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A Smart New World

= everything is “smart” these days

s« most noticeable feature:
user-generated content on devices
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A Smart New World — And a Host of New Problems

= we run more and more security- and safety -critical stuff on our
smart devices

» mobile banking
» smart wallets
» personal health monitoring

*» and then there’s the issue
of privacy
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| Won’t Be Evil — Just Trust Me

= prevalent model for smartphones is based on trust

s the trust model of Android and iOS

s limited privileges per default

- safe programming language (Android - Java)
» walled gardens (app stores), app permissions

= lots of problems with this approach

s root exploits
» native code
s verification, permission difficulties
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| Can’t Be Evil — Here’s The Mathematical Proof

= ideal world: entire system is verified

= not (yet) possible

s realistic world: use a verified base to run software on

s formally verified kernels/hypervisors

+ Verisoft, seL4, SecVisor
s formally verified compilers

» CompCert C compiler, CO compiler

s run secure/insecure S/W alongside

Computer Systems and Platforms Lab 5



Pioneers — Secure Unix, PSOS, KIT

s« UCLA Secure Unix (1980)
» microkernel-like structure
» Implemented in Pascal
» used (an early variant of) formal refinement
s proof for kernel only, but “tedious and painful”
» performance up to an order of magnitude below par

= Provably Secure Operating System (1973-80)

= considers the entire OS
s layered approach
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Pioneers — Secure Unix, PSOS, KIT

= KIT (kernel for isolated tasks, 1989)

s first formally verified kernel
« ~600 lines of assembler source code

s provides (static) task switching, async /O, exceptions,
message-passing
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Verisoft / VerisoftXT

= Verisoft (2003-2007)

» government funded (~15m euro, 250 21 &), partly
confidential

s pervasive

s does not rely on the correctness of the ISA or compiler
s unbroken chain from H/W to applications

s layered approach similar to PSOS

» theorem prover: Isabelle/HOL
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Verisoft / VerisoftXT

= Verisoft (2003-2007)

» hardware layer: VAMP processor
« formally verified down to the gate level

« kernel layers:

+ CVM (Communicating Virtual Machines)
+ VAMOS

s user mode layers
+ SOS (Simple Operating System) — privileged process
-+ applications
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Verisoft / VerisoftXT

= Verisoft (2003-2007)

s verified compiler tool chain
- C0O, COA language
+ bootstrapped

s code vs proof:

= compiler source: 1500 lines of CO code
» proof: 85’000 lines of Isabelle code

s successor: VerisoftXT (2007-2010)
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selL4

= ongoing joint project of people at NICTA, UNSW, and Open
Kernel Labs

= production-quality, commercialized general-purpose
microkernel

= formally verified from abstract specification down to C
implementation

s assumes correctness of
» hardware, boot code, assembly code, compiler

s everything else is proven
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selL4

= interesting from the design/proof/implementation point of view

» Haskell prototype
« intermediate target suitable for formal methods and

Implementation
r Design G}ﬂ:leﬂ

Hardware Haskell
C Simulator _) T C Prototype Formal Executable Spec
Manual
ﬂ @ Implementation @ Proof
CLJsar F"rq-grarns) [:‘,':: High-Performanca C Implemeantation
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selL4

s formal verification

s Interactive, machine-assisted, machine-checked proof
s theorem prover used: Isabelle/HOL

s refinement proofs
establish correspondence between high-level and low-level
representations of a system

« correspondence: Hoare logic properties hold for both
levels

Isabelle/HOL

[ Abstract Specification l

J

| Executable Specification | ]

I

‘ High-Performance C Implementation |

<] Automatic Translation

ﬁ Refinement Proof
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selL4

s formal verification

schedule = do

threads < all_active_tcbs;

thread < select threads;
switch_to_thread thread
od OR switch_to_idle_thread
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schedule = do
action <- getSchedulerAction
case action of
ChooseNewThread -> do
chooseThread
setSchedulerAction ResumeCurrentThread

chooseThread = do

r <- findM chooseThread’ (reverse [minBound ..

when (r == Nothing) $ switchToIdleThread
chooseThread’ prio = do
q <- getQueue prio
1iftM isJust $ findM chooseThread’’ q
chooseThread’’ thread = do
runnable <- isRunnable thread
if not runnable then do
tcbSchedDequeue thread
return False
else do
switchToThread thread
return True

14 source: Klein, 2009
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selL4

= the proof of functional correctness

= reduction of refinement to forward simulation

s for each transition in M>: s — s’ show that there exists a
corresponding transition on the abstract side M;:6 — c’.

s find a relation R that holds for each possible transition
between the states s and o, and s’ and one Iin ¢’.

o

State Relation
State Relation

o R ——

®
e

Concrete Operation A1+
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selL4

= kernel design and implementation

s reduced use of global variables
« simplifies proof
s memory management in user level
« separate proof
s concurrency
» single processor
* NO exceptions
+ no Yyielding
« Interrupts disabled; poll-rollback-restart model
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selL4

s Implementation and verification effort

s Haskell prototype: 5700 LOC, 2 person years

» C implementation: 8700 LOC, 2 person months
s proof: 200°000 LOP, > 20 person years
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Okay, So What Now?

s There is still a lot of work to do

s verified boot code, assembly code, and compiler
s support for true concurrency (multiple cores)

s support for H/W accelerators
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