Parallel Processing in Financial Engineering

Sungjoo Ha

sungjooha@soar.snu.ac.kr Seoul National University, Optimization and Financial Engineering Lab

Finding Attractive Technical Patterns

- Attractive technical patterns in stock market
 - Profitable
 - Human interpretable
 - Frequent
- Use genetic programming (GP) to evolve attractive technical patterns

Possible Cut-Points ---- Boolean Operator Nodes

Log-Optimal Portfolio Selection

• Maximizing the expected log investment return of a portfolio

$$\boldsymbol{b} = (b_1, b_2, \cdots, b_m)^t, \quad b_i \ge 0, \quad \sum b_i = 1$$
$$\boldsymbol{X} = (X_1, X_2, \cdots, X_m)^t \sim F(\boldsymbol{x}), \quad \boldsymbol{x} \in \boldsymbol{R}^m$$

Figure 4: A portfolio and stock vector

$$W(\boldsymbol{b}) = E \ln \boldsymbol{b}^t \boldsymbol{X} = \int \ln \boldsymbol{b}^t \boldsymbol{x} \, \mathrm{d}F(\boldsymbol{x})$$

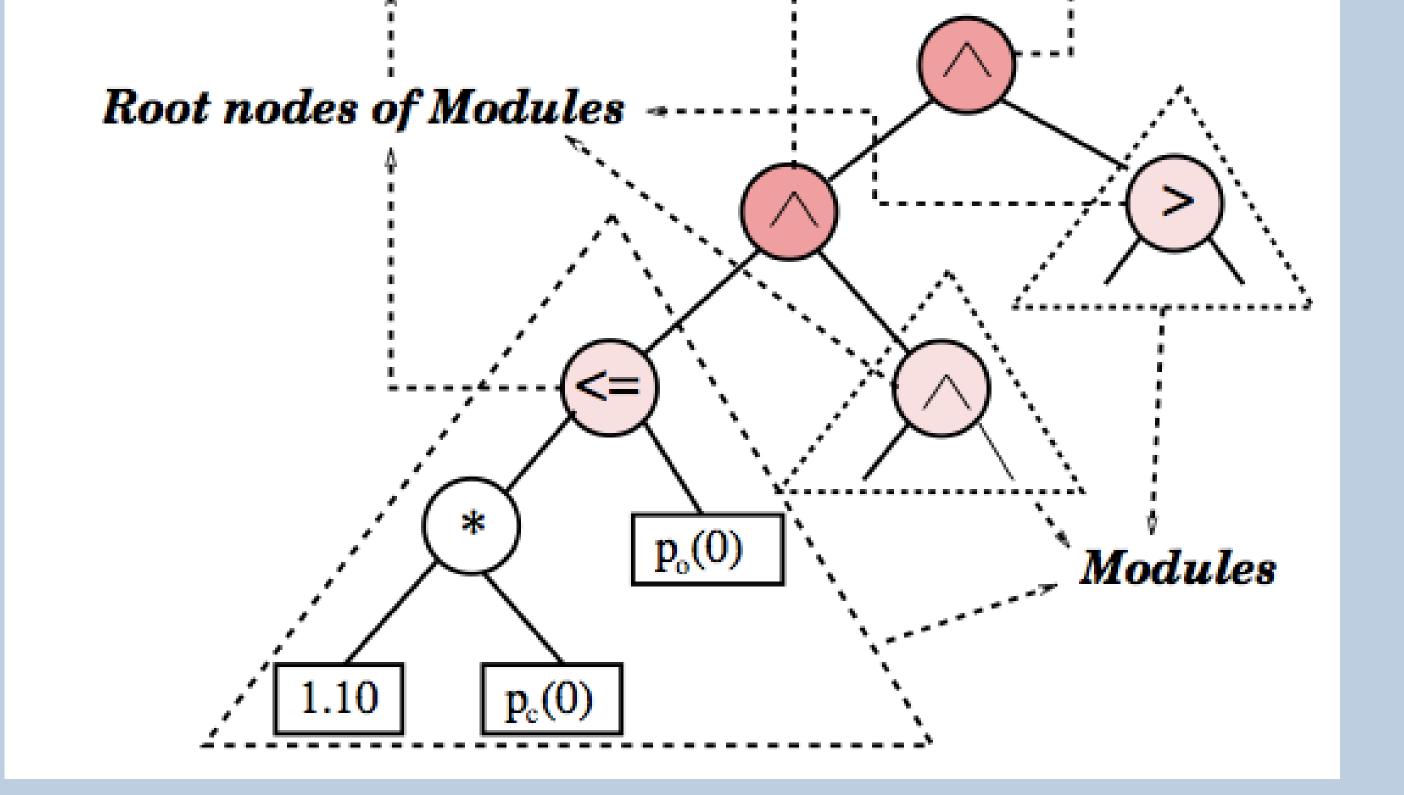


Figure 1: Genetic programming for finding attractive technical patterns

$$E_k(r) = \frac{1}{|R(r)|} \sum_{(i,j)\in R(r)} \frac{P_c(i,j+k)}{P_c(i,j)}$$

$$W^* = \max_{\boldsymbol{b}} W(\boldsymbol{b})$$

Figure 5: Expected log investment return of a portfolio

- We wish to find an optimal portfolio \boldsymbol{b}
 - Various approaches are available
- Iterative algorithms approach
 - Need to calculate $W(\mathbf{b})$ but requires complicated integration
 - Can be overcome by the method of sampling

$$X_1, \dots, X_n \sim p$$
 i.i.d.
 $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n f(X_i)$

Figure 6: A basic Monte Carlo estimate of Ef(X)

Figure 2: Expected earning rate of pattern r after k trading days

$$f(r) = \begin{cases} \frac{1}{n} \sum_{k=1}^{n} E_k(r) & \text{if } |r| < M, |R(r)| \ge m \\ 0 & \text{otherwise} \end{cases}$$

Figure 3: Fitness function for modular GP

Parallelization of Fitness Evaluation

- Fitness evaluation takes the majority of GP running time
 - But the evaluation of fitness function is embarrassingly parallel
 - Exploit this parallelism using GPGPUs

• Currently achieves more than 100 fold increase in processing power^a

- Multiple GPU devices b
- Minimizing the data transfer between CPU and GPU
 - * Load the data once

Parallelization of Computing Expected Return

Do the following for each thread; repeat Sample X from F(x); Calculate $\ln b^t X$; Perform parallel reduction; until Some accuracy criteria; Algorithm 1: Parallel computation of W(b)

• Computing $W(\boldsymbol{b})$ fast enough allows us to use iterative methods for the optimization

Challenges

- Finding parallelizable component of a program
- Speed and accuracy trade off
 - Single precision vs. double precision
 - More complicated than single core environment

- * Only transfer required results
- Using parallel algorithmic patterns
 - * Prefix sum
 - * Parallel reduction
- Future works
 - Explore sampling
 - Exploit more parallel algorithmic patterns

^aCompared to single core version of the program ^bNVIDIA GTX 690

- May even lead to better performance and better accuracy all at the same time
- Parallelization itself is still tedious and difficult
 - Carefully planning memory access pattern
 - Exploiting the parallel memory architecture
 - Concise representation of data
 - Host/device memory data transfer pattern
 - Exploiting parallel program patterns
 - Fine tuning using device level knowledge