procedural context-sensitivity is crucial to obtain use-
ful analysis result. They needed to approximate the program output
to a context-free grammar while retaining necessary k-depth pro-
cedural context-sensitivity. This approach was not viable for them
and they resorted to use abstract domain for strings in [2]. [2] basi-
cally provides abstract domain for strings, and allows us to choose
appropriate techniques for other program constructs - for example,
introducing field-sensitivity for objects and context-sensitivity for
procedural parameters and so on. However, this work approximates
the string values to arbitrary regular expression and does not exam-
ine the string values according to the reference grammar.
This also makes regaining lost precision from ignored branch

condition inherently difficult. Assume a variable can have two dif-
ferent values according to a branch condition. They usually rep-
resent those two values through alternatives of production rules
like A → u1, A → u2. However, note that there is no room for
the condition that governs the choice. Because of this, for various
string analysis, false alarms originated from ignored branch con-
dition were typical give-ups. As far as we know, only [need ref,
ext. AP] can specify the condition as guards on the alternatives like
A → c(u1), A → ¬c(u2). However, the kinds of conditions are
restricted to predicates on strings. We believe that we should pro-
vide orthogonal string abstraction and let other program constructs
and expressions be dealt with their own abstractions suitable for the
client analysis.
There is one work that derives an abstract string domain from

any reference context-free language[13]. However, this one accepts
ε-bounded pushdown automaton for the reference, and this makes it
unattractive. In theory, we can transform any given reference gram-
mar into an ε-bounded pushdown transducer that outputs the parse
actions, and there is also a technique for constructing shared parse
forests from the output of pushdown transducers[1]. However, it
can be a long detour, where other problems might lurk in.

1.2 Our Approach
We seek to use the reference grammar directly for abstraction of
string values Our approach results in simpler solution than passing
through pushdown transducers and the abstraction using pushdown
automaton[13].
In this paper, we present an abstract string domain derived from

a reference context-free grammar. We do not put any restrictions on
reference grammar. Using abstract domain[6–8] for strings keeps
the string abstraction orthogonal with abstractions of other values
and program constructs. We can use the reference grammar as it is
and the abstract value has implication on its possible shape of parse
trees. This domain can be a starting point for obtaining static parse
trees from a string expression.

1.3 Outline
Here is the outline of the rest of the paper. We first fix some no-
tations in this paper, and show we can derive a domain from a
context-free grammar. Next, we show how the required computa-
tion can be done by several algorithms. We also tries to give intu-
itions behind our verification via simpler case of verifying context-
free grammar – i.e., checking language inclusion. Finally, we talk
about related work and conclude.

2. Preliminary
2.1 Context-free Grammar
A context free grammar(henceforth, CFG) is given as a quadruple
G = (N , T ,P,S). N for the set of non-terminals, T for the set
of terminals, P for set of production rules, and S is for the starting
non-terminal. Here are the notational conventions:
• V = N ∪ T

• a, b, c ∈ T

• A,B,C ∈ N

• x, y, z ∈ T ∗

• X,Y, Z ∈ V

• u, v, w ∈ V∗

For uAv ∈ V∗, if A→ w ∈ P , we write

uAv ⇒G uwv,

The reflexive and transitive closure of ⇒G is denoted by ⇒∗
G ,

which we call the derivation relation. If u ⇒∗
G v, we say v is

derived from u. If G is obvious from the context, we omit the
subscript G.
Given a CFG G = (N , T ,P,S), the language of the grammar

L(G) is defined by

L(G) = {w ∈ T ∗ | S ⇒∗ w}

We generalize the definition for a vocabulary string u ∈ V∗,

LG(u) = {w ∈ T ∗ | u⇒∗ w}.

2.2 Preorder and its Upperset Domain
A relation is a preorder if the relation is reflexive and transitive. We
assume a preorder D = (D,%).

Definition 1 (upperset). U ⊆ D is an upperset of D if

d1 ∈ U ∧ d1 % d2 implies d2 ∈ U.

Definition 2 (upperset closure). The upperset closure of a set
S ⊆ D in D is defined as

S ↑= {d ∈ D | ∃d0 ∈ S. d0 % d}.

Definition 3 (upperset domain). D ↑= (UD,*) is the upperset
domain of D where
• UD is the collection of uppersets of D.
• For U1, U2 ∈ UD ,

U1 ⊇ U2 iff U1 * U2.

Theorem 4. The upperset domain D ↑ is a complete lattice.
The top and bottom element ofD ↑ are the empty set and the set

D, respectively. The least upper bound of subset of UD is obtained
by the set intersection. You can find much about uppersets and its
properties in [9].

3. Deriving an Abstract Domain from a
Context-free Grammar

3.1 Upperset Domain from the Derivation Relation
Assume we have a CFG G = (N , T ,P,S). The derivation relation
of G leads to an incomplete language inclusion relation between its
vocabulary strings.

Lemma 5. For u, v ∈ V ∗, if u⇒∗ v,

LG(u) ⊇ LG(v).

2 2012/1/6

Here the word incomplete means that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings of G.
Definition 6. DG = (V∗,!) is an ordering between vocabulary
strings of G, where the order is defined as follows: for u, v ∈ V∗,

u⇒∗ v iff v ! u.

You can see that the language of an element of DG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not finitely accessible from the
minimals if there are cyclic unit productions or ε productions. If G
has no unit productions and ε productions, DG is a well-founded
poset. However, for an arbitrary CFG G, we cannot say much about
DG .
Lemma 7. For any G, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.
Fortunately, if we apply Theorem 4 toDG , we obtain a complete

lattice
DG ↑= (UDG

,%).
In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation
We relate the concrete domain (2T

∗

,⊆) with the proposed abstract
domain DG ↑= (UDG

,%) via Galois connection. We define the
abstraction function α : 2T

∗

→ UDG
as follows:

α(S) = {u ∈ V∗ | ∀w ∈ S. u⇒∗ w}.

