
PALS ARCHITECTURE
(PHYSICALLY-ASYNCHRONOUS LOGICALLY-SYNCHRONOUS)

Cheolgi Kim

AVIONICS SOFTWARE

Multi-processing rather than multi-threading

Failure of a function must not propagate to others

c.f. processes with different criticality must reside
in different VMs

Message interleaving is one of main sources of
complexity

MESSAGE INTERLEAVING

A major contributor to No Fault Found problem, #1
complaint by airlines*

Model checking state space grows exponentially due
to message interleaving

* http://www.aviationweek.com/aw/generic/story_generic.jsp?channel=om&id=news/om207cvr.xml

http://www.aviationweek.com/aw/generic/story_generic.jsp?channel=om&id=news/om207cvr.xml
http://www.aviationweek.com/aw/generic/story_generic.jsp?channel=om&id=news/om207cvr.xml

SYNCHRONOUS
DESIGN

VS

ASYNCHRONOUS
DESIGN

IN DISTRIBUTED SOFTWARE

SYNCHRONOUS MODEL

Lessons from H/W circuits

Nearly all digital circuits are synchronous

Synchronous model is proven to work

SYNCHRONOUS MODEL

Computation is triggered by a clock tick at each round

Computation changes
the node’s state and
issues messages to
other nodes

A message is destined
at the next round

round round round

Task 1

i (i+ 1) (i+ 2)

Task 2

Task 3

computation with zero-time semantics

ACTIVE-STANDBY
CONFIGURATION EXAMPLE

To compare synchronous and asynchronous design

Requirement

One and only one side must be active, which is
alive

When toggle button is
triggered, active side
must switch to the other
as long as both are alive

Console

Side 1 Side 2

SYNCHRONOUS DESIGN
FOR ACTIVE-STANDBY

Side1::eachPeriod() {

 if(side1 == side2) {

 side1 = ACTIVE;

 } else if (side1 == NOT_ALIVE) {

 side1 = STANDBY;

 } else if (side2 == NOT_ALIVE) {

 side1 = ACTIVE;

 } else if(toggle) {

 side1 = flip(side1);

 } else {

 side1 = side1;

 }

}

Side2::eachPeriod() {

 if(side1 == side2) {

 side2 = STANDBY;

 } else if (side2 == NOT_ALIVE) {

 side2 = STANDBY;

 } else if (side1 == NOT_ALIVE) {

 side2 = ACTIVE;

 } else if(toggle) {

 side2 = flip(side2);

 } else {

 side2 = side2;

 }

}

round round round

Side 1

i (i+ 1) (i+ 2)

Side 2

Console
toggle toggle

ASYNCHRONOUS MODEL

Each node has queues to hold messages

Computation and communications have no
restriction

5 Asynchronous Design

To compare the complexity, we also designed an active-standby system based
on asynchronous communications. Since messages can be issued and delivered
at any time in asynchronous communications, each node must employs message
queues not to accidentally lose messages. The system configuration for active-
standby system is depicted in Figure 7. In asynchronous systems, message
queues are usually the source of complexity as well as the source of the state
space explosions. Since messages are often queued (and hence delayed), di↵erent
subsystems tend to have di↵erent perspectives on the situation. If messages are
queued in both directions between a pair of nodes, the system experiences race
conditions.

Side1 Side2

Console

Figure 7: Active-standby system configuration in an asynchronous environment

Our asynchronous design is based on [6], which presents the design and
verification of an asynchronous active-standby system. The authors claimed
that they performed model-checking to verify the correctness of the system,
and it took 35 hours in NuSMV [5]. Moreover, the authors mentioned that
the design took about 6 months to be fully completed and verified. Since the
document does not include the precise design of the system, the details of our
design may not be the same as [6]. Indeed, our current design is not complete
with a proof of safety. This design has the following basic behaviors:

• An alive controller generates EvtHeartbeat to the other controller to no-
tify its liveness.

• If no EvtHeartbeat comes in for a while, the controller regards the other
side has failed, taking ACTIVE side role.

• The console delivers EvtManualSelect only to Side1 at the event of user
input. If Side1 is not supposed to process the event, the event is forwarded
to Side2. The reason why the event is forwarded by Side1 rather than
being broadcasted simultaneously to both controllers by the console is to
avoid race condition.

• (EvtManualSelect) is only processed by the STANDBY controller. On the
reception of the event, the STANDBY controller switches its role to ACTIVE,
and enforces the other side to be STANDBY by sending EvtStandby.

