IE AHAHZ| XS

SAIY Z2aYE A

= M OMXHBI Matt Staats ZHEF

PROVABLE SW LAB
KAIST

2013-02-01 FC AHHI| K2 0|23t EA|M =

—

Motivation and Overall Research Goal

* Concurrentprogrammingbecomes popular! Sodoes concurrency bug!

— 37 % of all open-source C# applications and 87% of large applications in
active code repositories use multi-threading [Okur & Dig FSE 2012]

Small (1K-10K) | Medium (10K-100K) Large (>100K)
of all projects in the study 6020 1553 205
of projects with multithreading 1761 916 178
of projects with parallel library uses 412 203 40

* Research goal Develop automated test generation for concurrent
programs to detect concurrency bugs effectively & efficiently

* Approach Utilize concurrent code coverage metrics in automated
test generation of concurrent programs

2013-02-01 T2 20 HAE X AWM Hong,Shin @ PSWLAB

Approach

Research challenges: utilize conc. coverage sound and effectively

* |s achieving high concurrent code coverage useful for testing
multithreaded programs?

* Empirical study on concurrent coverage metrics and their impacts
on testing effectiveness [Hong et al. ICST 2013]

 How to generate high concurrent code coverage achieving test
executions fast?
* Estimation-based thread scheduling algorithm [Hong et al. ISSTA 2012]
* |s there a better way to use concurrent coverage metric for
testing ?
* Set-coverage metric
* High set-coverage achieving thread scheduling
e Set-coverage based distributed test generation (on-going work)

2013-02-01 T2 HAE X1z MM Hong,Shin @ PSWLAB

Code Coverage for Concurrent Programs

* Test requirements of code coverage
for concurrent programs capture
different thread interaction cases

* Several metrics have been proposed
— Synchronization coverage:
blocking, blocked, follows,
synchronization-pair, etc.
— Statement-based coverage:
PSet, all-use, LR-DEF,

access-pair, statement-pair, etc.

2013-02-01 Improving Concurrent Program Testing through Structural

01:

l10:

int data ;

4

threadl() { 20: thread2() {
11: lock(m); 21: lock(m);
12: if (data ..){ 22: data = 0;
13: data =1 ; e
e 29: unlock(m);
18: unlock(m); e
Sync.-Pair: Stmt.-Pair:
{(11, 21), {(12, 22),
(21,11), ... } (22,13), ... }

Coverage

Hong,Shin @ PSWLAB

Impact of Conc. Coverage on Test. Effectiveness

e Concurrent coverage metrics have been proposed to support
systematic testing of concurrent programs

— A coverage metric derives test requirements from a target
program, which should be satisfied at least in a testing

— Several distinct concurrent coverage metrics have been
proposed

* Intuition behind: as more test requirements for the metrics are
satisfied, the testing process becomes likely to detect faults

However, no empirical evaluation and no quantification in
different coverage metrics

2013-02-01 T2 HAE X1z MM Hong,Shin @ PSWLAB

Research Questions

* Does a testing achieving higher code coverage detect more faults

than one achieving lower code coverage ?

— RQ1: for given two test suites of equal size, is the test suite with

higher coverage in a metric generally[more effectivg ?

* Does the coverage achieved positively impact the testing effectiveness?

— RQ2: is the|test suite achieving maximum coverage

effective than[random test suitd of equal size?

generally more

* Can we use concurrent coverage as a test reduction target?

* Isit “safe” to generate testing directed to increase coverage of a metric?

2013-02-01 T2 HAE X1z MM Hong,Shin @ PSWLAB

Study Design

* RQ1: for two test suites of equal size, is the test suite with higher

coverage in a metric generally more effective ?

 RQ2:is the test suite achieving maximum coverage generally more

effective than random test suite of equal size?

