
/ 25 Hong,Shin @ PSWLAB

코드 커버리지를 이용한
동시성 프로그램 테스트 자동 생성

홍 신 안재민 Matt Staats 김문주

Provable SW Lab

KAIST

1 2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성

/ 25 Hong,Shin @ PSWLAB

 Motivation and Overall Research Goal

• Concurrent programming becomes popular! So does concurrency bug!
– 37 % of all open-source C# applications and 87% of large applications in

active code repositories use multi-threading [Okur & Dig FSE 2012]

• Research goal Develop automated test generation for concurrent
programs to detect concurrency bugs effectively & efficiently

• Approach Utilize concurrent code coverage metrics in automated
test generation of concurrent programs

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 2

Small (1K-10K) Medium (10K-100K) Large (>100K)

of all projects in the study 6020 1553 205

of projects with multithreading 1761 916 178

of projects with parallel library uses 412 203 40

/ 25 Hong,Shin @ PSWLAB

 Approach
• Research challenges: utilize conc. coverage sound and effectively

• Is achieving high concurrent code coverage useful for testing
multithreaded programs?

• Empirical study on concurrent coverage metrics and their impacts
on testing effectiveness [Hong et al. ICST 2013]

• How to generate high concurrent code coverage achieving test
executions fast?

• Estimation-based thread scheduling algorithm [Hong et al. ISSTA 2012]

• Is there a better way to use concurrent coverage metric for
testing ?

• Set-coverage metric

• High set-coverage achieving thread scheduling

• Set-coverage based distributed test generation (on-going work)

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 3

/ 25 Hong,Shin @ PSWLAB

Code Coverage for Concurrent Programs

• Test requirements of code coverage
for concurrent programs capture
different thread interaction cases

• Several metrics have been proposed

– Synchronization coverage:

 blocking, blocked, follows,

 synchronization-pair, etc.

– Statement-based coverage:

 PSet, all-use, LR-DEF,

 access-pair, statement-pair, etc.

Improving Concurrent Program Testing through Structural
Coverage

4

01: int data ;
 …
10: thread1() {
11: lock(m);
12: if (data …){
13: data = 1 ;
 ...

18: unlock(m);
 ...

20: thread2() {
21: lock(m);
22: data = 0;
 ...

29: unlock(m);
 ...

Sync.-Pair:
 {(11, 21),
 (21,11), … }

Stmt.-Pair:
 {(12, 22),
 (22,13), … }

2013-02-01

/ 25 Hong,Shin @ PSWLAB

Impact of Conc. Coverage on Test. Effectiveness

• Concurrent coverage metrics have been proposed to support
systematic testing of concurrent programs

– A coverage metric derives test requirements from a target
program, which should be satisfied at least in a testing

– Several distinct concurrent coverage metrics have been
proposed

• Intuition behind: as more test requirements for the metrics are
satisfied, the testing process becomes likely to detect faults

However, no empirical evaluation and no quantification in
different coverage metrics

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 5

/ 25 Hong,Shin @ PSWLAB

 Research Questions

• Does a testing achieving higher code coverage detect more faults
than one achieving lower code coverage ?

– RQ1: for given two test suites of equal size, is the test suite with
higher coverage in a metric generally more effective ?

• Does the coverage achieved positively impact the testing effectiveness?

– RQ2: is the test suite achieving maximum coverage generally more
effective than random test suite of equal size?

• Can we use concurrent coverage as a test reduction target?

• Is it “safe” to generate testing directed to increase coverage of a metric?

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 6

/ 25 Hong,Shin @ PSWLAB

 Study Design

• Independent variables

– Concurrent coverage metrics

• Existing eight coverage methods

– Test suite construction

• Random test suite construction of a given test suite size

• Greedy selection for a given coverage level of a metric

• Dependent variables

– Achieved concurrent coverage of a test suite in a metric

– Test suite size

– Mutation score (when a target program is a mutation system)

– Singe fault detection (when a target program is a single fault system)

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 7

• RQ1: for two test suites of equal size, is the test suite with higher
 coverage in a metric generally more effective ?
• RQ2: is the test suite achieving maximum coverage generally more
 effective than random test suite of equal size?

/ 25 Hong,Shin @ PSWLAB

 Concurrent Coverage Metrics Studied

• We selected eight concurrent coverage metrics for the study, that
are well-known while ensuring the diversity in the selection

– A concurrent coverage metric has two key properties:

• Type of code element that the metric is defined over (either
synchronizations, or shared data accesses)

• Number of code elements that a test requirement considers (either a
single element, or a pair of elements)

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 8

/ 25 Hong,Shin @ PSWLAB

 Experiment Setup

• Conducting our experiment requires us to

(1) Prepare faulty programs

(2) Conduct a large number of random test executions

(3) Record for each execution the test requirements covered for
all metrics and fault detection

(4) Construct test suites by resampling over executions, and
measure size, coverage, and fault detection of each suite

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 9

 Noise-injection based random testing
• Insert a noise injection probe before every shared variable access,

and every lock acquire operation
• Probe makes time delay of a thread execution for T sec for a

probability P
• Use 12 combinations of T and P and normal program execution

 - T: 5 msec, 10 msec, and 15 msec
 - P: 0.1, 0.2, 0.3, 0.4

/ 25 Hong,Shin @ PSWLAB

 Experiment Setup: Test Suite Construction
• Study for RQ1

① Construct a test suite for each coverage point in a metric M,
• Mutation systems: generate test suites for each mutant

② For each constructed test suite, measure test suite size and fault detection
• Single fault systems

– Size: # of test execution in a test suite
– Fault detection: 1 if any exec. in a TS detects an error, 0 otherwise.