Note the function α maps an arbitrary set of strings S into an ele-
ment of UDG

. Thus, it is well-defined. The concretization function
γ : UDG

→ 2T
∗

is defined as follows:

γ(U) = {w ∈ T ∗ | ∀u ∈ U. u⇒∗ w}.

Theorem 8. The Galois connection, (2T
∗

,⊆) −−→←−−α
γ

(UDG
,%)

holds.

Definition 9. For U1, U2 ∈ UDG
, the abstract concatenation

operation ‘◦’ is defined as follows :

U1 ◦ U2 = (U1 · U2) ↑,

where · is pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure (UDG
, ◦) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator ↑ after pairwise string con-
catenation. It’s easy to check {ε} ↑ is the identity. For associativ-
ity, it suffices to show that the inner upperset closure operator in
(((U1 · U2) ↑) · U3) ↑ and (U1 · ((U2 · U3) ↑)) ↑ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, for U1, U2 ∈ UDG

,

γ(U1) · γ(U2) ⊆ γ(U1 ◦ U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1, x2 ∈ T ∗,

α({x1}) ◦ α({x2}) = α({x1x2}).

When we want to verify an abstract value’s conformance ac-
cording to L(G), you can use the following:

Theorem 13. If U ∈ UDG
contains S,

γ(U) ⊆ L(G).

Proof. We can rewrite γ(U) as
⋂

u∈U{w ∈ T ∗ | u⇒∗ w}, which
is
⋂

u∈U LG(u). Therefore, γ(U) ⊆ LG(S) = L(G) if S ∈ U .

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG ↑.

4.1 Requirements
Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x ∈ T ∗, α({x}) = {x} ↑. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u ∈ V∗, {u} ↑ is infinite iff G has ε productions.

Therefore, we need to invent a reasonable representation that
can finitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

• Join and concatenation should be computable and again result
in a finite representation.

• The order decision should be decidable using the finite repre-
sentation.

When these requirements are satisfied, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of Infinite Upperset
We investigate the problem of Lemma 14 through an example and
find out what makes an upperset of a singleton string set infinite.
Let’s consider the following grammar :

S → [S]

S → A

A → ε

The upperset of singleton {[]} is,

{S,AS, SA, SS}

∪ AAS,ASA,ASS, SAA, SAS, SSA, SSS, . . .}

∪ {[], A[], [A], []A,S[], [S], []S, . . .}

If you look into the upperset, you will find out that the set becomes
infinite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

Here the word incomplete means that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings of G.
Definition 6. DG = (V∗,!) is an ordering between vocabulary
strings of G, where the order is defined as follows: for u, v ∈ V∗,

u⇒∗ v iff v ! u.

You can see that the language of an element of DG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not finitely accessible from the
minimals if there are cyclic unit productions or ε productions. If G
has no unit productions and ε productions, DG is a well-founded
poset. However, for an arbitrary CFG G, we cannot say much about
DG .
Lemma 7. For any G, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.
Fortunately, if we apply Theorem 4 toDG , we obtain a complete

lattice
DG ↑= (UDG

,%).
In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation
We relate the concrete domain (2T

∗

,⊆) with the proposed abstract
domain DG ↑= (UDG

,%) via Galois connection. We define the
abstraction function α : 2T

∗

→ UDG
as follows:

α(S) = {u ∈ V∗ | ∀w ∈ S. u⇒∗ w}.

Note the function α maps an arbitrary set of strings S into an ele-
ment of UDG

. Thus, it is well-defined. The concretization function
γ : UDG

→ 2T
∗

is defined as follows:

γ(U) = {w ∈ T ∗ | ∀u ∈ U. u⇒∗ w}.

Theorem 8. The Galois connection, (2T
∗

,⊆) −−→←−−α
γ

(UDG
,%)

holds.

Definition 9. For U1, U2 ∈ UDG
, the abstract concatenation

operation ‘◦’ is defined as follows :

U1 ◦ U2 = (U1 · U2) ↑,

where · is pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure (UDG
, ◦) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator ↑ after pairwise string con-
catenation. It’s easy to check {ε} ↑ is the identity. For associativ-
ity, it suffices to show that the inner upperset closure operator in
(((U1 · U2) ↑) · U3) ↑ and (U1 · ((U2 · U3) ↑)) ↑ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, for U1, U2 ∈ UDG

,

γ(U1) · γ(U2) ⊆ γ(U1 ◦ U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1, x2 ∈ T ∗,

α({x1}) ◦ α({x2}) = α({x1x2}).

When we want to verify an abstract value’s conformance ac-
cording to L(G), you can use the following:

Theorem 13. If U ∈ UDG
contains S,

γ(U) ⊆ L(G).

Proof. We can rewrite γ(U) as
⋂

u∈U{w ∈ T ∗ | u⇒∗ w}, which
is
⋂

u∈U LG(u). Therefore, γ(U) ⊆ LG(S) = L(G) if S ∈ U .

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG ↑.

4.1 Requirements
Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x ∈ T ∗, α({x}) = {x} ↑. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u ∈ V∗, {u} ↑ is infinite iff G has ε productions.

Therefore, we need to invent a reasonable representation that
can finitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

• Join and concatenation should be computable and again result
in a finite representation.

• The order decision should be decidable using the finite repre-
sentation.

When these requirements are satisfied, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of Infinite Upperset
We investigate the problem of Lemma 14 through an example and
find out what makes an upperset of a singleton string set infinite.
Let’s consider the following grammar :

S → [S]

S → A

A → ε

The upperset of singleton {[]} is,

{S,AS, SA, SS}

∪ AAS,ASA,ASS, SAA, SAS, SSA, SSS, . . .}

∪ {[], A[], [A], []A,S[], [S], []S, . . .}

If you look into the upperset, you will find out that the set becomes
infinite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

16

Galois 연결

Here the word incomplete means that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings of G.
Definition 6. DG = (V∗,!) is an ordering between vocabulary
strings of G, where the order is defined as follows: for u, v ∈ V∗,

u⇒∗ v iff v ! u.

