A Formally Verified Runtime

Bernhard Egger
2013/02/01

Computer Systems and Platforms Laboratory
School of Computer Science and Engineering
Seoul National University

A Smart New World

= everything is “smart” these days

s« most noticeable feature:
user-generated content on devices

'f: B g 1002

s less noticeable: 12:4 45pM
increased complexity of hardware

iIncreased CompIeX|ty of software
Samsung —

samsung ApPS ="

£
1+ Gazetodl

Q f onetpl
an...| Galaxy >]

Polecal
vu:fvp,pl . Ea%hli
vod.tvp.pl tubafm PAPEI

v) ol ADHE RIEPiRL
[Z2ioHE AFd HEAY

] N b
prZEgl-) Aoje et | e i‘ = B < ‘
\.— S - ,;‘P e ."

A Zalogy -
Y

l!ﬂﬂMnH' ;

Computer Systems and Platforms Lab 2 § A E-= o ﬂg

A Smart New World — And a Host of New Problems

= we run more and more security- and safety -critical stuff on our
smart devices

» mobile banking
» smart wallets
» personal health monitoring

*» and then there’s the issue
of privacy

Computer Systems and Platforms Lab

| Won’t Be Evil — Just Trust Me

= prevalent model for smartphones is based on trust

s the trust model of Android and iOS

s limited privileges per default

- safe programming language (Android - Java)
» walled gardens (app stores), app permissions

= lots of problems with this approach

s root exploits
» native code
s verification, permission difficulties

Computer Systems and Platforms Lab 4

| Can’t Be Evil — Here’s The Mathematical Proof

= ideal world: entire system is verified

= not (yet) possible

s realistic world: use a verified base to run software on

s formally verified kernels/hypervisors

+ Verisoft, seL4, SecVisor
s formally verified compilers

» CompCert C compiler, CO compiler

s run secure/insecure S/W alongside

Computer Systems and Platforms Lab 5

Pioneers — Secure Unix, PSOS, KIT

s« UCLA Secure Unix (1980)
» microkernel-like structure
» Implemented in Pascal
» used (an early variant of) formal refinement
s proof for kernel only, but “tedious and painful”
» performance up to an order of magnitude below par

= Provably Secure Operating System (1973-80)

= considers the entire OS
s layered approach

Computer Systems and Platforms Lab 6

Pioneers — Secure Unix, PSOS, KIT

= KIT (kernel for isolated tasks, 1989)

s first formally verified kernel
« ~600 lines of assembler source code

s provides (static) task switching, async /O, exceptions,
message-passing

Computer Systems and Platforms Lab 7

Verisoft / VerisoftXT

= Verisoft (2003-2007)

» government funded (~15m euro, 250 21 &), partly
confidential

s pervasive

s does not rely on the correctness of the ISA or compiler
s unbroken chain from H/W to applications

s layered approach similar to PSOS

» theorem prover: Isabelle/HOL

Computer Systems and Platforms Lab 8

Verisoft / VerisoftXT

= Verisoft (2003-2007)

» hardware layer: VAMP processor
« formally verified down to the gate level

« kernel layers:

+ CVM (Communicating Virtual Machines)
+ VAMOS

s user mode layers
+ SOS (Simple Operating System) — privileged process
-+ applications

Computer Systems and Platforms Lab 9

Verisoft / VerisoftXT

= Verisoft (2003-2007)

s verified compiler tool chain
- C0O, COA language
+ bootstrapped

s code vs proof:

= compiler source: 1500 lines of CO code
» proof: 85’000 lines of Isabelle code

s successor: VerisoftXT (2007-2010)

Computer Systems and Platforms Lab 10

selL4

= ongoing joint project of people at NICTA, UNSW, and Open
Kernel Labs

= production-quality, commercialized general-purpose
microkernel

= formally verified from abstract specification down to C
implementation

s assumes correctness of
» hardware, boot code, assembly code, compiler

s everything else is proven

Computer Systems and Platforms Lab 11

selL4

= interesting from the design/proof/implementation point of view

» Haskell prototype
« intermediate target suitable for formal methods and

Implementation
r Design G}ﬂ:leﬂ

Hardware Haskell
C Simulator _) T C Prototype Formal Executable Spec
Manual
ﬂ @ Implementation @ Proof
CLJsar F"rq-grarns) [:‘,':: High-Performanca C Implemeantation

