Feb 012013

마르쿄프 체인, 이론과 그 응용

Kyomin Jung
 KAIST

Applied Algorithm Lab

Overview

- Markov Chain
- Example
- Stationary Distribution
- Banach Fixed Point Theorem
- Application: Page Rank

Markou Process

- Markov Property: The state of the system at time $t+1$ depends only on the state of the system at time t

$$
\operatorname{Pr}\left[X_{t+1}=x_{t+1} \mid X_{1} \cdots X_{t}=x_{1} \cdots x_{t}\right]=\operatorname{Pr}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right]
$$

- Transition probabilities are independent of time

$$
\operatorname{Pr}\left[X_{t+1}=b \mid X_{t}=a\right]=p_{a b}
$$

Markou Chain : A Simple Example

Weather:

- raining today

40\% rain tomorrow
60\% no rain tomorrow

- not raining today

20\% rain tomorrow
80\% no rain tomorrow

Markou Chain : A Simple Example

Weather:

- raining today

- not raining today

The transition matrix:

$$
P=\left(\begin{array}{ll}
0.4 & 0.6 \\
0.2 & 0.8
\end{array}\right)
$$

40\% rain tomorrow
60\% no rain tomorrow

20\% rain tomorrow
80\% no rain tomorrow

Rows sum up to 1

Markou Property

- "Future" is independent of "Past" and depend only on "Present"

■ In other words: Memoryless

- Useful for modeling and analyzing many real systems

Markou Chain

Coke us Pepsi example

- Given that a person's last cola purchase was Coke, there is a 90% chance that his next cola purchase will also be Coke.
- If a person's last cola purchase was Pepsi, there is an 80% chance that his next cola purchase will also be Pepsi.
transition matrix:

$$
P=\left[\begin{array}{ll}
0.9 & 0.1 \\
0.2 & 0.8
\end{array}\right]
$$

Markou Chain

Coke us Pepsi example

Given that a person is currently a Pepsi purchaser, what is the probability that he will purchase Coke two purchases from now?

$$
\begin{aligned}
& \text { Pr[Pepsi } \rightarrow \text { ? } \rightarrow \text { Coke] }= \\
& \text { Pr[Pepsi } \rightarrow \text { Coke } \rightarrow \text { Coke] + Pr[Pepsi } \rightarrow \text { Pepsi } \rightarrow \text { Coke] }= \\
& 0.2 * 0.9+0.8 * 0.2=0.34 \\
& \left.P=\underset{\substack{\dagger \\
\text { Pepsi } \rightarrow \text { ? }}}{\left[\begin{array}{ll}
0.9 & 0.1 \\
0.2 & 0.8
\end{array}\right]} \underset{\substack{0 \\
0.9 \\
0.2 \\
0.2 \\
\hline}}{ } \begin{array}{l}
0.1 \\
0.8
\end{array}\right]=\left[\begin{array}{ll}
0.83 & 0.17 \\
0.34 & 0.66
\end{array}\right]
\end{aligned}
$$

Markou Chain

Coke us Pepsi example

Given that a person is currently a Coke purchaser, what is the probability that he will purchase Pepsi three purchases from now?
$P^{3}=\left[\begin{array}{ll}0.9 & 0.1 \\ 0.2 & 0.8\end{array}\right]\left[\begin{array}{ll}0.83 & 0.17 \\ 0.34 & 0.66\end{array}\right]=\left[\begin{array}{ll}0.781 & 0.219 \\ 0.438 & 0.562\end{array}\right]$

Markou Chain

Coke us Pepsi example

-Assume each person makes one cola purchase per week
-Suppose 60\% of all people now drink Coke, and 40% drink Pepsi
-What fraction of people will be drinking Coke three weeks from now?

$$
P=\left[\begin{array}{ll}
0.9 & 0.1 \\
0.2 & 0.8
\end{array}\right] \quad P^{3}=\left[\begin{array}{ll}
0.781 & 0.219 \\
0.438 & 0.562
\end{array}\right]
$$

$\operatorname{Pr}\left[X_{3}=\right.$ Coke $]=0.6 * 0.781+0.4 * 0.438=0.6438$
π_{k} - the distribution in week k
$\pi_{0}=(0.6,0.4)$ - initial distribution
$\pi_{3}=\pi_{0} * P^{3}=(0.6438,0.3562)$

Markou Chain

Coke us Pepsi example

Stationary Distribution

Note that

$$
\pi_{k+1}=\pi_{k} P
$$

Stationary Distribution: $\pi=\lim _{k \rightarrow \infty} \pi_{k}$ for any π_{0}.