You can see that the language of an element of DG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not finitely accessible from the
minimals if there are cyclic unit productions or ε productions. If G
has no unit productions and ε productions, DG is a well-founded
poset. However, for an arbitrary CFG G, we cannot say much about
DG .
Lemma 7. For any G, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.
Fortunately, if we apply Theorem 4 toDG , we obtain a complete

lattice
DG ↑= (UDG

,%).
In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation
We relate the concrete domain (2T

∗

,⊆) with the proposed abstract
domain DG ↑= (UDG

,%) via Galois connection. We define the
abstraction function α : 2T

∗

→ UDG
as follows:

α(S) = {u ∈ V∗ | ∀w ∈ S. u⇒∗ w}.

Note the function α maps an arbitrary set of strings S into an ele-
ment of UDG

. Thus, it is well-defined. The concretization function
γ : UDG

→ 2T
∗

is defined as follows:

γ(U) = {w ∈ T ∗ | ∀u ∈ U. u⇒∗ w}.

Theorem 8. The Galois connection, (2T
∗

,⊆) −−→←−−α
γ

(UDG
,%)

holds.

Definition 9. For U1, U2 ∈ UDG
, the abstract concatenation

operation ‘◦’ is defined as follows :

U1 ◦ U2 = (U1 · U2) ↑,

where · is pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure (UDG
, ◦) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator ↑ after pairwise string con-
catenation. It’s easy to check {ε} ↑ is the identity. For associativ-
ity, it suffices to show that the inner upperset closure operator in
(((U1 · U2) ↑) · U3) ↑ and (U1 · ((U2 · U3) ↑)) ↑ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, for U1, U2 ∈ UDG

,

γ(U1) · γ(U2) ⊆ γ(U1 ◦ U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1, x2 ∈ T ∗,

α({x1}) ◦ α({x2}) = α({x1x2}).

When we want to verify an abstract value’s conformance ac-
cording to L(G), you can use the following:

Theorem 13. If U ∈ UDG
contains S,

γ(U) ⊆ L(G).

Proof. We can rewrite γ(U) as
⋂

u∈U{w ∈ T ∗ | u⇒∗ w}, which
is
⋂

u∈U LG(u). Therefore, γ(U) ⊆ LG(S) = L(G) if S ∈ U .

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG ↑.

4.1 Requirements
Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x ∈ T ∗, α({x}) = {x} ↑. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u ∈ V∗, {u} ↑ is infinite iff G has ε productions.

Therefore, we need to invent a reasonable representation that
can finitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

• Join and concatenation should be computable and again result
in a finite representation.

• The order decision should be decidable using the finite repre-
sentation.

When these requirements are satisfied, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of Infinite Upperset
We investigate the problem of Lemma 14 through an example and
find out what makes an upperset of a singleton string set infinite.
Let’s consider the following grammar :

S → [S]

S → A

A → ε

The upperset of singleton {[]} is,

{S,AS, SA, SS}

∪ AAS,ASA,ASS, SAA, SAS, SSA, SSS, . . .}

∪ {[], A[], [A], []A,S[], [S], []S, . . .}

If you look into the upperset, you will find out that the set becomes
infinite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

Here the word incomplete means that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings of G.
Definition 6. DG = (V∗,!) is an ordering between vocabulary
strings of G, where the order is defined as follows: for u, v ∈ V∗,

u⇒∗ v iff v ! u.

You can see that the language of an element of DG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not finitely accessible from the
minimals if there are cyclic unit productions or ε productions. If G
has no unit productions and ε productions, DG is a well-founded
poset. However, for an arbitrary CFG G, we cannot say much about
DG .
Lemma 7. For any G, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.

Fortunately, if we apply Theorem 4 to DG , we obtain a complete
lattice

DG ↑= (UDG
,%).

In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation
We relate the concrete domain (2T

∗

,⊆) with the proposed abstract
domain DG ↑= (UDG

,%) via Galois connection. We define the
abstraction function α : 2T

∗

→ UDG
as follows:

α(S) = {u ∈ V∗ | ∀w ∈ S. u⇒∗ w}.

Note the function α maps an arbitrary set of strings S into an ele-
ment of UDG

. Thus, it is well-defined. The concretization function
γ : UDG

→ 2T
∗

is defined as follows:

γ(U) = {w ∈ T ∗ | ∀u ∈ U. u⇒∗ w}.

Theorem 8. The Galois connection, (2T
∗

,⊆) −−→←−−α
γ

(UDG
,%)

holds.

Definition 9. For U1, U2 ∈ UDG
, the abstract concatenation

operation ‘◦’ is defined as follows :

U1 ◦ U2 = (U1 · U2) ↑,

where · is pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure (UDG
, ◦) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator ↑ after pairwise string con-
catenation. It’s easy to check {ε} ↑ is the identity. For associativ-
ity, it suffices to show that the inner upperset closure operator in
(((U1 · U2) ↑) · U3) ↑ and (U1 · ((U2 · U3) ↑)) ↑ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, for U1, U2 ∈ UDG

,

γ(U1) · γ(U2) ⊆ γ(U1 ◦ U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1, x2 ∈ T ∗,

α({x1}) ◦ α({x2}) = α({x1x2}).

When we want to verify an abstract value’s conformance ac-
cording to L(G), you can use the following:

Theorem 13. If U ∈ UDG
contains S,

γ(U) ⊆ L(G).