• Mutation systems
– Size: average # of executions in test suites over mutants
– Fault detection: # of mutants killed by their test suites

• Study for RQ2
① Find the maximum coverage in a metric M
② Construct a test suite MAX that achieve maximum coverage whose size is

minimum
③ Construct a test suite RND whose size is the same as MAX but collects

executions randomly
④ Measure fault detection of MAX and RND as similar to RQ1 study

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 10

/ 25 Hong,Shin @ PSWLAB

 Result: Correlations in CV and FF

• We measured (1) the correlations between each coverage and testing
effectiveness, and (2) the correlations between TS size and testing effectiveness

  (1) concurrent coverage metrics are moderate to strong predictor of
 concurrent testing effectiveness

 (2) concurrent coverage is often more strongly correlated with testing
 effectiveness than test suite size

 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 11 2013-02-01

Vector Stringbuffer

/ 25 Hong,Shin @ PSWLAB

Result: Effectiveness of Maximum Coverage

• MFF: fault detection of maximum coverage test suite

 RFF: fault detection of random test suite of equal size of MFF

• The result implies that achieving high coverage generally yields significant
increases in fault detection

– For example of a mutation system ArrayList, increases in average fault
detection of 1.7 to 9.5 times (MFF / RFF) at maximum coverage

– This result implies that that concurrent coverage metrics can be used
for directed test generation

• However, in many cases, MFF fails to achieve maximum fault
detection achieved by larger test suite of equal coverage
– For example of ArrayList, maximum fault detection is more than 8

 2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 12

1

/ 25 Hong,Shin @ PSWLAB

Discussion: Basic Guideline for Practitioner

• Q: Which metric among eight should I use? A: PSet
– Has generally high correlation with fault detection

– Achieves always greater correlation with fault detection than test suite size

• Pairwise metrics are preferable for predictors of testing
effectiveness
– The correlation with fault detection for pairwise metrics tends to be higher

or equal than that for singular metric

• Pairwise metrics excel as targets for test case generation

• Using PSet + follows would be better than just using a metric alone
– A large difference in fault detection exists depending on the primitive

(synchronization/data access) used to define the metrics

– Metrics excellent in some circumstances perform poorly in others

• No coverage metric is a perfect test generation target !

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 13

/ 25 Hong,Shin @ PSWLAB

Set Coverage Testing: Motivation (1/2)
• Testing beyond coverage saturation

• Limitation of existing concurrent coverage directed test generation

– Existing coverage criteria does not provide effective guidance
after covering all feasible test requirements

– Existing coverage-guided test generation is no more effective
after reaching likely-saturation than random testing

 2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 14

[Hong et al. ISSTA 12]

Estimation-based
test gen.

Random thread
scheduling

Sync-
Pair

coverage

/ 25 Hong,Shin @ PSWLAB

Set Coverage Testing: Motivation (2/2)

• Measuring test requirements covered in an execution provides
useful information

– A set of test requirements derived from a program is a good
abstraction of thread interaction cases in the program behavior

• Is there a better way of utilizing coverage metric?

– In test generation after reaching likely-saturation to avoid
redundant test executions

– In systematic exploration to reach corner case test requirement

– In distributed testing where plenty of computing resources are
available

  Set coverage criteria of a metric M

 Test all possible combinations of test requirements derived by M

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 15

/ 25 Hong,Shin @ PSWLAB

Set Coverage Definition

• Set coverage criteria of a metric M: for test requirements by M, a
testing should cover all combinations of test requirements

– A test requirement set {tr1, tr2, …, trN} is covered for an execution when there
is an execution in a testing that satisfies tr1, tr2, .. and trN.

