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Abstract

In this article we present a general method for achieving global
static analyzers that are precise, sound, yet also scalable. Our
method generalizes the sparse analysis techniques on top of the
abstract interpretation framework (o support relational as well as
non-relational semantics properties for C-like languages. We first
use the abstract interpretation framework to have a global static
analyzer whose scalability is unattended. Upon this underlying
sound static analyzer, we add our generalized sparse analysis tech-
niques to improve its scalability while preserving the precision of
the underlying analysis. Our framework determines what to prove
to guarantee that the resulting sparse version should preserve the
precision of the underlying analyzer

We formally present our framework; we present that existing
sparse analyses are all restricted instances of our framework; we
show more semantically elaborate design examples of sparse non-
relational and relational static analyses; we present their implemen-
tation results that scale to analyze up to one million lines of C pro-
grams. We also show a set of implementation techniques that turn
out to be critical to economically support the sparse analysis pro-
cess.

Categories and Subject Descriptors F3.2 (Semantics of Pro-
gramming Languages): Program Analysis

Keywords ~ Static analysis, abstract interpretation, sparse analysis

1. Introduction

Precise, sound. scalable yet global static analyzers have been un-
achievable in general. Other than almost syntactic properties, once
the target property becomes slightly deep in semantics it’s been a
daunting challenge to achieve the four goals in a single static an-
alyzer. This situation explains why, for example, in the static
ror detection tools for full C., there exists a clear dichotomy: either
“bug-finders” that risk being unsound yet scalable or “verifiers”
that risk being unscalable yet sound. No such tools are scalable
to globally analyze million lines of C code while being sound and
precise enough for practical use.

In this article we present a general method for achieving global
static analyzers that are precise, sound, yet also scalable. Our ap-
proach generalizes the sparse analysis ideas on top of the abstract

er-
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interpretation framework. Since the abstract interpretation frame-
work [9, 11] guides us to design sound yet arbitrarily precise static
analyzers for any target language, we first use the framework to
have a global static analyzer whose scalability is unattended. Upon
this underlying sound satic analyzer, we add our generalized sparse
analysis techniques to improve its scalability while preserving the
precision of the underlying analysis. Our framework determines
what to prove to guarantee that the resulting sparse version should
preserve the precision of the underlying analyzer.

Our framework bridges the gap between the two existing tech-
nologies — abstract interpretation and sparse analysis — towards
the design of sound, yet scalable global static analyzers. Note that
while abstractnterpretation framework provides a theoretical knob
to control the analysis precision without violating its correctness,
the framework does not provide a knob to control the resulting an-
alyzer's scalability preserving its precision. On the other hand, ex-
ting sparse analysis techniques [6, 14, 15, 19,20, 24, 40, 42, 44]
achieve scalability, but they are mostly algorithmic and tightly cou-
pled with particular analyses.' The sparse techniques are not gen-
eral enough to be used for an arbitrarily complicated semantic anal-
ysis.

Contributions  Our contributions are as follows.

« We propose a general framework for designing sparse static
analysis. Our framework is semantics-based and precision-
preserving. We prove that our framework yiel
analysis that has the same precision as the o

« We present a new noion of data dependency, which i a key 1o
the precision-preserving sparse analysis. Unlike conventional
def-use chains, sparse analysis with our data dependency is
fully precise.

 We design sparse non-relational a
are still general as themselves. We c:
with a particular non-relational and relational priv
respectively.

d relational dv\al\,\l\ which
stan e de:
ot domai s,

« We prove the practicality of our framework by experimentally
demonstrating the achieved speedup of an industrial-strength
static analyzer (23, 26, 21 1. The sparse analysis can
analyze programs up to 1 million lines of C code with interval
domain and up to 100K lines of C code with octagon domain.

Outline  Section 2 explains our sparse analysis framework. Sec-
tion 3 and 4 design sparse non-relational and relational analyes,
respectively, based on our framework. Section 5 discusses several

ues involved in the implementations. Section 6 presents the ex-
perimental studies. Section 7 discusses related work.

TA few techniques [7, 39] are in general settings but instead they take
coarse-grained approach to sparsity.
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(context-sensitive analysis)

f (int x) { return x; }

a = f(1);
b = f(2);
/ f(x) £(x) ,\
a = f(1) b = £(2)

e [I, I] return X return X b = [2’2]
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(context-insensitive analysis)

f (int x) { return x; }

a = f(1);
b = f(2);
/ —> f(X) <
a =f(l) b = f(2)
\ return X /

a=T12] b =[1,2]
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Off 1

char x xmalloc (int size)

{
char xresult = (char x) malloc (size):
if (result == 0)
return result;
I
int main()
{
path = xmalloc(10);
*xpath = ...;
ptr = xmalloc(unknown);

fatal ("virtual memory exhausted");

xptr

2;

// (1) = 0
// alarm

// (2) + X
// alarm

|4



0ff 2

void multi_glob (int size) {
while (...) {
while (...) {
char xelt = xmalloc(size); // (1)
xelt = ...} // alarm
+
¥
I

int main()

{
multi_glob (8); // (2) :
multi_glob (16); // (3) :
multi_glob (4) // (4)

I3

o OO

"
’

= 0
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0ff 3

int atoi(const char xstr)

{
int 1 = 0;
while(xstr) {
i = (i<<3) + (i<<1l) + (xstr - 'Q');
Str++;
¥
return 1;
}
int main()
{
char xp = "10",;
int n = atoi (p); // (1) : X
char *xbuf = xmalloc (n); // (2) : X
xbuf = ...
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AZE  AAZH

="

spell | 58 0.6 | 30 03 0.9 (55 48.009 1.8x | 1.47x
bc | 606 156 | 483 6.5 153 7] [20.0% 1.4x |1.03x
tar | 940 43.8 | 799 11.8 435 >} o\ 15.00% 1.3x [ 1.05x
less | 654 131.1| 561 11.9 184.7 > 405 14.00% 1.22x
make | 1,500 89.3 |1,002 20.3 124.2 %350 33.009 1.6x | 1.20x
wget [ 1,307 72 | 905 29.9 126.1 '|¢/85)7%(30.0% 2.2x | 1.74x
a2ps |3,682 125 |2,004 205.3 343.6 °3 54 |46.009 4.4x |1.93x
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