Proof. We can rewrite γ(U) as
⋂

u∈U{w ∈ T ∗ | u⇒∗ w}, which
is
⋂

u∈U LG(u). Therefore, γ(U) ⊆ LG(S) = L(G) if S ∈ U .

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG ↑.

4.1 Requirements
Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x ∈ T ∗, α({x}) = {x} ↑. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u ∈ V∗, {u} ↑ is infinite iff G has ε productions.

Therefore, we need to invent a reasonable representation that
can finitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

• Join and concatenation should be computable and again result
in a finite representation.

• The order decision should be decidable using the finite repre-
sentation.

When these requirements are satisfied, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of Infinite Upperset
We investigate the problem of Lemma 14 through an example and
find out what makes an upperset of a singleton string set infinite.
Let’s consider the following grammar :

S → [S]

S → A

A → ε

The upperset of singleton {[]} is,

{S,AS, SA, SS}

∪ AAS,ASA,ASS, SAA, SAS, SSA, SSS, . . .}

∪ {[], A[], [A], []A,S[], [S], []S, . . .}

If you look into the upperset, you will find out that the set becomes
infinite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

Here the word incomplete means that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings of G.
Definition 6. DG = (V∗,!) is an ordering between vocabulary
strings of G, where the order is defined as follows: for u, v ∈ V∗,

u⇒∗ v iff v ! u.

You can see that the language of an element of DG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not finitely accessible from the
minimals if there are cyclic unit productions or ε productions. If G
has no unit productions and ε productions, DG is a well-founded
poset. However, for an arbitrary CFG G, we cannot say much about
DG .
Lemma 7. For any G, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.
Fortunately, if we apply Theorem 4 toDG , we obtain a complete

lattice
DG ↑= (UDG

,%).
In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation
We relate the concrete domain (2T

∗

,⊆) with the proposed abstract
domain DG ↑= (UDG

,%) via Galois connection. We define the
abstraction function α : 2T

∗

→ UDG
as follows:

α(S) = {u ∈ V∗ | ∀w ∈ S. u⇒∗ w}.

Note the function α maps an arbitrary set of strings S into an ele-
ment of UDG

. Thus, it is well-defined. The concretization function
γ : UDG

→ 2T
∗

is defined as follows:

γ(U) = {w ∈ T ∗ | ∀u ∈ U. u⇒∗ w}.

Theorem 8. The Galois connection, (2T
∗

,⊆) −−→←−−α
γ

(UDG
,%)

holds.

Definition 9. For U1, U2 ∈ UDG
, the abstract concatenation

operation ‘◦’ is defined as follows :

U1 ◦ U2 = (U1 · U2) ↑,

where · is pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure (UDG
, ◦) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator ↑ after pairwise string con-
catenation. It’s easy to check {ε} ↑ is the identity. For associativ-
ity, it suffices to show that the inner upperset closure operator in
(((U1 · U2) ↑) · U3) ↑ and (U1 · ((U2 · U3) ↑)) ↑ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, for U1, U2 ∈ UDG

,

γ(U1) · γ(U2) ⊆ γ(U1 ◦ U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1, x2 ∈ T ∗,

α({x1}) ◦ α({x2}) = α({x1x2}).

When we want to verify an abstract value’s conformance ac-
cording to L(G), you can use the following:

Theorem 13. If U ∈ UDG
contains S,

γ(U) ⊆ L(G).

Proof. We can rewrite γ(U) as
⋂

u∈U{w ∈ T ∗ | u⇒∗ w}, which
is
⋂

u∈U LG(u). Therefore, γ(U) ⊆ LG(S) = L(G) if S ∈ U .

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG ↑.

4.1 Requirements
Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x ∈ T ∗, α({x}) = {x} ↑. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u ∈ V∗, {u} ↑ is infinite iff G has ε productions.

Therefore, we need to invent a reasonable representation that
can finitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

• Join and concatenation should be computable and again result
in a finite representation.

• The order decision should be decidable using the finite repre-
sentation.

When these requirements are satisfied, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of Infinite Upperset
We investigate the problem of Lemma 14 through an example and
find out what makes an upperset of a singleton string set infinite.
Let’s consider the following grammar :

S → [S]

S → A

A → ε

The upperset of singleton {[]} is,

{S,AS, SA, SS}

∪ AAS,ASA,ASS, SAA, SAS, SSA, SSS, . . .}

∪ {[], A[], [A], []A,S[], [S], []S, . . .}

If you look into the upperset, you will find out that the set becomes
infinite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

17

요약 접합
¥ 에 대해

¥ 는 monoid

¥안전

Here the word incomplete means that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings of G.
Definition 6. DG = (V∗,!) is an ordering between vocabulary
strings of G, where the order is defined as follows: for u, v ∈ V∗,

u⇒∗ v iff v ! u.

You can see that the language of an element of DG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not finitely accessible from the
minimals if there are cyclic unit productions or ε productions. If G
has no unit productions and ε productions, DG is a well-founded
poset. However, for an arbitrary CFG G, we cannot say much about
DG .
Lemma 7. For any G, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.
Fortunately, if we apply Theorem 4 toDG , we obtain a complete

lattice
DG ↑= (UDG

,%).
In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation
We relate the concrete domain (2T

∗

,⊆) with the proposed abstract
domain DG ↑= (UDG

,%) via Galois connection. We define the
abstraction function α : 2T

∗

→ UDG
as follows:

α(S) = {u ∈ V∗ | ∀w ∈ S. u⇒∗ w}.

Note the function α maps an arbitrary set of strings S into an ele-
ment of UDG

. Thus, it is well-defined. The concretization function
γ : UDG

→ 2T
∗

is defined as follows:

γ(U) = {w ∈ T ∗ | ∀u ∈ U. u⇒∗ w}.

Theorem 8. The Galois connection, (2T
∗

,⊆) −−→←−−α
γ

(UDG
,%)

holds.

