
Experiments with JavaScript
Clone Detection

Wai Ting Cheung

Visiting Student, HKUST
@ PLRG, KAIST

Jan 30, 2013

Table of Contents

• Introduction of Code Clones
• Experiment Overview
• Results
• Conclusion

2

Introduction of Code Clones

3

Code Cloning

• Copying code fragments and reusing them
with or without modification

• 7% to 23% of the code in a typical software
system has been cloned. (Baker, WCRE 1995;
Roy, WCRE 2008)

4

Previous Works
• Empirical Study of Code Clones

• Cai, FASE 2011; Roy, WCRE 2008, Kim, FSE 2005

• Survey of Clone Detection Research

• Pate, JSEP 2011; Roy, Technical Report 2007

• Evaluation of Clone Detection Tools

• Roy, SCP 2009; Bellon, TSE 2007

• Study of Clones in Script Languages / Web Applications

• Roy, IWSC 2010; Basit, ICWE 2005; Calefato, JWE 2004

5

Use of JavaScript

• 98 out of 100 most popular websites use
JavaScript (Guarnieri, ISSTA11)

• Use of dynamic features is evident in
websites (Richards, ECOOP11, PLDI10;
Zorn, WebApps10)

6

Experiment Overview

7

Research Questions
• What are the main differences in code

clone properties in Javascript web,
Javascript standalone, and Java
projects?

• How many consistent and inconsistent
code clones are in Javascript web,
Javascript standalone, and Java
projects?

8

Experiment Subjects
• 18 subjects in total, 6 each in

• JavaScript in web pages
• JavaScript standalones
• Java projects

• web development framework, GUI
framework, build tool, etc.

9

Tools for Clone Detection

• Tree-based clone detection
• SAFE (for JavaScript)

• Formal Specification and Implementation of a
Scalable Analysis Framework for ECMAScript,
FOOL 2012

• Deckard (for Java)
• Scalable and Accurate Tree-based Detection

of Code Clones, ICSE 2007

10

Metrics

• Clone localization

• Size of cloned code

• Clone coverage

• Files associated with clones

• Consistent / inconsistent function clones /
cloned fragments

11

Clone Localization
• Same file and same directory
• Same directory but different files
• Different directories
• The location of a clone pair is a factor

in software maintenance (Kapser,
ELISA 2003)

12

Size of Cloned Code

• Average lines of cloned code
• Maximum lines of cloned code
• Give information about the scale of the

cloned code in a system

13

Clone Coverage

• The ratio of cloned code to the total lines of
code

• An increase in the number of clones over time
can indicate a decline in the structure and
maintainability of a software system (Barbour
et al, 2012)

14

Files Associated with Clones

• A file is associated with clones if it has at least one
method that forms a clone pair with another method
in the same file or a different file

• It tells us that whether the clones are from some
specific files, or scattered among many files all over
the system

• From a maintenance point of view, a lower value is
better, since clones localized to certain specific files
may be easier to maintain (Roy, IWSC 2010)

15

Inconsistent Clones
• A substring s of the code is called an inconsistent

clone, if there is another substring t of the code
such that their edit distance is below a given
threshold and that t has no significant overlap with s
(Juergens, ICSE 2009)

• Half of the changes to code clone groups are
inconsistent changes (Krinke et al, 2007)

• Inconsistent changes to clone groups are directly
related to the maintenance problems (e.g. bug-
fixing or update) (Roy et al, 2007)

16

Inconsistent Clones

17

gestureTouchesDragged: function(evt, touches) {
 var gestures = this.get("gestures"), idx, len
= gestures.length, g;
 for (idx = 0; idx < len; idx++) {
 g = gestures[idx];
 g.unassignedTouchesDidChange(evt, touches);
 }
},

gestureTouchEnd: function(touch) {
 var gestures = this.get("gestures"), idx, len
= gestures.length, g;
 for (idx = 0; idx < len; idx++) {
 g = gestures[idx];
 g.unassignedTouchDidEnd(touch);
 }
}

Function Clones
• Entire functions are copied rather than

fragments

• A high number of function clones in a software
system could increase significantly the cost of
maintenance (Lague et al, 1997)

• Finding function clones in scripted web pages
for the purpose of eliminating duplicated code
can be seen as a first step to introduce
refactoring (Calefato et al, 2004)

18

Results

19

Clone Localization

20

0

20

40

60

Same File,
Same Dir.

Same Dir,
Diff. Files

Diff. Dir.

Pe
rc

en
ta

ge
 (%

)

Subject
JavaScript in Web Pages
JavaScript Standalone
Java Projects

Size of Cloned Code
Average Lines of

Cloned Code
Standard
Deviation

Maximum Lines of
Cloned Code

JavaScript in Web
Pages 10.50 2.95 262

JavaScript
Projects 15.33 11.00 550

Java Projects 12.33 4.46 299

21

Clone Coverage

22

●

JavaScript in
Web Pages

JavaScript
Standalone Java Projects

0
5

10
15

20
C

ov
er

ag
e

(%
)

Files Associated with Clones

23

●

JavaScript in
Web Pages

JavaScript
Standalone Java Projects

20
40

60
80

Fi
le

s
As

so
ci

at
ed

 w
ith

 C
lo

ne
s

(%
)

Consistent / Inconsistent Function
Clones / Cloned Fragments

24

0

20

40

Consistent
Function
Clones

Inconsistent
Function
Clones

Consistent
Cloned

Fragments

Inconsistent
Cloned

Fragments

Pe
rc

en
ta

ge
 (%

)

Subject
JavaScript in Web Pages
JavaScript Standalone
Java Projects

Threats to Validity

• Representativeness of open source
projects and websites

• Only a single configuration is used
• Only two languages are used

25

Summary

• Most of the clones of JavaScript in web pages
are from different directories

• JavaScript standalone has the lowest
coverage and files associated with clones

• JavaScript in web pages contains the largest
amount of consistent clones

26

Conclusion

• We have conducted clone detection
experiments on properties of different projects
and found that they are indeed different

• The differences are clues to which systems
require more efforts in software maintenance

• Future work: Automatic refactoring

27

Thank You

28