Independent variables

— Concurrent coverage metrics
* Existing eight coverage methods
— Test suite construction

 Random test suite construction of a given test suite size

* Greedy selection for a given coverage level of a metric
Dependent variables

Achieved concurrent coverage of a test suite in a metric

Test suite size

Mutation score (when a target program is a mutation system)

Singe fault detection (when a target program is a single fault system)

1L

2 HAE X}

£ AHAM
S oo

Hong,Shin @ PSWLAB

Concurrent Coverage Metrics Studied

* We selected eight concurrent coverage metrics for the study, that
are well-known while ensuring the diversity in the selection
— A concurrent coverage metric has two key properties:

« Type of code element that the metric is defined over (either
synchronizations, or shared data accesses)

* Number of code elements that a test requirement considers (either a
single element, or a pair of elements)

Synchronization operation | Data access operation
. blocking [9], .
Singular * LR-Def |2
ne plocked [9] o/ 121
Pairwise blocked-pair |3]. PSet |20],
‘ ' follows |3]. sync-pair [12] Def-Use [16]

2013-02-01

D2 EHAE A A

Hong,Shin @ PSWLAB

Experiment Setup

* Conducting our experiment requires us to

(1) Prepare faulty programs
(2) Conduct a large number of random test executions

(3) Record for each execution the test requirements covered for
all metrics and fault detection

) C toc | i . I

Noise-injection based random testing
* Insert a noise injection probe before every shared variable access,
and every lock acquire operation
 Probe makes time delay of a thread execution for T sec for a
probability P
 Use 12 combinations of T and P and normal program execution
- T: 5 msec, 10 msec, and 15 msec
-P:0.1,0.2,0.3,0.4

2013-02-01 T2 HAE X1z MM Hong,Shin @ PSWLAB

Experiment Setup: Test Suite Construction

e Study for RQ1

(@ Construct a test suite for each coverage point in a metric M,
* Mutation systems: generate test suites for each mutant
(@ For each constructed test suite, measure test suite size and fault detection
* Single fault systems
— Size: # of test execution in a test suite
— Fault detection: 1 if any exec. in a TS detects an error, 0 otherwise.
* Mutation systems
— Size: average # of executions in test suites over mutants
— Fault detection: # of mutants killed by their test suites

e Study for RQ2

@ Find the maximum coverage in a metric M

(2 Construct a test suite MAX that achieve maximum coverage whose size is
minimum

(3) Construct a test suite RND whose size is the same as MAX but collects
executions randomly

4 Measure fault detection of MAX and RND as similar to RQ1 study

2013-02-01 T2 20 HAE X AWM Hong,Shin @ PSWLAB

Result: Correlations in CV and FF

30 F 1 1 I = | |

1.0 ¥
—8- Blocked P e —8— Blocked R
25 H -4 Blocked-pair A - 0.8 --® - Blocked-pair
2 —— Blocking 7 m / / s —+— Blocking
S X b5
2 20 [... Def-Use . %’06 | -+ DefUse |
2 Follows s A Follows | e
= 15 i o4 = : |
E o LR-Def : / : £ 04 (® LR-Def .
S PSet :' 2 PSet
< 10 F : . < : -
--A-. Sync-pair / : 0.2 H -~ Sync-pair A b 7
5 ' ; -
] . .
I I | I 1 0.0, ! ! ! | L]
20 40 60 80 100 0 20 40 60 80 100
Coverage (%) Coverage (%)
[a} CDVClagc Vs Faul[Dclcc[]on Eﬂ'cc“\lcncbs [El} CD\-’CI‘ﬂgC Vs Falll[DCICC[iO[] EflCCIl\’C]le's
Vector Stringbuffer

* We measured (1) the correlations between each coverage and testing

effectiveness, and (2) the correlations between TS size and testing effectiveness

- (1) concurrent coverage metrics are moderate to strong predictor of
concurrent testing effectiveness

(2) concurrent coverage is often more strongly correlated with testing
effectiveness than test suite size

2013-02-01 Hong,Shin @ PSWLAB

Result: Effectiveness of Maximum Coverage

follows LR-Def PSet
MFF RFF Cv Sz MFF RFF Cy Sz MFF RFF Cy Sz
ArrayList 723 | 406 | 47.0% | 20.2 7.46 0.78 | 2.68% | 141 738 | 272 | 28.1% | 8.56
BoundedBuffer 423 1 395 | 87.0% | 42.7 2.12 2.93 13.3% | 296 || 4.38 | 3.80 | 32.4% | 17./
Vector 21.0 | 23.1 56.2% | 121 278 785 | 5.15% | 293 || 27.8 19.7 | 53.8% | 45.5

MFF: fault detection of maximum coverage test suite
RFF: fault detection of random test suite of equal size of MFF

* The result implies that achieving high coverage generally yields significant
increases in fault detection

— For example of a mutation system ArraylList, increases in average fault
detection of 1.7 to 9.5 times (MFF / RFF) at maximum coverage

