
ParallelProcessing inFinancialEngineering
Sungjoo Ha

sungjooha@soar.snu.ac.kr
Seoul National University, Optimization and Financial Engineering Lab

Finding Attractive Technical Patterns
• Attractive technical patterns in stock market

– Profitable

– Human interpretable

– Frequent

• Use genetic programming (GP) to evolve attractive technical pat-
terns

Figure 1: Genetic programming for finding attractive technical patterns

Ek(r) =
1

|R(r)|
∑

(i,j)∈R(r)

Pc(i, j + k)

Pc(i, j)

Figure 2: Expected earning rate of pattern r after k trading days

f(r) =


1

n

n∑
k=1

Ek(r) if |r| < M, |R(r)| ≥ m

0 otherwise

Figure 3: Fitness function for modular GP

Parallelization of Fitness Evaluation
• Fitness evaluation takes the majority of GP running time

– But the evaluation of fitness function is embarrassingly parallel

– Exploit this parallelism using GPGPUs

• Currently achieves more than 100 fold increase in processing powera

– Multiple GPU devicesb

– Minimizing the data transfer between CPU and GPU

∗ Load the data once
∗ Only transfer required results

– Using parallel algorithmic patterns

∗ Prefix sum
∗ Parallel reduction

• Future works

– Explore sampling

– Exploit more parallel algorithmic patterns

aCompared to single core version of the program
bNVIDIA GTX 690

Log-Optimal Portfolio Selection
• Maximizing the expected log investment return of a portfolio

b = (b1, b2, · · · , bm)t, bi ≥ 0,
∑

bi = 1

X = (X1, X2, · · · , Xm)t ∼ F (x), x ∈ Rm

Figure 4: A portfolio and stock vector

W (b) = E ln btX =

∫
ln btx dF (x)

W ∗ = max
b
W (b)

Figure 5: Expected log investment return of a portfolio

• We wish to find an optimal portfolio b

– Various approaches are available

• Iterative algorithms approach

– Need to calculate W (b) but requires complicated integration

– Can be overcome by the method of sampling

X1, . . . , Xn ∼ p i.i.d.

µ̂n =
1

n

n∑
i=1

f(Xi)

Figure 6: A basic Monte Carlo estimate of Ef(X)

Parallelization of Computing Expected Return

Do the following for each thread;
repeat

Sample X from F (x);
Calculate ln btX;
Perform parallel reduction;

until Some accuracy criteria;
Algorithm 1: Parallel computation of W (b)

• Computing W (b) fast enough allows us to use iterative methods for
the optimization

Challenges
• Finding parallelizable component of a program

• Speed and accuracy trade off

– Single precision vs. double precision

– More complicated than single core environment

– May even lead to better performance and better accuracy all at
the same time

• Parallelization itself is still tedious and difficult

– Carefully planning memory access pattern

– Exploiting the parallel memory architecture

– Concise representation of data

– Host/device memory data transfer pattern

– Exploiting parallel program patterns

– Fine tuning using device level knowledge

