분리논리 자동정리증명기 개발 (A Theorem Prover for Separation Logic)

박성우 POSTECH

제9회 소프트웨어무결점연구센터 워크샵 2013년 1월 31일

Shared Mutable Data Structures

 An updatable field can be referenced from more than one point.

```
*p := 0;
*q := 1;
if (*p = 0)
    return true;
else
    return false;
```

 Hoare logic fails to scale to programs of even moderate size.

Specification of In-place List Reversal

```
\alpha_0
Opre: list \alpha_0 a
                                                     a \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 9
b := nil;
while (a != nil) do
    k := [a + 1];
    [a + 1] := b;
    b := a;
    a := k;
end while;
                                                                          \overline{\alpha_0}
Opost: list \overline{\alpha_0} b
                                                     b \longrightarrow 9 \longrightarrow 8 \longrightarrow 7 \longrightarrow 2 \longrightarrow 1
```

Loop Invariant in Hoare Logic

```
Opre list \alpha_0 a
b := nil;
QL: \exists \alpha, \beta. list \alpha a \wedge list \beta b \wedge \overline{\alpha_0} = \overline{\alpha} \cdot \beta
while (a != nil) do
                                                           \alpha
   k := [a + 1];
   [a + 1] := b;
   b := a;
   a := k;
end while;
Opost list \overline{\alpha_0} b
```

However, lists a and b must be disjoint.

Complex Loop Invariant in Hoare Logic

```
Opre list \alpha_0 a
b := nil;
QL: \exists \alpha, \beta. list \alpha a \wedge list \beta b \wedge \overline{\alpha_0} = \overline{R} \cdot \beta
    \land (\forall k. \text{ reachable}(a, k) \land \text{reachable}(b, k) \supset k = \text{nil})
while (a != nil) do
   k := [a + 1];
   [a + 1] := b;
                                     Lists a and b are disjoint.
   b := a;
   a := k;
end while;
Opost list \overline{\alpha_0} b
```

Loop Invariant in Separation Logic

```
Opre list \alpha_0 a
b := nil;
QL: \exists \alpha, \beta. list \alpha a \star list \beta b \wedge \overline{\alpha_0} = \overline{\alpha} \cdot \beta
while (a != nil) do
   k := [a + 1];
   [a + 1] := b;
   b := a;
   a := k;
end while;
Opost list \overline{\alpha_0} b
```

- \star = separating conjunction
 - describes two disjoint memory portions

Frame Rule in Separation Logic

Supports local reasoning

$$\frac{\{A\} \text{ Program } \{B\}}{\{A \star C\} \text{ Program } \{B \star C\}}$$

where Program does not access variables in ${\cal C}$

Logical Connectives in Separation Logic

Separating conjunction

$$A \star B$$

- The current heap can be partitioned into two separate heaps;
- A holds for one, and
 B holds for the other.

Separating implication

$$A \rightarrow B$$

- If the current heap is extended with a separate heap for which A holds,
- then B holds for the combined heap.

B

Separating Implication $A \rightarrow B$

- Essential to building a complete verification system
 - with backward reasoning by weakest precondition generation

- No existing verification tools fully support $A \rightarrow B$.
 - Smallfoot, Space Invader, THOR, SLAyer, HIP, VeriFast, jStar, Xisa, ...

Goal

- Build a theorem prover for full separation logic
 - with separating conjunction *
 - also with separating implication →

This incompleteness could be dealt with if we instead used the backwards-running weakest preconditions of Separation Logic [4]. Unfortunately, there is no existing automatic theorem prover which can deal with the form of these assertions (which use quantification and the separating implication \rightarrow). If there were such a prover, we would be eager consumers of it.

Symbolic Execution with Separation Logic. Josh Berdine and Cristiano Calcagno and Peter O'Hearn. APLAS'05.

