Cost-Aware Triage Ranking Algorithms for Bug Reporting Systems

Jin-woo Park?!, Mu-Woong Lee?, Jinhan Kim?!, Seung-won Hwang?, Sunghun Kim?2
1Pohang University of Science and Technology (POSTECH), Republic of Korea
2Hong kong University of Science and Technology (HKUST), Hong Kong
Yjwpark8ss, sigliel, ,deepbrother swhwang}@postech.ac.kr
2hunkim@cse.ust.hk

Introduction

Fig. 1 : A bug report of Eclipse bug reporting system

* Bug
- Acommon term for an error, flaw, mistake, failure, or fault in a
computer program or system
- Occurs unexpected results

* Bug Reporting System
- To post, discuss, and assign bug reports to developers
- More than 300 reports per day in Mozilla
- Open source projects have their bug reporting system
(e.g., Apache, Eclipse, Mozilla, ...)

* Bug Triage
- Assigning the bugs to a suitable developer
- Bottleneck of bug fixing process
= Labor intensive
= Miss-assignment makes to slow bug fix process

Bug Triage Techniques
e PureCBR [Anvik 06]
- Using multi-class SVM classifier
= Feature: keyword vector of the bug reports
- Focusing on accuracy

» CosTriage [Park 11]
- Considering both accuracy and cost
= PureCBR is adopted for accuracy
= Recommender algorithm is used for cost
- Key challenge
= Since the bug fix history is extremely sparse,
recommender algorithm cannot be adopted directly.
- CosTriage solved the challenge
= Categorizing the bug types using topic modeling approach LDA

g flug Types
Do E B BB B BB 3
T 1§ X7 [LE
Dy 127 e
y ST ;3 JEe
Dy A

Using Collaborative filtering (CF) for the remained missing
values
= Ranking the developers by the aggregated scores (acc + cost)

Approach: CosTriage+

Fig. 2: Example of weight of bug fix history undergoing exponential decay for 1,000 days.

Overview
Cost
a Developer profiles #
Recommended
New Bug # Developer
Report Accuracy
% Bug classifier # Accuracy score
<SVM>
Bog Dol Deve Dev d Wog Devl Dev? Devd “Bug Devl Dov: Devd
| . - (5 [[53 (] Baos 0. [[F) [Fo. 1008 o4
Accuracy scores Cost scores Hybrid scores

- The accuracy scores are obtained using PureCBR [Anvik06
- The developer cost scores are obtained using the enhanced CBCF
- Two scores are then merged for ranking developers

Improvements

- Bug type prediction using code information

= To determine the types of undetermined bug the reports (4.04% in Mozilla)
= The code similarity using the import paths in the codes of the bugs

Ba:

(e,) N 51T,)

SiZm,) U S(Ts, 0|
AT,), T T,)
T M + T iZa Tl

1. Set Similarity (Jaccard coefficient): Simitarine 5(Tm, 1.5(Tn,)

2. Tree Similarity (Tree edit distance): Similarit T (T, 1T (T, = 1

= Determining bué type from the Tlo.p-k most simila.r.bugs

wpman scoreli] = ¥ Similerie(Tp T b
¥ AT

- Modeling developer profile changes over time
= To reduce the weight of history with a rate proportional to a period time
= Quantifying developer’s cost for I th-type bugs as the weight of bug history
using exponential decay:
1 =

Mol = 5= v en,, (N ites,) - 1w,) N(t) = Noe ™
Eomen, Nits,)

Guantity NJT}

1900

o W wm mn T
The time passed [day]

Experiments

* Dataset
- We used the bug reports from 4 bug reporting system
Table 1: Subject systems

Trajects W Tined i Toul W Active W Bug ypes it Words Period
busg reprts developers developers
Rpiche r}. 6 TRT T L] LI [B R X DR
ks 152834 41882 1116 106 ” GLSIS 20E-0-11 - N10-00-2
Ll kel 52 Ay Rl W ki TE 200371 |4 20000116
Mailla 162839 4841 1165 11 7 TIATE 19980407 - H010-01-26

* Experimental Results
- Precision of prediction for bug types

Model Precision
Randbom 558 (5.91%)
81555 (14.52%)
B5/558 (15.23%)
BH558 (14.57'%)
1305538 (23.30%)

n-gram {n = 3)

n-gram in = 4)

n-gram {n = 3y
Set sumilanty (k= 107
Set similarity (k= 15) 135/5358 1 24.19%)
Set similanity (k = 20 1317558 (23.48%)
Tree sumlanty (k= 100 | 13%/558 (24,735
Tree similarity (k= 15) | 132/558 (23.66%)
Tree similanity (k = 200 | 128/558 (22.94%)

- Absolute errors of expected bug fix time

Apache | Eclipse | Linux | Mozilla
Y438 26.41 T1.76
T CosTriace | 5769 | 3588 | 3657 | 30
CosTRIAGE+ 545 25601 H67

- Improvement of bug fix time

Reducing ratio
CosTrIAGE
Ace Time Ace
-S4 | -I088% | 543
S04% | -10.38% i
TS0 |3 |00
S5.01% 1.2 % 50105

PureCBR CBCF
Project | Time At
Apache | 3233 | 8970
Eclipse | 17.87 | 4039
Cinuy | 3535 | 300%
Mozilla | 1034 | 629

Conclusion

* We proposed a new bug triaging technique

= Optimize not only accuracy but also cost
= Solve data sparseness problem by using topic modeling

¢ We solved the limitations of COSTRIAGE

= Enlarging coverage of bug types
= Modeling developer profiles changes over time

« Experiments using four real bug report corpora
= We conducted the experiments with bug reports from real bug corpora

[Anvik 06] J. Anvik, L. Hiew, G. C. Murphy, Who should fix this bug?, ICSE, 2006.
[Park 11] Park, M.-W. Lee, J. Kim, S. Hwang, S. Kim, Costriage: A cost-aware triage
algorithm for bug reporting systems, AAAI, 2011.