— This result implies that that concurrent coverage metrics can be used
for directed test generation

e However, in many cases, MFF fails to achieve maximum fault
detection achieved by larger test suite of equal coverage

— For example of ArrayList, maximum fault detection is more than 8

2013-02-01 T2 20 HAE X AWM Hong,Shin @ PSWLAB

Discussion: Basic Guideline for Practitioner

Q: Which metric among eight should | use? A: PSet

— Has generally high correlation with fault detection

— Achieves always greater correlation with fault detection than test suite size
* Pairwise metrics are preferable for predictors of testing
effectiveness

— The correlation with fault detection for pairwise metrics tends to be higher
or equal than that for singular metric

* Pairwise metrics excel as targets for test case generation

* Using PSet + follows would be better than just using a metric alone

— A large difference in fault detection exists depending on the primitive
(synchronization/data access) used to define the metrics

— Metrics excellent in some circumstances perform poorly in others
* No coverage metric is a perfect test generation target !

2013-02-01 T2 HAE X1z MM Hong,Shin @ PSWLAB

Set Coverage Testing: Motivation (1/2)

* Testing beyond coverage saturation

SSISV;]CI; 160 Estimation-based
coverage 140 ——————~ testgen.
120 f R A TR o T TR TR —\ Random thread
P e, scheduling
o 100 o —
=) s
& 80 ||/
5 %07
= 60
o
40
20 ArrayList2
U 1 |
0 100 200 300 400 500 [Hong et al. ISSTA 12]

test execution

* Limitation of existing concurrent coverage directed test generation

— Existing coverage criteria does not provide effective guidance
after covering all feasible test requirements

— Existing coverage-guided test generation is no more effective
after reaching likely-saturation than random testing

2013-02-01 T2 HAE X1z MM Hong,Shin @ PSWLAB

Set Coverage Testing: Motivation (2/2)

 Measuring test requirements covered in an execution provides
useful information

— A set of test requirements derived from a program is a good
abstraction of thread interaction cases in the program behavior

* |sthere a better way of utilizing coverage metric?

— In test generation after reaching likely-saturation to avoid
redundant test executions

— In systematic exploration to reach corner case test requirement

— In distributed testing where plenty of computing resources are
available

=>» Set coverage criteria of a metric M
Test all possible combinations of test requirements derived by M

2013-02-01 T2 HAE X1z MM Hong,Shin @ PSWLAB

Set Coverage Definition

* Set coverage criteria of a metric M: for test requirements by M, a
testing should cover all combinations of test requirements

— A test requirement set {tr,, tr,, ..., try} is covered for an execution when there
is an execution in a testing that satisfies tr,, tr,, .. and tr,,.

— Set(N) coverage: the number of test requirement sets of size N covered in a
testing

* Suppose that test requirements t,, t,, ..., t,, for a program exist
— Set(2) coverage counts for {t,,t,}, {t,,t3}, ..., {ty 0t
— Set(3) coverage counts for {t,,t,,t;}, {t;,t,,t,}, - {thios thre Tl
— Set(1) coverage = conventional coverage

— Set(*) coverage = Path coverage

2013-02-01 T2 HAE X1z MM Hong,Shin @ PSWLAB

Intuition behind Set Coverage

* Set coverage criteria provides simple test generation targ
ets to complex test generation target gradually

* Certain concurrency error scenarios are characterized by
sequence of 2~3 thread interactions

— A subtle program behavior can be triggered after certain thread
interactions

Weak testing criteria Strong testing criteria

Random Covg(;a%e- Set-coverage Systematic
testing sulge testing testing
testing (model checking)
Scalability

Cove every thread Cover every combination Cover all sequence of
interaction case of thread interact. case related operations

Precision

2013-02-01 T2 HAE X1z MM Hong,Shin @ PSWLAB

Set Coverage Guided Test Generation

e Goal: perform fast Set(1) coverage as existing technique as well as
fast & progressive increase of Set(N) coverage after saturation

Early testing phase After Set(1) saturation
Set(1) cov. Set(N) cov. Set(1) cov. Set(N) cov.
Random Pro
gress

thread scheduling Moderate = Moderate low chance Moderate
Estlmatlon-t?ased High High Not Low
test generation orogressive
Mode.l Low Low Progressive High
checking
Set cov. guided . i . .
test generation High High Progressive High

2013-02-01 T2 20 HAE X AWM Hong,Shin @ PSWLAB

Thread Scheduling Algorithm

* Naive approach
— Method: record all possible test requirement sets and check a thread
scheduling decision cover unseen test requirement sets