• Schorr-Waite Algorithm의 기계적 검증

Contents

- Introduction V
- Theorem prover for Boolean BI
- Theorem prover for separation logic

Building a Theorem Prover for Boolean BI

- Boolean BI (Bunched Implications)
 - underlying theory of separation logic
 - classical logic extended with * and -*

$$A ::= P \mid \top \mid \neg A \mid A \land B \mid I \mid A \star B \mid A \rightarrow B$$

- S_{BBI}
 - nested sequent calculus for Boolean BI

Nested Sequents with **Graph** Structures

• Classical logic + $A \star B + A - \star B$

```
formula A::=P\mid \bot \mid \neg A\mid A\vee B\mid A\star B truth ctx. \Gamma::=\cdot\mid \Gamma;S false. ctx. \Delta::=\cdot\mid \Delta;A node state S::=A\mid \emptyset_{\mathsf{m}}\mid W_1,W_2\mid W^1\langle\!\langle W^2\rangle\!\rangle sequent W:=\Gamma\Longrightarrow\Delta
```

 $W^1\langle\langle W^2\rangle\rangle$: a sibling sequent W^1 and a common parent sequent W^2

S_{BBI}: Nested Sequent Calculus for Boolean BI

Structural rules:

$$\frac{\Gamma\Longrightarrow\Delta}{\Gamma;S\Longrightarrow\Delta} \ WL_{\mathcal{S}} \quad \frac{\Gamma\Longrightarrow\Delta}{\Gamma\Longrightarrow\Delta;A} \ WR_{\mathcal{S}} \quad \frac{\Gamma;S;S\Longrightarrow\Delta}{\Gamma;S\Longrightarrow\Delta} \ CL_{\mathcal{S}} \quad \frac{\Gamma\Longrightarrow\Delta;A;A}{\Gamma\Longrightarrow\Delta;A} \ CR_{\mathcal{S}} \quad \frac{\Gamma;W',W\Longrightarrow\Delta}{\Gamma;W,W'\Longrightarrow\Delta} \ EC_{\mathcal{S}}$$

$$\frac{\Gamma; W_1, (W_2, W_3 \Longrightarrow \cdot) \Longrightarrow \Delta}{\Gamma; (W_1, W_2 \Longrightarrow \cdot), W_3 \Longrightarrow \Delta} \, EA_{\mathcal{S}} \quad \frac{\Gamma_1; (\Gamma_2 \Longrightarrow \Delta_2), (\emptyset_{\mathsf{m}} \Longrightarrow \cdot) \Longrightarrow \Delta_1}{\Gamma_1; \Gamma_2 \Longrightarrow \Delta_1; \Delta_2} \, \emptyset_{\mathsf{m}} U_{\mathcal{S}} \quad \frac{\Gamma_1; \Gamma_2 \Longrightarrow \Delta_1; \Delta_2}{\Gamma_1; (\Gamma_2 \Longrightarrow \Delta_2), (\emptyset_{\mathsf{m}} \Longrightarrow \cdot) \Longrightarrow \Delta_1} \, \emptyset_{\mathsf{m}} D_{\mathcal{S}}$$

Traverse rules:

$$\frac{\Gamma_{c1}; (\Gamma_{c2} \Longrightarrow \Delta_{c2}) \langle \Gamma \Longrightarrow \Delta \rangle \Longrightarrow \Delta_{c1}}{\Gamma; (\Gamma_{c1} \Longrightarrow \Delta_{c1}), (\Gamma_{c2} \Longrightarrow \Delta_{c2}) \Longrightarrow \Delta} \ TC_{\mathcal{S}} \quad \frac{\Gamma_{p}; (\Gamma \Longrightarrow \Delta), (\Gamma_{s} \Longrightarrow \Delta_{s}) \Longrightarrow \Delta_{p}}{\Gamma; (\Gamma_{s} \Longrightarrow \Delta_{s}) \langle \Gamma_{p} \Longrightarrow \Delta_{p} \rangle \Longrightarrow \Delta} \ TP_{\mathcal{S}}$$

