부분적으로 문맥을 구별하는 분석 (Partially Context-Sensitive Analysis)

오학주1 이원찬1 양홍석2 이광근1

1서울대학교 2University of Oxford

PLDI'12 Design and Implementation of Sparse Global Analyses for C-like Languages

Hakjoo Oh Kihong Heo Wonchan Lee Woosuk Lee Kwangkeun Yi

안전성

큰 프로그램

Sparse Sparrow (2012)

정확도

목표: 정확도 향상

허위경보 주요 원인들

- 함수 호출 문맥 뭉치기
- 변수 관계 잊기
- 배열 및 버퍼 내용 뭉치기
- 모르는 라이브러리 함수

• ...

첫단계: 문맥 구분

- Sparse Sparrow 의 경우,
 - 문맥을 뭉쳐서 생기는 허위경보가 가장 많음
 - make와 tar의 경우 허위경보의 50%이상

문맥을 구분하는 분석 (context-sensitive analysis)

```
f (int x) { return x; }
a = f(1);
b = f(2);
```


SParrow

문맥을 뭉치는 분석 (context-insensitive analysis)

```
f (int x) { return x; }
a = f(1);
b = f(2);
```


모든 문맥 구분은 불가능

parts of less-382

기존 문맥 요약의 문제: k-CFA

• 각 함수의 문맥을 k단계까지 일괄적으로 구분

• k가 크면: 비용이 감당 안됨

목표: "좋은" 문맥 요약 찾기

구분된 문맥에서 항상 정확도 향상이 있음

= 정확도 향상이 없을 문맥은 구별하지 않음

예 1

```
char * xmalloc (int size)
 char *result = (char *) malloc (size);
  if (result == 0)
   fatal ("virtual memory exhausted");
  return result;
int main()
 path = xmalloc(10); // (1) : 0
                      // alarm
 *path = ...;
  ptr = xmalloc(unknown); // (2) : X
 *ptr = 2;
                         // alarm
```

예 2

```
void multi_glob (int size) {
  while (...) {
    while (...) {
      char *elt = xmalloc(size); // (1) : 0
      *elt = ...; // alarm
int main()
  multi_glob (8); // (2): 0
  multi_glob (16); // (3) : 0
multi_glob (4); // (4) : 0
```

예 3

```
int atoi(const char *str)
   int i = 0;
   while(*str) {
       i = (i << 3) + (i << 1) + (*str - '0');
       str++;
   return i;
int main()
   char *p = "10";
    int n = atoi(p); // (1) : X
   char *buf = xmalloc(n); //(2): X
   *buf = ...;
```

● 문맥을 모두 구분하는 분석을 실제로 해보면 "좋은" 문맥과 "나쁜" 문맥을 구분할 수 있다.

● 문맥을 모두 구분하는 분석을 실제로 해보면 "좋은" 문맥과 "나쁜" 문맥을 구분할 수 있다.

 A_{\perp} 문맥을 모두 뭉치는 분석

Ш

$$A_{\perp}$$

Ш

$$A_{ op}$$
 π 좋은 문맥 요약

$$A_{\perp}$$

$$A_{\top} \longrightarrow \pi$$

좋은 문맥만 구별하는 분석

$$A_{\pi}$$

 A_{\perp}

Ш

 $A_{\top} \longrightarrow \pi$

I단계: 전분석

 A_{π}

2단계: 본분석

$$A_{\perp}$$

$$A_{\perp} \longrightarrow \pi$$

$$A_{\pi}$$

$$\| \Box \|$$

$$\hat{A}_{\perp} \longrightarrow \hat{\pi}$$

$$A_{\hat{\pi}}$$

$\hat{\pi}$ 도 "좋은" 요약

$$A_{\perp} \longrightarrow \pi$$

$$\hat{A}_{\perp} \longrightarrow \hat{\pi}$$

$$\hat{A}_{\perp} \longrightarrow \hat{\pi}$$

= 구분된 문맥에서는 항상 정확도 향상이 있음≠ 정확도 향상이 있는 문맥은 모두 구분함

실험결과

프로그램	문맥에 둔감한 분석		부분적으로 문맥에 민감한 분석						
	경보	분석시간	경보	전분석	본분석	구분된 호출수	△경보	△시간	△크기
spell	58	0.6	30	0.3	0.9	25/124 (20.2%)	48.009	1.8x	1.47x
bc	606	15.6	483	6.5	15.3	29/777 (3.7%)	20.0%	1.4x	1.03x
tar	940	43.8	799	11.8	43.5	56/1,218 (4.6%)	15.009	1.3x	1.05x
less	654	131.1	561	11.9	184.7	59/1,522 (3.9%)	14.009	1.5x	1.22x
make	1,500	89.3	1,002	20.3	124.2	85/1,050 (8.3%)	33.009	1.6x	1.20x
wget	1,307	72	905	29.9	126.1	111/1,973 (5.6%)	30.0%	2.2x	1.74x
	l					263/2,450 (10.7%)	I I		l

결론

- 문맥 요약을 잘하면 적은 추가비용으로 높은 정확도 향상을 이룰 수 있다.
- 모든 문맥을 고려하는 전처리 분석으로 좋은 문맥 요
 약을 찾을 수 있다.