– Set(N) coverage: the number of test requirement sets of size N covered in a
testing

• Suppose that test requirements t1, t2, …, tM for a program exist

– Set(2) coverage counts for {t1,t2}, {t1,t3}, …, {tM-1,tM}

– Set(3) coverage counts for {t1,t2,t3}, {t1,t2,t4}, …, {tM-2, tM-1, tM}

– Set(1) coverage = conventional coverage

– Set(*) coverage ≈ Path coverage

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 16

/ 25 Hong,Shin @ PSWLAB

 Intuition behind Set Coverage

• Set coverage criteria provides simple test generation targ
ets to complex test generation target gradually

• Certain concurrency error scenarios are characterized by
sequence of 2~3 thread interactions

– A subtle program behavior can be triggered after certain thread
interactions

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 17

Precision Scalability

Random
testing

Coverage-
guided
testing

Set-coverage
testing

Systematic
testing

(model checking)

Cover all sequence of
related operations

Cove every thread
interaction case

Cover every combination
of thread interact. case

Strong testing criteria Weak testing criteria

/ 25 Hong,Shin @ PSWLAB

Set Coverage Guided Test Generation

• Goal: perform fast Set(1) coverage as existing technique as well as
fast & progressive increase of Set(N) coverage after saturation

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 18

Random
thread scheduling

Estimation-based
test generation

Model
checking

Set cov. guided
test generation

Moderate

High

Low

High

Moderate

High

Low

High

Progress
in low chance

Moderate

Not
progressive

Low

Progressive High

Progressive High

Set(1) cov. Set(N) cov. Set(1) cov. Set(N) cov.

Early testing phase After Set(1) saturation

/ 25 Hong,Shin @ PSWLAB

Thread Scheduling Algorithm

• Naïve approach
– Method: record all possible test requirement sets and check a thread

scheduling decision cover unseen test requirement sets

– Limitation: saving test requirement sets incurs infeasible overhead
• For example, in testing ArrayList, # of PSet +SyncPair test. req. > 300,

 and # of Set(3) test requirement sets is around 7 X 106

• Idea
– Conjecture: a testing with high Set(N) coverage covers Set(2) test

requirement sets in many times evenly

• A testing with low Set(N) coverage of equal size will cover certain
test requirement set of Set(2) more frequently than others

– Method:

 (1) For each TR set of size 2, count # of test exec. covering the TR set

 (2) Select an operation at a thread scheduling decision to cover

 most infrequently covered test requirement set of size 2

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 19

/ 25 Hong,Shin @ PSWLAB

Preliminary Experiment Result (1/3)
• Comparing set coverage performance of our technique to existing ones

– Study subject is Java Collection ArrayList with synchronizedList

– Measure in TIC metric (PSet + follows)

– Three different measurements of a single experiment

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 20

Test executions

Set(1) in TIC

RandomWalk RandomNoise Est. Our tech.

/ 25 Hong,Shin @ PSWLAB

Preliminary Experiment Result (2/3)
• Comparing set coverage performance of our technique to existing ones

– Study subject is Java Collection ArrayList with synchronizedList

– Measure in TIC metric (PSet + follows)

– Three different measurements of a single experiment

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 21

RandomWalk RandomNoise Est. Our tech.

Test executions

Set(2) in TIC

/ 25 Hong,Shin @ PSWLAB

Preliminary Experiment Result (3/3)
• Comparing set coverage performance of our technique to existing ones

– Study subject is Java Collection ArrayList with synchronizedList

– Measure in TIC metric (PSet + follows)

– Three different measurements of a single experiment

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 22

Test executions

RandomWalk RandomNoise Est. Our tech.

Set(3) in TIC

/ 25 Hong,Shin @ PSWLAB

Distributed Set Coverage Testing: Application

• Utilize distributed computing resources effectively to accelerate
test generation!

• Effective distributed testing requires the technique to guarantee

– Each node should generate non-redundant test executions
progressively

– Test executions generated in different nodes may not overlap

  Use set coverage as a testing task partitioning criteria

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 23

Execution
space of

concurrent
programs

Distributed testing algorithm

Partitioned
execution
space

/ 25 Hong,Shin @ PSWLAB

Test Distribution by Scheduling Constraints

• Use scheduling constraints to parallelize set coverage testing tasks

– A scheduling constraint is a propositional formula over test requirements
generated by a concurrent coverage metric (e.g. Pset + Sync-Pair)

– A node should generate executions satisfying assigned scheduling constraint

• Suppose the test requirements for a program are t1, t2, …, tM.

• A node assigned for a scheduling constraint 𝑓 = 𝑡1 ∨ 𝑡2 ∧ ¬𝑡3 should
generate every execution generated by the node must cover either t1, or

t2 without covering t3 (, and no other restriction)

– Scheduling constrains in a testing must satisfy the following two conditions:

• Each formula assigned for a node should be exclusive to others

• The disjunction of formulas should cover all test requirement sets

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 24

/ 25 Hong,Shin @ PSWLAB

Work in Progress

• Develop an algorithm to generate *good* scheduling constraints
– Check dependency in test requirements by analyzing program structures

– Analyze previous execution results to find test requirements appropriate to
be in scheduling constraints

• Develop a mechanism of dynamic testing load balancing

• Empirically evaluate benefit of using set coverage as a test
generation target

2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성 25

/ 25 Hong,Shin @ PSWLAB

코드 커버리지를 이용한
동시성 프로그램 테스트 자동 생성

홍 신 안재민 Matt Staats 김문주

Provable SW Lab

KAIST

26 2013-02-01 코드 커버리지를 이용한 동시성 프로그램 테스트 자동 생성