Definition 9. For U1, U2 ∈ UDG
, the abstract concatenation

operation ‘◦’ is defined as follows :

U1 ◦ U2 = (U1 · U2) ↑,

where · is pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure (UDG
, ◦) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator ↑ after pairwise string con-
catenation. It’s easy to check {ε} ↑ is the identity. For associativ-
ity, it suffices to show that the inner upperset closure operator in
(((U1 · U2) ↑) · U3) ↑ and (U1 · ((U2 · U3) ↑)) ↑ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, for U1, U2 ∈ UDG

,

γ(U1) · γ(U2) ⊆ γ(U1 ◦ U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1, x2 ∈ T ∗,

α({x1}) ◦ α({x2}) = α({x1x2}).

When we want to verify an abstract value’s conformance ac-
cording to L(G), you can use the following:

Theorem 13. If U ∈ UDG
contains S,

γ(U) ⊆ L(G).

Proof. We can rewrite γ(U) as
⋂

u∈U{w ∈ T ∗ | u⇒∗ w}, which
is
⋂

u∈U LG(u). Therefore, γ(U) ⊆ LG(S) = L(G) if S ∈ U .

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG ↑.

4.1 Requirements
Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x ∈ T ∗, α({x}) = {x} ↑. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u ∈ V∗, {u} ↑ is infinite iff G has ε productions.

Therefore, we need to invent a reasonable representation that
can finitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

• Join and concatenation should be computable and again result
in a finite representation.

• The order decision should be decidable using the finite repre-
sentation.

When these requirements are satisfied, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of Infinite Upperset
We investigate the problem of Lemma 14 through an example and
find out what makes an upperset of a singleton string set infinite.
Let’s consider the following grammar :

S → [S]

S → A

A → ε

The upperset of singleton {[]} is,

{S,AS, SA, SS}

∪ AAS,ASA,ASS, SAA, SAS, SSA, SSS, . . .}

∪ {[], A[], [A], []A,S[], [S], []S, . . .}

If you look into the upperset, you will find out that the set becomes
infinite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

Here the word incomplete means that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings of G.
Definition 6. DG = (V∗, !) is an ordering between vocabulary
strings of G, where the order is defined as follows: for u, v " V∗,

u # ∗ v iff v ! u.

You can see that the language of an element of DG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not finitely accessible from the
minimals if there are cyclic unit productions or ! productions. If G
has no unit productions and ! productions, DG is a well-founded
poset. However, for an arbitrary CFG G, we cannot say much about
DG .
Lemma 7. For any G, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.
Fortunately, if we apply Theorem 4 toDG , we obtain a complete

lattice
DG $= (UDG ,%).

In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation
We relate the concrete domain (2T

∗

,&) with the proposed abstract
domain DG $= (UDG ,%) via Galois connection. We define the
abstraction function " : 2T

∗

' UDG as follows:

" (S) = {u " V∗ | (w " S. u # ∗ w}.

Note the function " maps an arbitrary set of strings S into an ele-
ment of UDG . Thus, it is well-defined. The concretization function
: UDG ' 2T

∗

is defined as follows:

#(U) = {w " T ∗ | (u " U. u # ∗ w}.

Theorem 8. The Galois connection, (2T
∗

,&)))'*)) !

"
(UDG ,%)

holds.

Definition 9. For U1 , U2 " UDG , the abstract concatenation
operation ‘+’ is defined as follows :

U1 +U2 = (U1 · U2) $,

where · is pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure (UDG ,+) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator $ after pairwise string con-
catenation. It’s easy to check {!} $ is the identity. For associativ-
ity, it suffices to show that the inner upperset closure operator in
(((U1 · U2) $) · U3) $ and (U1 · ((U2 · U3) $)) $ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, for U1 , U2 " UDG ,

#(U1) · #(U2) & #(U1 +U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1 , x2 " T ∗,

" ({x1}) + " ({x2}) = " ({x1x2}).

When we want to verify an abstract value’s conformance ac-
cording to L(G), you can use the following:

Theorem 13. If U " UDG contains S,

#(U) & L(G).

Proof. We can rewrite #(U) as
!

u∈U {w " T ∗ | u # ∗ w}, which
is

!
u∈U LG(u). Therefore, #(U) & LG(S) = L(G) if S " U .

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG $.

4.1 Requirements
Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x " T ∗, " ({x}) = {x} $. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u " V∗, {u} $ is infinite iff G has ! productions.

Therefore, we need to invent a reasonable representation that
can finitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

¥ Join and concatenation should be computable and again result
in a finite representation.

¥ The order decision should be decidable using the finite repre-
sentation.

When these requirements are satisfied, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of Infinite Upperset
We investigate the problem of Lemma 14 through an example and
find out what makes an upperset of a singleton string set infinite.
Let’s consider the following grammar :

S ' [S]

S ' A

A ' !

The upperset of singleton {[]} is,

{S,AS, SA, SS}

, AAS,ASA,ASS, SAA, SAS, SSA, SSS, . . .}

, {[], A[], [A], []A,S[], [S], []S, . . .}

If you look into the upperset, you will find out that the set becomes
infinite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

Here the wordincompletemeans that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings ofG.

DeÞnition 6. DG = (V! , !) is an ordering between vocabulary
strings ofG, where the order is deÞned as follows: foru, v " V! ,

u # ! v iff v ! u.

You can see that the language of an element ofDG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not Þnitely accessible from the
minimals if there are cyclic unit productions or! productions. IfG
has no unit productions and! productions,DG is a well-founded
poset. However, for an arbitrary CFGG, we cannot say much about
DG.

Lemma 7. For anyG, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.

Fortunately, if we apply Theorem 4 toDG, we obtain a complete
lattice

DG $= (UD G , %).
In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation

We relate the concrete domain(2T !
, &) with the proposed abstract

domainDG $= (UD G , %) via Galois connection. We deÞne the
abstraction function" : 2T !