If such π exists, it satisfies that

$$
\text { for all j}, \quad \sum_{i} p_{i j} \pi(j)=\pi(j) \quad \text { and } \sum_{i} \pi(j)=1
$$

Special case : Contraction Map

- Let (X, d) be a metric space, $f: X \rightarrow X$ is called a contraction if there is a $\rho \in[0,1)$ such that

$$
d(f(x), f(y)) \leq \rho d(x, y) \forall x, y \in X
$$

A Markov Chain is a contraction if for any two initial distributions π_{1}, π_{2},

$$
\mathrm{d}\left(\pi_{1} \mathrm{P}, \pi_{2} \mathrm{P}\right) \leq \rho \mathrm{d}\left(\pi_{1}, \pi_{2}\right)
$$

Banach Fixed Point Theorem

- Let (X, d) be a complete metric space, and $f: X \rightarrow X$ be a contraction. Then f has a fixed point. Further, this fixed point is unique.
- So if $d\left(\pi_{1} P, \pi_{2} P\right) \leq \rho d\left(\pi_{1}, \pi_{2}\right)$ for some $\rho \in[0,1)$, then the Markov Chain P has a unique stationary distribution (fixed point).

PageRank: Markou Chain over the Web

- If a user starts at a random web page and surfs by clicking links and randomly entering the new web page, what is the probability that a random user is found at a web page?
- The PageRank of a page captures this notion \square "popular" web page get a higher rank \square This gives a rule for a random walk on The Web graph (a directed graph).

PageRank: Formula

Given page A, and pages $T_{1}, \ldots T_{j}$ linking to A, PageRank PR(A) of A is defined as the solution of :

$$
\begin{gathered}
\operatorname{PR}(A)=(1-\rho)+\rho\left(\operatorname{PR}\left(T_{1}\right) / D\left(T_{1}\right)+\ldots+\right. \\
\left.\operatorname{PR}\left(T_{j}\right) / C\left(T_{j}\right)\right)
\end{gathered}
$$

$\square D(T)$ is the out-degree of page T
$\square \rho$ is the "random URL" factor ($=0.85$)

- Then, PR/n is the stationary distribution of the corresponding Markov chain, where n is the total number of web pages.

$$
\begin{aligned}
\mathrm{PR}(\mathrm{~A}) & =(1-\rho)+\rho^{*}(\mathrm{PR}(\mathrm{~T} 1) / \mathrm{D}(\mathrm{~T} 1)+\mathrm{PR}(\mathrm{~T} 2) / \mathrm{D}(\mathrm{~T} 2)+\mathrm{PR}(\mathrm{~T} 3) / \mathrm{D}(\mathrm{~T} 3)) \\
& =0.15+0.85^{*}(0.5 / 3+0.3 / 4+1.5 / 5)
\end{aligned}
$$

PageRank: Computation

- This Markov Chain is a contraction with $\rho=0.85$, and PR is its stationary distribution.
\square Banach fixed point theorem holds
- Hence PR can be calculated iteratively :

$$
\operatorname{PR}_{i+1}(\mathrm{~A})=(1-\rho)+\rho\left(\mathrm{PR}_{\mathrm{i}}\left(\mathrm{~T}_{1}\right) / \mathrm{C}\left(\mathrm{~T}_{1}\right)+\ldots+\mathrm{PR}_{\mathrm{i}}\left(\mathrm{~T}_{\mathrm{n}}\right) / \mathrm{C}\left(\mathrm{~T}_{\mathrm{n}}\right)\right)
$$

- Each page distributes its PR_{i} to all pages it links to. Linkees add up their awarded ranks to compute their $\mathrm{PR}_{\mathrm{i}+1}$.
$■ P R_{i}$ converges exponentially fast over i.