10

DESIGN I – HEARTBEATS

A node must exchange heartbeats to be a watchdog
of each other

No heartbeat reception => switch to active side

void tx_timer_triggered()

{
 send_heartbeat(my_state);

}

void rx_timeout_triggered()
{

 my_state = ACTIVE;
}

void handle_heartbeat(int other_state)

{
 reset_rx_timeout();

 if(my_state == STANDBY && other_state == STANDBY)
 {

 my_state = ACTIVE;
 send_msg(EVT_BE_STANDBY);

 }
}

/* do nothing */

side1 side2

DESIGN I – TOGGLE

Standby side initiates toggle (NASA report)

Standby side switches to active, and ask the other
to switch to standby

Serialized event processing
Console Side1 Side2

toggle

be_standby

active standby

void handle_toggle()

{
 if(my_state == STANDBY) {

 send_msg(EVT_BE_STANDBY);
 my_state = ACTIVE;

 }
}

void handle_be_standby()

{
 my_state = STANDBY;

}

PROBLEM OF DESIGN I

Problem found by our model checking tool

Delayed delivery of toggle message causes no toggle

Console Side1 Side2

toggle
be_standby

active standby

be_standby

DESIGN II – PATCHED

Side 1 relays toggle message to Side 2

Total serialization of messages

Hard to apply to triple redundancy – not scalable

Console Side1 Side2

be_standby

active standby

toggle
toggle

Console Side1 Side2

toggle

active standby

be_standby

YET ANOTHER PROBLEM

Heartbeat msg can be interleaved

Console Side1 Side2
toggle

be_st
andby

active standby

toggle

hb_stby

be_standby

LESSONS LEARNED

Asynchronous design does not look simple even for
very simple active-standby configuration

Some flaws in asynchronous design is not easily
detected by code review

Code does not describe message interleaving

PHYSICALLY
ASYNCHRONOUS

LOGICALLY
SYNCHRONOUS

(PALS)
SYSTEM

PALS MOTIVATION

Largely distributed system cannot have physically
global clock-tick generator for synchronous model

PALS realize logically synchronous system without
a global clock generator

Better performance and semantics than TTA (Time
Triggered Architecture)

Presented by TTTech at DASC 2011

PALS ARCHITECTURE

PALS is designed to realize synchronous model of
computation where there is no global clock generator

PALS parameters

Local time references have bounded jitter:

Max computation time is given by

Max network delay is given by

✏

↵
max

µ
max

PALS OVERVIEW I

All nodes have bounded jitters from global reference

Every node triggers computation at same local time

Round interval is given by

To deliver messages
before next round
of receiver

PALS
task 1

PALS
task 2

PALS
task 3

global ref.
of clock tick

2✏

� ↵
max

+ µ
max

T � µ
max

+ 2✏+max(↵
max

, 2✏)

REMAINED PROBLEM

Message may be delivered to the same round

Message must be sent after shaded time since all
the tasks start within the time

PALS
task 1

PALS
task 2

PALS
task 3

global ref.
of clock tick

2✏

REMAINED PROBLEM

Message may be delivered to the same round

Message must be sent after shaded time since all
the tasks start within the time

PALS
task 1

PALS
task 2

PALS
task 3

global ref.
of clock tick

2✏

PALS OVERVIEW II

Receiver samples messages at each local clock tick

Sender transmits messages with minimal delay from
clock tick time of:

Messages from round i are delivered to round (i + 1)

2✏

PALS
task 1

PALS
task 2

PALS
task 3

global ref.
of clock tick

2✏

� µ
max

+max(↵
max

, 2✏)

MULTI-RATE PALS

Communications between tasks in different rates are
performed in hyper period

A sync thread running in hyper period is employed

The sync task must run first

Supervisor
in 60 ms

Control task
in 30 ms

Control task
in 20 ms

FLEXPALS

Extension of PALS for Practice

More realistic implementation

Impose flexibility in synchrony

More scalable behavior in time

TIMESTAMP BASED
IMPLEMENTATION

Problem of intentional tx delay of original PALS

Sampling can be also be delayed

Delayed transmission is hard to implement

In FlexPALS, each message has timestamp of clock-
tick time, with which receiver resolves reception

PALS
task 1

PALS
task 2

PALS
task 3

2✏

FLEXPALS WITH PHASES

A PALS period is sub-divided by phases

For Lockheed Martin request

�(i)
0

Pendulum
task

HAC
task

HPC
task

period boundary period boundary

�(i)
3

t(�(i)
0) t(�(i)

1) t(�(i)
2) t(�(i)

3)
= t(�(i)

4)
t(�(i+1)

0)

�(i)
2�(i)

1

Pi Pi+1Pi�1

t(Pi) = pi t(Pi+1)jitter tolerance

HAC calculation

HPC calculation

Dec. logic

High-Performance
Controller (HPC)

High-Assurance
Controller (HAC)

HAC Task

Decision
logic

Inverted
Pendulum
Subsystem

(Task)