' UD G as follows:

" (S) = { u " V! | (w " S. u # ! w} .

Note the function" maps an arbitrary set of stringsS into an ele-
ment ofUD G . Thus, it is well-deÞned. The concretization function
: UD G ' 2T !

is deÞned as follows:

#(U) = { w " T ! | (u " U. u # ! w} .

Theorem 8. The Galois connection,(2T !
, &)))'*)) !

"
(UD G , %)

holds.

DeÞnition 9. For U1, U2 " UD G , the abstract concatenation
operation Ô+Õ is deÞned as follows :

U1 + U2 = (U1 áU2) $,

whereáis pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure(UD G , +) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator$ after pairwise string con-
catenation. ItÕs easy to check{ ! } $ is the identity. For associativ-
ity, it sufÞces to show that the inner upperset closure operator in
(((U1 áU2) $) áU3) $ and(U1 á((U2 áU3) $)) $ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, forU1, U2 " UD G ,

#(U1) á#(U2) & #(U1 + U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1, x2 " T ! ,

" ({ x1}) + " ({ x2}) = " ({ x1x2}).

When we want to verify an abstract valueÕs conformance ac-
cording toL (G), you can use the following:

Theorem 13. If U " UD G containsS,

#(U) & L (G).

Proof. We can rewrite#(U) as
!

u " U { w " T ! | u # ! w} , which
is

!
u " U L G(u). Therefore,#(U) & L G(S) = L (G) if S " U.

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG $.

4.1 Requirements

Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x " T ! , " ({ x}) = { x} $. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u " V! , { u} $ is inÞnite iffG has! productions.

Therefore, we need to invent areasonable representationthat
can Þnitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

¥ Join and concatenation should be computable and again result
in a Þnite representation.

¥ The order decision should be decidable using the Þnite repre-
sentation.

When these requirements are satisÞed, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of InÞnite Upperset

We investigate the problem of Lemma 14 through an example and
Þnd out what makes an upperset of a singleton string set inÞnite.
LetÕs consider the following grammar :

S ' [S]
S ' A

A ' !

The upperset of singleton{ []} is,

{ S, AS, SA, SS}
, AAS, ASA, ASS, SAA, SAS, SSA, SSS, . . . }
, { [], A[], [A], []A, S [], [S], []S, . . .}

If you look into the upperset, you will Þnd out that the set becomes
inÞnite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

Here the wordincompletemeans that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings ofG.

DeÞnition 6. DG = (V! , !) is an ordering between vocabulary
strings ofG, where the order is deÞned as follows: foru, v " V! ,

u # ! v iff v ! u.

You can see that the language of an element ofDG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not Þnitely accessible from the
minimals if there are cyclic unit productions or! productions. IfG
has no unit productions and! productions,DG is a well-founded
poset. However, for an arbitrary CFGG, we cannot say much about
DG.

Lemma 7. For anyG, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.

Fortunately, if we apply Theorem 4 toDG, we obtain a complete
lattice

DG $= (UD G , %).
In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation

We relate the concrete domain(2T !
, &) with the proposed abstract

domainDG $= (UD G , %) via Galois connection. We deÞne the
abstraction function" : 2T !

' UD G as follows:

" (S) = { u " V! | (w " S. u # ! w} .

Note the function" maps an arbitrary set of stringsS into an ele-
ment ofUD G . Thus, it is well-deÞned. The concretization function
: UD G ' 2T !

is deÞned as follows:

#(U) = { w " T ! | (u " U. u # ! w} .

Theorem 8. The Galois connection,(2T !
, &)))'*)) !

"
(UD G , %)

holds.

DeÞnition 9. For U1, U2 " UD G , the abstract concatenation
operation Ô+Õ is deÞned as follows :

U1 + U2 = (U1 áU2) $,

whereáis pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure(UD G , +) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator$ after pairwise string con-
catenation. ItÕs easy to check{ ! } $ is the identity. For associativ-
ity, it sufÞces to show that the inner upperset closure operator in
(((U1 áU2) $) áU3) $ and(U1 á((U2 áU3) $)) $ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, forU1, U2 " UD G ,

#(U1) á#(U2) & #(U1 + U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1, x2 " T ! ,

" ({ x1}) + " ({ x2}) = " ({ x1x2}).

When we want to verify an abstract valueÕs conformance ac-
cording toL (G), you can use the following:

Theorem 13. If U " UD G containsS,

#(U) & L (G).

Proof. We can rewrite#(U) as
!

u " U { w " T ! | u # ! w} , which
is

!
u " U L G(u). Therefore,#(U) & L G(S) = L (G) if S " U.

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG $.

4.1 Requirements

Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x " T ! , " ({ x}) = { x} $. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u " V! , { u} $ is inÞnite iffG has! productions.

Therefore, we need to invent areasonable representationthat
can Þnitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

¥ Join and concatenation should be computable and again result
in a Þnite representation.

¥ The order decision should be decidable using the Þnite repre-
sentation.

When these requirements are satisÞed, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of InÞnite Upperset

We investigate the problem of Lemma 14 through an example and
Þnd out what makes an upperset of a singleton string set inÞnite.
LetÕs consider the following grammar :

S ' [S]
S ' A

A ' !

The upperset of singleton{ []} is,

{ S, AS, SA, SS}
, AAS, ASA, ASS, SAA, SAS, SSA, SSS, . . . }
, { [], A[], [A], []A, S [], [S], []S, . . .}

If you look into the upperset, you will Þnd out that the set becomes
inÞnite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/618

곁다리

¥문자열 상수 분석 포함

¥공통 부분열 남기기 가능

¥안녕하세요, 저는 김세원입니다.

¥반가워요, 저는 홍길동입니다.

¥*요, 저는 *입니다.

