|
e SR s e
. .,:.I..-.”;‘ !

im0l IRl w
PALS ARCHITECTURE
(PHYSICALLY-ASYNCHR'C)NQ?S" LOGICALLY-SYNCHRONOUS)

Cheolgi Kim

AVIONICS SOFTWARE

Multi-processing rather than multi-threading
Failure of a function must not propagate to others

c.f. processes with different criticality must reside
in different VMs

Message interleaving is one of main sources of
complexity

MESSAGE INTERLEAVING

A major contributor to No Fault Found problem, #1
complaint by airlines”

Model checking state space grows exponentially due
to message interleaving

* http://www.aviationweek.com/aw/generic/story_generic.jsp?channel=om&id=news/om207cvr.xml

http://www.aviationweek.com/aw/generic/story_generic.jsp?channel=om&id=news/om207cvr.xml
http://www.aviationweek.com/aw/generic/story_generic.jsp?channel=om&id=news/om207cvr.xml

SYNCHRONOUS
DESIGN

VS

ASYNCHRONOUS
DESIGN

IN DISTRIBUTED SOFTWARE

SYNCHRONOUS MODEL

Lessons from H/W circuits
Nearly all digital circuits are synchronous

Synchronous model is proven to work

SYNCHRONOUS MODEL

Computation is triggered by a clock tick at each round

Computation changes
the node’s state and
1Ssues messages to
other nodes

A message is destined
at the next round

' round ¢ 1round (i+1

| |
rround (e + 2) 1
» > (I (02
[} [} | [}
|
|

Task 1]

Task 2 ,

ALY

computation with zero-time semantics

Task 3

ACTIVE-STANDBY
CONFIGURATION EXAMPLE

To compare synchronous and asynchronous design
Requirement

One and only one side must be active, which is
alive

When toggle button is
triggered, active side |

v v

must switch to the other .
as long as both are alive « m

SYNCHRONOUS DESIGN
FOR ACTIVE-STANDBY

Sidel: :eachPeriod() { Side?2: :eachPeriod() {
1f(sidel == sideZ2) { 1f(sidel == sideZ2) {

sidel = ACTIVE; side2 = STANDBY;
else if (sidel == NOT_ALIVE) { else if (side2 == NOT_ALIVE) {
sidel = STANDBY; side2 = STANDBY;
else if (side2 == NOT_ALIVE) { else if (sidel == NOT_ALIVE) {
sidel = ACTIVE; sideZ2 = ACTIVE;
else 1f(toggle) { else 1f(toggle) {
sidel = flip(sidel); side2 = flip(side2);
else { else {

sidel = sidel; ! side2 = sidel;

<

round i iround(i+-1
>

ASYNCHRONOUS MODEL

Each node has queues to hold messages

Computation and communications have no
restriction

DESIGN I - HEARTBEATS

A node must exchange heartbeats to be a watchdog

of each other

No heartbeat reception => switch to active side

void tx_timer_triggered()

{

}

send_heartbeat(my_state);

void rx_timeout_triggered()

{

}

my_state = ACTIVE;

void handle_heartbeat(int other_state)
{

reset_rx_timeout();
1f(my_state == STANDBY && other_state == STANDBY)
{

my_state = ACTIVE;
send_msg(EVT_BE_STANDBY); /* do nothing */

sidel side2

DESIGN I - TOGGLE

Standby side initiates toggle (NASA report)

Standby side switches to active, and ask the other
to switch to standby

Serialized event processing
Console SideT Side2

void handle_toggle() void handle_be_standby() toggle
{ { —>

1f(my_state == STANDBY) { my_state = STANDBY; e_Standby'

send_msg(EVT_BE_STANDBY); }
my_state = ACTIVE;