Computer Systems and Platforms Lab 12 source: Klein, 2009

selL4

s formal verification

s Interactive, machine-assisted, machine-checked proof
s theorem prover used: Isabelle/HOL

s refinement proofs
establish correspondence between high-level and low-level
representations of a system

« correspondence: Hoare logic properties hold for both
levels

Isabelle/HOL

[Abstract Specification l

J

| Executable Specification |]

I

‘ High-Performance C Implementation |

<] Automatic Translation

ﬁ Refinement Proof

Computer Systems and Platforms Lab 13 source: Klein, 2009

selL4

s formal verification

schedule = do

threads < all_active_tcbs;

thread < select threads;
switch_to_thread thread
od OR switch_to_idle_thread

Computer Systems and Platforms Lab

schedule = do
action <- getSchedulerAction
case action of
ChooseNewThread -> do
chooseThread
setSchedulerAction ResumeCurrentThread

chooseThread = do

r <- findM chooseThread’ (reverse [minBound ..

when (r == Nothing) $ switchToIdleThread
chooseThread’ prio = do
q <- getQueue prio
1iftM isJust $ findM chooseThread’’ q
chooseThread’’ thread = do
runnable <- isRunnable thread
if not runnable then do
tcbSchedDequeue thread
return False
else do
switchToThread thread
return True

14 source: Klein, 2009

maxBound])

»
HEE EEE ER an -
[} [} [
u EHEE EES EE
[} L -
SEE EEE B B B

Computer Systems and Platforms Laboratory

selL4

= the proof of functional correctness

= reduction of refinement to forward simulation

s for each transition in M>: s — s’ show that there exists a
corresponding transition on the abstract side M;:6 — c’.

s find a relation R that holds for each possible transition
between the states s and o, and s’ and one Iin ¢’.

o

State Relation
State Relation

o R ——

®
e

Concrete Operation A1+

Computer Systems and Platforms Lab 15 source: Klein, 2009

selL4

= kernel design and implementation

s reduced use of global variables
« simplifies proof
s memory management in user level
« separate proof
s concurrency
» single processor
* NO exceptions
+ no Yyielding
« Interrupts disabled; poll-rollback-restart model

Computer Systems and Platforms Lab 16

selL4

s Implementation and verification effort

s Haskell prototype: 5700 LOC, 2 person years

» C implementation: 8700 LOC, 2 person months
s proof: 200°000 LOP, > 20 person years

Computer Systems and Platforms Lab 17

Okay, So What Now?

s There is still a lot of work to do

s verified boot code, assembly code, and compiler
s support for true concurrency (multiple cores)

s support for H/W accelerators

Computer Systems and Platforms Lab 18

References

s Alkassar, E., Hillebrand, M.A., Paul, W.J., and Petrova, E. “Automated Verification of a
Small Hypervisor”, Lecture Notes in Computer Science 6217, pp. 40-54, 2010.

s Bevier, W.R. “Kit: A study in operating system verification”, IEEE Transactions on
Software Engineering 15(11), pp. 1382-1396, 19809.

s Hillebrand, M.A., and Paul, W.J. “On the architecture of System Verification
Environments”, Lecture Notes in Computer Science 4899, pp. 153-168, 2008.

s Klein, G. “Operating System Verification — An Overview”, Sadhana, Springer 34(1), pp.
27-69, 2009.

s Klein, G., Andronick, J., Elphinstone, K., Heiser, G., et al. “seL4: Formal Verification of an
Operating-System Kernel”, Communications of the ACM 53(6), pp. 107-115, 2010.

s Neumann, P.G., and Feiertag, R.J. “PSOS revisited”, Proceedings of the 19" Annual
Computer Security Applications Conference (ACSAC’03), 2003.

s Seshadri, A., Luk, M., Qu. N., and Perrig, A. “SecVisor: A Tiny Hypervisor to Provide
Lifetime Kernel Code Integrity for Commodity OSes”, Proceedings of the biennial ACM
Symposium on Operating Systems Principles (SOSP’07), 2007.

s Walker, B.J., Kemmerer, R.A., and Popek, G.J. “Specification and verification of the UCLA
Unix security kernel”, Communications of the ACM 23(2), pp. 118-131, 1980.

Computer Systems and Platforms Lab 19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