19

문제는...

바로 위에 썼는데 안보이시나요?

20

굳이 쓰자면...

ɛ

21

ɛ 생성규칙이 있으면

S → ɛ

α({a}) = {Sa, aS, SSa, SaS, SSa, SSSa, }

22

해결책 1

¥문법을 분석기 안에서 변형

¥ɛ 생성 규칙 제거

¥요약값 읽기 싫어질 듯

23

해결책 2

¥분석값 유한하게 표현

¥아이디어: nullable만 덧붙은 것은 잉여

¥ loop 분석 시 넓히기 필요

24

3줄 요약

¥어휘 문자열 유도 관계 를

¥잘 이용하면

¥안전한 문맥 자유 문법 부합 분석

structs that are not directly related to intra-procedural ßow of string
values. When a client analysis highly depends on the lost precision,
it can be difÞcult to recover the precision. Even worse, it can be im-
possible to reßect the lost precision in a context-free grammar be-
cause of the limited expressive power of context-free grammar. As
an example, let us consider the impact analysis in [15]. For this im-
pact analysis, procedural context-sensitivity is crucial to obtain use-
ful analysis result. They needed to approximate the program output
to a context-free grammar while retaining necessaryk-depth pro-
cedural context-sensitivity. This approach was not viable for them
and they resorted to use abstract domain for strings in [2]. [2] basi-
cally provides abstract domain for strings, and allows us to choose
appropriate techniques for other program constructs - for example,
introducing Þeld-sensitivity for objects and context-sensitivity for
procedural parameters and so on. However, this work approximates
the string values to arbitrary regular expression and does not exam-
ine the string values according to the reference grammar.

This also makes regaining lost precision from ignored branch
condition inherently difÞcult. Assume a variable can have two dif-
ferent values according to a branch condition. They usually rep-
resent those two values through alternatives of production rules
like A → u1, A → u2. However, note that there is no room for
the condition that governs the choice. Because of this, for various
string analysis, false alarms originated from ignored branch con-
dition were typical give-ups. As far as we know, only [need ref,
ext. AP] can specify the condition as guards on the alternatives like
A → c(u1), A → ¬c(u2). However, the kinds of conditions are
restricted to predicates on strings. We believe that we should pro-
vide orthogonal string abstraction and let other program constructs
and expressions be dealt with their own abstractions suitable for the
client analysis.

There is one work that derives an abstract string domain from
any reference context-free language[13]. However, this one accepts
! -bounded pushdown automaton for the reference, and this makes it
unattractive. In theory, we can transform any given reference gram-
mar into an! -bounded pushdown transducer that outputs the parse
actions, and there is also a technique for constructing shared parse
forests from the output of pushdown transducers[1]. However, it
can be a long detour, where other problems might lurk in.

1.2 Our Approach
We seek to use the reference grammar directly for abstraction of
string values Our approach results in simpler solution than passing
through pushdown transducers and the abstraction using pushdown
automaton[13].

In this paper, we present an abstract string domain derived from
a reference context-free grammar. We do not put any restrictions on
reference grammar. Using abstract domain[6Ð8] for strings keeps
the string abstraction orthogonal with abstractions of other values
and program constructs. We can use the reference grammar as it is
and the abstract value has implication on its possible shape of parse
trees. This domain can be a starting point for obtaining static parse
trees from a string expression.

1.3 Outline
Here is the outline of the rest of the paper. We Þrst Þx some no-
tations in this paper, and show we can derive a domain from a
context-free grammar. Next, we show how the required computa-
tion can be done by several algorithms. We also tries to give intu-
itions behind our veriÞcation via simpler case of verifying context-
free grammar Ð i.e., checking language inclusion. Finally, we talk
about related work and conclude.

2. Preliminary
2.1 Context-free Grammar
A context free grammar(henceforth, CFG) is given as a quadruple
G = (N , T ,P,S). N for the set of non-terminals,T for the set
of terminals,P for set of production rules, andS is for the starting
non-terminal. Here are the notational conventions:

¥ V = N ∪ T

¥ a, b, c∈ T

¥ A, B, C ∈ N

¥ x, y, z ∈ T ∗

¥ X, Y, Z ∈ V

¥ u, v, w ∈ V∗

For uAv ∈ V∗, if A → w ∈ P, we write

uAv ⇒G uwv,

The reßexive and transitive closure of⇒G is denoted by⇒∗
G ,

which we call thederivation relation. If u ⇒∗
G v, we sayv is

derived fromu. If G is obvious from the context, we omit the
subscriptG.

Given a CFGG = (N , T ,P,S), the language of the grammar
L(G) is deÞned by

L(G) = {w ∈ T ∗ | S ⇒∗ w}

We generalize the deÞnition for a vocabulary stringu ∈ V∗,

LG(u) = {w ∈ T ∗ | u ⇒∗ w}.

2.2 Preorder and its Upperset Domain
A relation is a preorder if the relation is reßexive and transitive. We
assume a preorderD = (D, %).

Definition 1 (upperset). U ⊆ D is an upperset ofD if

d1 ∈ U ∧ d1 % d2 impliesd2 ∈ U.

Definition 2 (upperset closure). The upperset closure of a set
S ⊆ D in D is deÞned as

S ↑= {d ∈ D | ∃d0 ∈ S. d0 % d}.

Definition 3 (upperset domain). D ↑= (UD,*) is the upperset
domain ofD where

¥ UD is the collection of uppersets ofD.
¥ For U1, U2 ∈ UD,

U1 ⊇ U2 iff U1 * U2.

Theorem 4. The upperset domainD ↑ is a complete lattice.

The top and bottom element ofD ↑ are the empty set and the set
D , respectively. The least upper bound of subset ofUD is obtained
by the set intersection. You can Þnd much about uppersets and its
properties in [9].