HPC Task

 Inverted Pendulum
 Control
 System

Console Task
Pendulum
Guidance

System (PGS)

PROBLEM OF
MULTI-RATE PALS

At hyper period, control tasks have delayed
execution

Performance is bounded by the worst case of jitters,
computation time, and network delay

Supervisor
in 60 ms

Control task
in 30 ms

Control task
in 20 ms

FLEXPALS WITH
DELAYED EXECUTION

No sync task is needed

For scalability of multi-rate PALS, supervisory task
execution may be delayed

HAC in
Pendulum

Control

PGS

Console
�(i)
0

Pi Pi+1Pi�1

t(Pi) = pi t(Pi+1)

capturing
UI state

High-Performance
Controller (HPC)

High-Assurance
Controller (HAC)

HAC Task

Decision
logic

Inverted
Pendulum
Subsystem

(Task)

HPC Task

 Inverted Pendulum
 Control
 System

Console Task
Pendulum
Guidance

System (PGS)

FLEXPALS

Design maximally reflected Lockheed Martin
requests

The only division that has been applied in pilot
project by Lockheed Martin

E-mail from Lui Sha to the group
The fact that PALS was being transitioned was critical to get our contract extended. And
we should all thank Charlie for doing a wonderful job in working with LMC engineers. By
Dec 1, we will be in the 4th year, we want to emphasize things that are easier to transition
in THIS MEETING.

MODEL CHECKING
APPLICATIONS

WITH PALS FRAMEWORK

MOTIVATION

Lockheed Martin is highly interested in formal
verification of S/W in source code level

Once message interleaving complexity is removed by
synchronous model, verification based on model
checking should be viable

AADL* is getting accepted by avionics industry,
which can be used as requirements to check

* a design language for avionics systems

VERIFICATION SYSTEM
ARCHITECTURE

Maude

KLEE

AADL
Design

C
Implementation

ASIISTWCET
analyzer

compliance
verification

engine

logic
verification

engine

source analyzer
API

traces
logic

traces

schedulability analyzer

MODEL-CHECKER
OVERVIEW

We assume PALS library is good

Source code analyzer

Uses KLEE to have exhaustive
execution traces

KLEE was selected for MC/DC equivalence

Distributed behavior analyzer

Implemented in Maude model checking language

Maude

KLEE

AADL
Design

C
Implementation

ASIISTWCET
analyzer

compliance
verification

engine

logic
verification

engine

source analyzer
API

traces
logic

traces

schedulability analyzer

WHAT IT VERIFIES

Schedulability Analysis

Compliance verification engine

Hint from Windows Driver Verifier

API usage compliance

C code – AADL design compliance

Logic verification engine

Yet needed to be improved

MEASURED COMPLEXITY
OF ACTIVE-STANDBY

 10

 100

 1000

 10000

 100000

 1e+06

n=1 n=2 n=3

#
 o

f
st

at
es

 (
lo

g
 s

ca
le

)

Synchronous Asynchronous

39

10809

56948

258346

* n = max. queue size

WHY I AM HERE
PALS framework verification

Library cannot be verified through model-checking

Like seL4, distributed system framework may be
formally verifiable with minimal assumptions

Real-time functional language

Avionics system needs verification

Avionics system must be real-time

Avionics SW is usually simple

Functional language with limitation for real-time!

GAP BETWEEN MODEL
AND IMPLEMENTATION
Modeling of time

Global clock reference does not exist, neither does
jitter

Primary clock server may be altered for failures

Jitter from global clock must
be replaced by clock skews
with each other

Local time speed is
adjusted over time

PALS
task 1

PALS
task 2

PALS
task 3

global ref.
of clock tick

2✏

� µ
max

+max(↵
max

, 2✏)

CLOCK SYNCHRONIZER

Key of time system

Algorithms

Christian algorithm - easier to verify

Phased lock loop (PLL) - more suitable for avionics
- Based on PID control idea

Hybrid approach

THANK YOU

HOW TO USE KLEE

configure
real-time thread

create thread

initialize thread

det_wait_schedule

periodic
operation

finalize

in
iti

al
iz

at
io

n
ro

ut
in

e
pe

rio
di

c
ro

ut
in

e
(a) activity diagram showing typical
 real-time application for D RTS model

(b) symbolic path exploration tree
 for verification environment

2

KRIPKE STRUCTURE
FROM KLEE

AADL
properties

l(1,1)
{det_init}

l(2,1)
{det_init}

l(3,1)
{det_init}

l(n,1)
{det_init}

l(2,1)
{pthread_

...}

l(3,1)
{pthread_

...}

l(n,1)
{pthread_

...}

det_init()
failed

l(2, ‧)
{ ... }

l(3, ‧)
{ ... }

l(n, ‧)
{ ... }

...

...

