
A Formally Verified Runtime

Bernhard Egger

2013/02/01





Computer Systems and Platforms Lab 3

A Smart New World – And a Host of New Problems

we run more and more security- and safety-critical stuff on our 
smart devices

mobile banking

smart wallets

personal health monitoring

and then there’s the issue 
of privacy
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I Won’t Be Evil – Just Trust Me

prevalent model for smartphones is based on trust

the trust model of Android and iOS

limited privileges per default

safe programming language (Android - Java)

walled gardens (app stores), app permissions

lots of problems with this approach

root exploits

native code

verification, permission difficulties
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I Can’t Be Evil – Here’s The Mathematical Proof

ideal world: entire system is verified

not (yet) possible

realistic world: use a verified base to run software on

formally verified kernels/hypervisors

Verisoft, seL4, SecVisor

formally verified compilers

CompCert C compiler, C0 compiler

run secure/insecure S/W alongside 
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Pioneers – Secure Unix, PSOS, KIT

UCLA Secure Unix (1980)

microkernel-like structure

implemented in Pascal

used (an early variant of) formal refinement

proof for kernel only, but “tedious and painful”

performance up to an order of magnitude below par

Provably Secure Operating System (1973-80)

considers the entire OS

layered approach
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Pioneers – Secure Unix, PSOS, KIT

KIT (kernel for isolated tasks, 1989)

first formally verified kernel

~600 lines of assembler source code

provides (static) task switching, async I/O, exceptions, 
message-passing
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Verisoft / VerisoftXT

Verisoft (2003-2007)

government funded (~15m euro, 250 억원 ), partly 
confidential

pervasive

does not rely on the correctness of the ISA or compiler

unbroken chain from H/W to applications

layered approach similar to PSOS

theorem prover: Isabelle/HOL
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Verisoft / VerisoftXT

Verisoft (2003-2007)

hardware layer: VAMP processor

formally verified down to the gate level

kernel layers:

CVM (Communicating Virtual Machines)

VAMOS

user mode layers

SOS (Simple Operating System) – privileged process

applications
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Verisoft / VerisoftXT

Verisoft (2003-2007)

verified compiler tool chain

C0, C0A language

bootstrapped

code vs proof:

compiler source: 1’500 lines of C0 code

proof: 85’000 lines of Isabelle code

successor: VerisoftXT (2007-2010)
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seL4

ongoing joint project of people at NICTA, UNSW, and Open 
Kernel Labs

production-quality, commercialized general-purpose 
microkernel

formally verified from abstract specification down to C 
implementation

assumes correctness of

hardware, boot code, assembly code, compiler

everything else is proven
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seL4

interesting from the design/proof/implementation point of view

Haskell prototype

intermediate target suitable for formal methods and 
implementation

source: Klein, 2009
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seL4

formal verification

interactive, machine-assisted, machine-checked proof

theorem prover used: Isabelle/HOL

refinement proofs
establish correspondence between high-level and low-level 
representations of a system

correspondence: Hoare logic properties hold for both 
levels

source: Klein, 2009
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seL4

formal verification

source: Klein, 2009
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seL4

the proof of functional correctness

reduction of refinement to forward simulation

for each transition in M2: s → s’ show that there exists a 
corresponding transition on the abstract side  M1: σ → σ’.

find a relation R that holds for each possible transition 
between the states s and σ, and s’ and one in σ’.

source: Klein, 2009
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seL4

kernel design and implementation

reduced use of global variables

simplifies proof

memory management in user level

separate proof

concurrency

single processor

no exceptions

no yielding

interrupts disabled; poll-rollback-restart model
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seL4

implementation and verification effort

Haskell prototype: 5’700 LOC, 2 person years

C implementation: 8’700 LOC, 2 person months

proof: 200’000 LOP, > 20 person years
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Okay, So What Now?

There is still a lot of work to do

verified boot code, assembly code, and compiler

support for true concurrency (multiple cores)

support for H/W accelerators
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