3. Deriving an Abstract Domain from a
Context-free Grammar

3.1 Upperset Domain from the Derivation Relation
Assume we have a CFGG = (N , T ,P,S). The derivation relation
of G leads to anincompletelanguage inclusion relation between its
vocabulary strings.

Lemma 5. For u, v ∈ V ∗, if u ⇒∗ v,

LG(u) ⊇ LG(v).

2 2012/1/6

Here the wordincomplete means that the converse of the previ-
ous lemma is not true. Instead, it is always possible to decide the
derivation relation between two vocabulary strings. This property
makes its use for a computable analysis appropriate. By directly
mirroring the derivation relation, we obtain an ordering relation be-
tween vocabulary strings ofG.

DeÞnition 6. DG = (V! , !) is an ordering between vocabulary
strings of G, where the order is defined as follows: for u, v " V! ,

u # ! v iff v ! u.

You can see that the language of an element ofDG gets smaller
when it gets smaller in the domain. The minimal elements are the
terminal strings. Some elements are not Þnitely accessible from the
minimals if there are cyclic unit productions or! productions. IfG
has no unit productions and! productions,DG is a well-founded
poset. However, for an arbitrary CFGG, we cannot say much about
DG.

Lemma 7. For any G, DG is a preorder.

It is possible to transform the grammar to Chomsky-Normal-
Form to get a domain with the nice properties. However, we prefer
to use the grammar as it is. Because (1) We use grammar vocabu-
lary to construct abstract values. Different vocabulary of internally
transformed grammar may be obscure to analysis users. (2) If the
grammar comes with semantic analysis (e.g. attribute grammar),
the transformation also involves semantic analysis rule transforma-
tion. (3) The rigidity of the normal form may lead to more false
alarms of the string analysis.

Fortunately, if we apply Theorem 4 toDG, we obtain a complete
lattice

DG $= (UD G , %).
In the rest of this section, we will examine this domain as an
abstract domain for string values.

3.2 Galois Connection and Abstract Concatenation

We relate the concrete domain(2T !
, &) with the proposed abstract

domainDG $= (UD G , %) via Galois connection. We deÞne the
abstraction function" : 2T !

' UD G as follows:

" (S) = { u " V! | (w " S. u # ! w} .

Note the function" maps an arbitrary set of stringsS into an ele-
ment ofUD G . Thus, it is well-deÞned. The concretization function
: UD G ' 2T !

is deÞned as follows:

#(U) = { w " T ! | (u " U. u # ! w} .

Theorem 8. The Galois connection, (2T !
, &)))'*)) !

"
(UD G , %)

holds.

DeÞnition 9. For U1, U2 " UD G , the abstract concatenation
operation ‘+’ is defined as follows :

U1 + U2 = (U1 áU2) $,

where áis pairwise concatenation of two vocabulary strings.

Theorem 10. The algebraic structure (UD G , +) is a monoid.

Proof. The result of abstract concatenation is also an upperset since
we apply the upperset closure operator$ after pairwise string con-
catenation. ItÕs easy to check{ ! } $ is the identity. For associativ-
ity, it sufÞces to show that the inner upperset closure operator in
(((U1 áU2) $) áU3) $ and(U1 á((U2 áU3) $)) $ is needless.

Theorem 11. The abstract concatenation operation is a correct
upper-approximation. That is, for U1, U2 " UD G ,

#(U1) á#(U2) & #(U1 + U2).

Another interesting property of concatenation and abstraction
function is that they can commute on singletons :

Lemma 12. For x1, x2 " T ! ,

" ({ x1}) + " ({ x2}) = " ({ x1x2}).

When we want to verify an abstract valueÕs conformance ac-
cording toL (G), you can use the following:

Theorem 13. If U " UD G contains S,

#(U) & L (G).

Proof. We can rewrite#(U) as
!

u " U { w " T ! | u # ! w} , which
is

!
u " U L G(u). Therefore,#(U) & L G(S) = L (G) if S " U.

4. A Machine Representation and its
Computation

In this section, the mathematical design of the previous section is
rendered as a computable analysis. For this purpose, we devise a
machine representation and its computation to handle elements of
DG $.

4.1 Requirements

Among the uppersets, uppersets from a singleton string and com-
putations using them are crucial for our analysis. You can see that
for x " T ! , " ({ x}) = { x} $. Therefore, to abstract string literals
in programs, we at least need to handle uppersets from singleton
string sets. Also we should be able to compute the basic operations
like join, concatenation and order decision. The immediate prob-
lem that we face is :

Lemma 14. For u " V! , { u} $ is infinite iff Ghas ! productions.

Therefore, we need to invent areasonable representation that
can Þnitely represent any upperset from a singleton string set. There
are two more requirements for the representation :

¥ Join and concatenation should be computable and again result
in a Þnite representation.

¥ The order decision should be decidable using the Þnite repre-
sentation.

When these requirements are satisÞed, we can handle at least string
literals, concatenation operations, branch joins in programs, and
checking whether the loop invariant is found for some string values.

4.2 Cause of InÞnite Upperset

We investigate the problem of Lemma 14 through an example and
Þnd out what makes an upperset of a singleton string set inÞnite.
LetÕs consider the following grammar :

S ' [S]
S ' A

A ' !

The upperset of singleton{ []} is,

{ S, AS, SA, SS}
, AAS, ASA, ASS, SAA, SAS, SSA, SSS, . . . }
, { [], A[], [A], []A, S [], [S], []S, . . .}

If you look into the upperset, you will Þnd out that the set becomes
inÞnite because of the nullable non-terminals. The nullable non-
terminals can be repeatedly interspersed between any vocabulary

3 2012/1/6

25

 할 것

¥요약값 크기 줄이기

¥문자열 조작 함수 / 정규식 조건 분석

¥가능한 문자열 값의 문법적인 모양 분석

26

감사합니다

QnA