PROBLEM OF DESIGN I

Problem found by our model checking tool

Delayed delivery of toggle message causes no toggle

Console Side1 Side2

oggle —>
“Bo_standby,

be_standby

active standby

DESIGN II - PATCHED

Side 1 relays toggle message to Side 2

Total serialization of messages

Console Side1 Side?2 Console Side1 Side2

toggle
toggle | toggle | —»
be_standby”

e_standby,

[] active [CJstandby [] active [CJstandby

Hard to apply to triple redundancy — not scalable

YET ANOTHER PROBLEM

Console Side1 Side2

tOgg[e
—

[] active []standby

Heartbeat msg can be interleaved

LESSONS LEARNED

Asynchronous design does not look simple even for
very simple active-standby configuration

Some flaws in asynchronous design is not easily
detected by code review

Code does not describe message interleaving

PHYSICALLY
ASYNCHRONOUS
LOGICALLY
SYNCHRONOUS
(PALS)
SYSTEM

PALS MOTIVATION

Largely distributed system cannot have physically
global clock-tick generator for synchronous model

PALS realize logically synchronous system without
a global clock generator

Better performance and semantics than TTA (Time
Triggered Architecture)

Presented by TTTech at DASC 2011

PALS ARCHITECTURE

PALS is designed to realize synchronous model of
computation where there is no global clock generator

PALS parameters
Local time references have bounded jitter: €
Max computation time is given by Omax

Max network delay is given by [max

PALS OVERVIEW 1

All nodes have bounded jitters from global reference
Every node triggers computation at same local time

Round interval is given by
T > lmax + 26 + max(Qmax, 2€)

global ref.
of cIoFk tick
|
| |:Z Omax + ,um=arx |

To deliver messages ™)

before next round

A
of receiver ' F_
N H

REMAINED PROBLEM

Message may be delivered to the same round

global ref.
of clo?k tick

|
: T_
PALS :

task 1 >

|
|
PALS ‘

task 2 | >

|
PALS ‘

task 3 ;
I

>

Message must be sent after shaded time since all
the tasks start within the time

REMAINED PROBLEM

Message may be delivered to the same round

global ref.
of clock tick

PALS
task 1

A
PALS |
task 2 :

PALS
task 3 | ; |
2€

Message must be sent after shaded time since all
the tasks start within the time

PALS OVERVIEW I1

Receiver samples messages at each local clock tick

Sender transmits messages with minimal delay from
clock tick time of: 2e globa ref.

of clock tick
{2 Pmax + Max(Omax, 2€)
LA [S—

PALS | \ .
task 1 '

ms £\ F
=N VAN

task 3 | Y |

2€

I
>

Messages from round i are delivered to round (i + 1)

MULTI-RATE PALS

Communications between tasks in different rates are
performed in hyper period

Supervisor
in 60 ms

Control task
in 30 ms

Control task lI
in 20 ms

A sync thread running in hyper period is employed

The sync task must run first

FLEXPALS

Extension of PALS for Practice
More realistic implementation
Impose flexibility in synchrony

More scalable behavior in time

TIMESTAMP BASED
IMPLEMENTATION

Problem of intentional tx delay of original PALS
Sampling can be also be delayed

Delayed transmission is hard to 1mplement

. -
|

PALS

i H\ i

task 2

In FlexPALS, each message has timestamp of clock-
tick time, with which receiver resolves reception

FLEXPALS WITH PHASES

A PALS period is sub-divided by phases

For Lockheed Martin request

(Inverted Pendulum
Control

@ystem |=<5:

Pendulum
Console Task Guidance
y

period boundary

jitter tolerance

P,_ 1 —}e 7

HPC Task q,

High-Performance
Controller (HPC)

(4)
1

>

period boundary
t(Pis1)

| €— 7+1

HPC °

HPC calculation

High-Assurance
Controller (HAC)

HAC Task

task
HAC HAC calculation

)
[,
Dec. logi f
ec. 10gid r;

task 7
erted
Pendulum Pendulum []

—

_ r/,

task

t(o5)) t(ef

)

t(65”) oy)
= t(6{")