— Limitation: saving test requirement sets incurs infeasible overhead
* For example, in testing ArraylList, # of PSet +SyncPair test. req. > 300,
and # of Set(3) test requirement sets is around 7 X 10°

* |dea

— Conjecture: a testing with high Set(N) coverage covers Set(2) test
requirement sets in many times evenly

* A testing with low Set(N) coverage of equal size will cover certain
test requirement set of Set(2) more frequently than others

— Method:
(1) For each TR set of size 2, count # of test exec. covering the TR set
(2) Select an operation at a thread scheduling decision to cover
most infrequently covered test requirement set of size 2

2013-02-01 T2 HAE X1z MM Hong,Shin @ PSWLAB

Preliminary Experiment Result (1/3)

 Comparing set coverage performance of our technique to existing ones

— Study subject is Java Collection Arraylist with synchronizedList
— Measure in TIC metric (PSet + follows)

— Three different measurements of a single experiment

Set(1) in TIC
400

350 - -

300 - //—
250
200

150
100
50

D T T T T T T T T T
1 101 201 301 401 501 601 701 801 901 _
Test executions

RandomWalk RandomNoise Est. Our tech.

2013-02-01 T2 HAE X1z MM Hong,Shin @ PSWLAB

Preliminary Experiment Result (2/3)

 Comparing set coverage performance of our technique to existing ones
— Study subject is Java Collection Arraylist with synchronizedList

— Measure in TIC metric (PSet + follows)

— Three different measurements of a single experiment

Set(2) in TIC
70000

60000

50000

40000

30000

20000

10000

D [[[[[[[[[

1 101 201 301 401 501 601 701 801 901
Test executions

RandomWalk RandomNoise Est. Our tech.

2013-02-01 Hong,Shin @ PSWLAB

Preliminary Experiment Result (3/3)

 Comparing set coverage performance of our technique to existing ones

— Study subject is Java Collection Arraylist with synchronizedList
— Measure in TIC metric (PSet + follows)
— Three different measurements of a single experiment

Set(3) in TIC
8000000
7000000
6000000 e =Rl
5000000 7 —

I //
4000000 -

3000000 -

2000000

1000000

D - | | | | | | | | | |

1 101 201 301 401 501 601 701 801 901
lest executions

RandomWalk RandomNoise Est. Our tech.

2013-02-01 Hong,Shin @ PSWLAB

Distributed Set Coverage Testing: Application

Execution

space of Partitioned
concurrent execution
programs space

[Distributed testing algorithm J

== — = =
8 = e 5 &

e Utilize distributed computing resources effectively to accelerate
test generation!

* Effective distributed testing requires the technique to guarantee

— Each node should generate non-redundant test executions
progressively

— Test executions generated in different nodes may not overlap
=» Use set coverage as a testing task partitioning criteria

2013-02-01 T2 HAE X1z MM Hong,Shin @ PSWLAB

Test Distribution by Scheduling Constraints

* Use scheduling constraints to parallelize set coverage testing tasks

— A scheduling constraint is a propositional formula over test requirements
generated by a concurrent coverage metric (e.g. Pset + Sync-Pair)

— A node should generate executions satisfying assigned scheduling constraint
* Suppose the test requirements for a program are t, t,, ..., t.

* A node assigned for a scheduling constraint f =t; v (t, A —t3) should
generate every execution generated by the node must cover either t, or

t, without covering t; (, and no other restriction)
— Scheduling constrains in a testing must satisfy the following two conditions:
* Each formula assigned for a node should be exclusive to others

e The disjunction of formulas should cover all test requirement sets

2013-02-01 T2 20 HAE X AWM Hong,Shin @ PSWLAB

Work in Progress

* Develop an algorithm to generate *good™ scheduling constraints
— Check dependency in test requirements by analyzing program structures

— Analyze previous execution results to find test requirements appropriate to
be in scheduling constraints

* Develop a mechanism of dynamic testing load balancing

 Empirically evaluate benefit of using set coverage as a test
generation target

2013-02-01 T2 HAE X1z MM Hong,Shin @ PSWLAB

DE AHEX][Z
=

SAIY ZRIYEAE

= M OMXHBI Matt Staats ZHEF

PROVABLE SW LAB
KAIST

2013-02-01 FC AHHI| K2 0|23t EA|M =

—

