
A Formally Verified Runtime

Bernhard Egger

2013/02/01

Computer Systems and Platforms Lab 3

A Smart New World – And a Host of New Problems

we run more and more security- and safety-critical stuff on our
smart devices

mobile banking

smart wallets

personal health monitoring

and then there’s the issue
of privacy

Computer Systems and Platforms Lab 4

I Won’t Be Evil – Just Trust Me

prevalent model for smartphones is based on trust

the trust model of Android and iOS

limited privileges per default

safe programming language (Android - Java)

walled gardens (app stores), app permissions

lots of problems with this approach

root exploits

native code

verification, permission difficulties

Computer Systems and Platforms Lab 5

I Can’t Be Evil – Here’s The Mathematical Proof

ideal world: entire system is verified

not (yet) possible

realistic world: use a verified base to run software on

formally verified kernels/hypervisors

Verisoft, seL4, SecVisor

formally verified compilers

CompCert C compiler, C0 compiler

run secure/insecure S/W alongside

Computer Systems and Platforms Lab 6

Pioneers – Secure Unix, PSOS, KIT

UCLA Secure Unix (1980)

microkernel-like structure

implemented in Pascal

used (an early variant of) formal refinement

proof for kernel only, but “tedious and painful”

performance up to an order of magnitude below par

Provably Secure Operating System (1973-80)

considers the entire OS

layered approach

Computer Systems and Platforms Lab 7

Pioneers – Secure Unix, PSOS, KIT

KIT (kernel for isolated tasks, 1989)

first formally verified kernel

~600 lines of assembler source code

provides (static) task switching, async I/O, exceptions,
message-passing

Computer Systems and Platforms Lab 8

Verisoft / VerisoftXT

Verisoft (2003-2007)

government funded (~15m euro, 250 억원), partly
confidential

pervasive

does not rely on the correctness of the ISA or compiler

unbroken chain from H/W to applications

layered approach similar to PSOS

theorem prover: Isabelle/HOL

Computer Systems and Platforms Lab 9

Verisoft / VerisoftXT

Verisoft (2003-2007)

hardware layer: VAMP processor

formally verified down to the gate level

kernel layers:

CVM (Communicating Virtual Machines)

VAMOS

user mode layers

SOS (Simple Operating System) – privileged process

applications

Computer Systems and Platforms Lab 10

Verisoft / VerisoftXT

Verisoft (2003-2007)

verified compiler tool chain

C0, C0A language

bootstrapped

code vs proof:

compiler source: 1’500 lines of C0 code

proof: 85’000 lines of Isabelle code

successor: VerisoftXT (2007-2010)

Computer Systems and Platforms Lab 11

seL4

ongoing joint project of people at NICTA, UNSW, and Open
Kernel Labs

production-quality, commercialized general-purpose
microkernel

formally verified from abstract specification down to C
implementation

assumes correctness of

hardware, boot code, assembly code, compiler

everything else is proven

Computer Systems and Platforms Lab 12

seL4

interesting from the design/proof/implementation point of view

Haskell prototype

intermediate target suitable for formal methods and
implementation

source: Klein, 2009

Computer Systems and Platforms Lab 13

seL4

formal verification

interactive, machine-assisted, machine-checked proof

theorem prover used: Isabelle/HOL

refinement proofs
establish correspondence between high-level and low-level
representations of a system

correspondence: Hoare logic properties hold for both
levels

source: Klein, 2009

Computer Systems and Platforms Lab 14

seL4

formal verification

source: Klein, 2009

Computer Systems and Platforms Lab 15

seL4

the proof of functional correctness

reduction of refinement to forward simulation

for each transition in M2: s → s’ show that there exists a
corresponding transition on the abstract side M1: σ → σ’.

find a relation R that holds for each possible transition
between the states s and σ, and s’ and one in σ’.

source: Klein, 2009

Computer Systems and Platforms Lab 16

seL4

kernel design and implementation

reduced use of global variables

simplifies proof

memory management in user level

separate proof

concurrency

single processor

no exceptions

no yielding

interrupts disabled; poll-rollback-restart model

Computer Systems and Platforms Lab 17

seL4

implementation and verification effort

Haskell prototype: 5’700 LOC, 2 person years

C implementation: 8’700 LOC, 2 person months

proof: 200’000 LOP, > 20 person years

Computer Systems and Platforms Lab 18

Okay, So What Now?

There is still a lot of work to do

verified boot code, assembly code, and compiler

support for true concurrency (multiple cores)

support for H/W accelerators

Computer Systems and Platforms Lab 19

References

Alkassar, E., Hillebrand, M.A., Paul, W.J., and Petrova, E. “Automated Verification of a
Small Hypervisor”, Lecture Notes in Computer Science 6217, pp. 40-54, 2010.

Bevier, W.R. “Kit: A study in operating system verification”, IEEE Transactions on
Software Engineering 15(11), pp. 1382-1396, 1989.

Hillebrand, M.A., and Paul, W.J. “On the architecture of System Verification
Environments”, Lecture Notes in Computer Science 4899, pp. 153-168, 2008.

Klein, G. “Operating System Verification – An Overview”, Sadhana, Springer 34(1), pp.
27-69, 2009.

Klein, G., Andronick, J., Elphinstone, K., Heiser, G., et al. “seL4: Formal Verification of an
Operating-System Kernel”, Communications of the ACM 53(6), pp. 107-115, 2010.

Neumann, P.G., and Feiertag, R.J. “PSOS revisited”, Proceedings of the 19th Annual
Computer Security Applications Conference (ACSAC’03), 2003.

Seshadri, A., Luk, M., Qu. N., and Perrig, A. “SecVisor: A Tiny Hypervisor to Provide
Lifetime Kernel Code Integrity for Commodity OSes”, Proceedings of the biennial ACM
Symposium on Operating Systems Principles (SOSP’07), 2007.

Walker, B.J., Kemmerer, R.A., and Popek, G.J. “Specification and verification of the UCLA
Unix security kernel”, Communications of the ACM 23(2), pp. 118-131, 1980.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