PROBLEM OF
MULTI-RATE PALS

At hyper period, control tasks have delayed
execution

Performance is bounded by the worst case of jitters,

computation time, and network delay

Supervisor
in 60 ms

Control task
in 30 ms

Control task I|
in 20 ms

FLEXPALS WITH
DELAYED EXECUTION

No sync task is needed

For scalability of multi-rate PALS, supervisory task
execution may be delayed

Console

PGS

HAC in

endulu
subsystem | Pendulum 1 0 1 B 0000 00
Control

FLEXPALS

Design maximally reflected Lockheed Martin
requests

The only division that has been applied in pilot
project by Lockheed Martin

E-mail from Lui Sha to the group

The fact that PALS was being transitioned was critical to get our contract extended.And
we should all thank Charlie for doing a wonderful job in working with LMC engineers. By
Dec 1, we will be in the 4" year, we want to emphasize things that are easier to transition
in THIS MEETING.

MODEL CHECKING
APPLICATIONS
WITH PALS FRAMEWORK

MOTIVATION

Lockheed Martin is highly interested in formal
verification of S/W in source code level

Once message interleaving complexity is removed by
synchronous model, verification based on model
checking should be viable

AADL" is getting accepted by avionics industry,
which can be used as requirements to check

* a design language for avionics systems

VERIFICATION SYSTEM
ARCHITECTURE

AADL C
Design Implementation

v D Y

source analyzer]

API logic
traces || traces

KLE

// \ ¥ -
”
— ‘compliance] [logic
WCET pllance logic
analvzer (ASIIST)— verification || verification
4 __engine J7| engine |
schedulability analyzer \Maude/

MODEL-CHECKER
OVERVIEW

. . AADL C
We assume PALS library is good ‘_Design | "mp'ememation)

v N
source analyzer

API logic
traces || traces

'é'/ g complianc logic
u—»[verlflcatlon]:[verlflcatlon]
. engine engine
Uses KLEE to have exhaustive Lsneaussity snayzer Waued
execution traces

Source code analyzer

KLEE was selected for MC/DC equivalence

Distributed behavior analyzer

Implemented in Maude model checking language

WHAT IT VERIFIES

Schedulability Analysis
Compliance verification engine
Hint from Windows Driver Verifier
API usage compliance
C code — AADL design compliance
Logic verification engine

Yet needed to be improved

MEASURED COMPLEXITY
OF ACTIVE-STANDBY

le+06 ¢

258346 |

of states (log scale)

100000 & 56948
| OOOO : 10809
1000
100 ¢
- 39
10

Synchronous Asynchronous

* n = max. queue size

WHY I AM HERE

PALS framework verification
Library cannot be verified through model-checking

Like sel4, distributed system framework may be
formally verifiable with minimal assumptions

Real-time functional language
Avionics system needs verification
Avionics system must be real-time
Avionics SW is usually simple

Functional language with limitation for real-time!

GAP BETWEEN MODEL
AND IMPLEMENTATION

Modeling of time
Global clock reference does not exist, neither does
Jitter
Primary clock server may be altered for failures

Jitter from global clock must
be replaced by clock skews o 'b.lktlk“m o
with each other PaLs

Local time speed is PALS | : /<\
A—n—»
adjusted over time PALS T: |

tk3| |

CLOCK SYNCHRONIZER

Key of time system
Algorithms
Christian algorithm - easier to verify

Phased lock loop (PLL) - more suitable for avionics
- Based on PID control idea

Hybrid approach

HOW TO USE KLEE

|

|

|

configure |

real-time thread ll

|

create thread |

€ !
/ ;

Gnitialize threaca

Y
>Cet wait schedul} -----

o) NA R
[operstion J A /I Z\ Z\ &
I TV FA N

\ - .

C finalize) I (b) symbolic path exploration tree
I
I

.lnitialization routine

<€

eriodic

y for verification environment

@® |

(a) activity diagram showing typical
real-time application for D?RTS model

KRIPKE STRUCTURE
FROM KLEE