Logical rules:

$$\frac{1}{A \Longrightarrow A} \ Init_{\mathcal{S}} \quad \frac{\Gamma \Longrightarrow \Delta}{\Gamma \Longrightarrow \Delta; \perp} \perp R_{\mathcal{S}} \quad \frac{\Gamma \Longrightarrow \Delta; A}{\Gamma; \neg A \Longrightarrow \Delta} \neg L_{\mathcal{S}} \quad \frac{\Gamma; A \Longrightarrow \Delta}{\Gamma \Longrightarrow \Delta; \neg A} \neg R_{\mathcal{S}} \quad \frac{\Gamma_1; A \Longrightarrow \Delta_1 \quad \Gamma_2; B \Longrightarrow \Delta_2}{\Gamma_1; \Gamma_2; A \vee B \Longrightarrow \Delta_1; \Delta_2} \vee L_{\mathcal{S}}$$

$$\frac{\Gamma \Longrightarrow \Delta; A; B}{\Gamma \Longrightarrow \Delta; A \lor B} \lor R_{\mathcal{S}} \quad \frac{\Gamma; \emptyset_{\mathsf{m}} \Longrightarrow \Delta}{\Gamma; I \Longrightarrow \Delta} \mid L_{\mathcal{S}} \quad \frac{\Pi; (A \Longrightarrow \cdot), (B \Longrightarrow \cdot) \Longrightarrow \Delta}{\Pi; A \lor B \Longrightarrow \Delta} \star L_{\mathcal{S}}$$

$$\frac{\Gamma_1 \Longrightarrow \Delta_1; A \quad \Gamma_2 \Longrightarrow \Delta_2; B}{(\Gamma_1 \Longrightarrow \Delta_1), (\Gamma_2 \Longrightarrow \Delta_2) \Longrightarrow A \star B} \star R_{\mathcal{S}} \quad \frac{\Gamma_1 \Longrightarrow \Delta_1; A \quad \Gamma_2; B \Longrightarrow \Delta_2}{(\Gamma_1 \Longrightarrow \Delta_1) \langle \Gamma_2 \Longrightarrow \Delta_2 \rangle; A \to B \Longrightarrow \cdot} \star L_{\mathcal{S}} \quad \frac{\Gamma; (A \Longrightarrow \cdot) \langle \cdot \Longrightarrow B \rangle \Longrightarrow \Delta}{\Gamma \Longrightarrow \Delta; A \to B} \star R_{\mathcal{S}}$$

Theorem (Cut elimination):

If
$$\Gamma \Longrightarrow \Delta$$
; C and Γ' ; $C \Longrightarrow \Delta'$, then Γ ; $\Gamma' \Longrightarrow \Delta$; Δ' .

BBeye: A Theorem Prover for Boolean BI

- Interactive
- Supports both CUI and GUI
- Written in OCaml
- Online demo at <u>http://pl.postech.ac.kr/BBI/</u>
- Jonghyun Park, Jeongbong Seo, Sungwoo Park. A Theorem Prover for Boolean Bl. POPL 2013.
- Now we know how to deal with —★.

Contents

- Introduction V
- Theorem prover for Boolean BI V
- Theorem prover for separation logic

Separation Logic

• 정의

Judgment

$$(S,H) \models A$$

• 문제:

"주어진 formula A가 모든 stack S와 모든 heap H에 대해서 참인지 판별하라"

- quantifier 9가 없으면: decidable
- quantifier 9가 있으면: undecidable

Proof System for Separation Logic

- 첫번째 key idea (from BBeye):
 - use a graph structure of sequents
 - label each sequent with a heap variable.
- 두번째 key idea
 - 전체 system의 completeness = primitive
 formula를 다루는 system의 completeness
- 현재 soundness와 completeness 증명 중
 - soundness: proof system은 옳다
 - completeness: 놓치는 경우가 없다

CCeye: A Theorem Prover for Separation Logic

• 현재 설계 중

• Challenge: Complexity 문제 처리

謝謝 감사합니다

gla@postech.ac.kr