Hierarchical Shape Abstraction
of Dynamic Structures in Static Blocks

Pascal Sotin and Xavier Rival
INRIA

4 novembre 2013

P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction 4 novembre 2013

1/29

Context of this talk

Previous talks :

@ Static analysis of embedded softwares, with Astrée
mostly numeric and boolean properties + control

@ Shape analysis with Xisa / MemCAD
inference of memory invariants, mixing value properties

This talk

Towards an application of shape abstraction
to the analysis of embedded softwares

P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction 4 novembre 2013

2 /29

@ Critical embedded codes and data-structures

© Abstraction
© static analysis
@ Implementation and results

© Conclusion

Critical embedded codes and data-structures

Verification of safety critical embedded softwares

@ Synchronous softwares, mostly numeric, few, rather flat
data-structures
Vérification of several industrial size applications by Astrée :
» flight-by-wire software, around 1 MLOC
no dynamic structures, no malloc
» Analyzer designed since 2001 at ENS :
B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, A. Miné, D. Monniaux, X. Rival
@ Beyond synchronous softwares :
» e.g., flight Warning System : gathers info about aircraft systems
» asynchronous : Miné (ESOP'11)
» uses a few, tricky data structures
dynamic, but no malloc

How to verify the code using those structures
by abstract interpretation based static analysis ?

P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction 4 novembre 2013 4 /29

Critical embedded codes and data-structures

An example data-structure from a critical embedded code

B . Static array, dynamic list
@ “Normal software” uses malloc &y
@ In highly critical, embedded typedef struct Cell {
code, malloc should not be used struct Cell x next;
» it may fail int prio;
returns 0, e.g. if no long /* other fields */
enough, contiguous block } Cell;
» no control on localization Cell free pool[100];
Example, with tl _l_l—l
length 5 hd _ 1
i=3 0x0 invalid elt|invalid elt
1 12 8 ? ?
? ?
A common pattern in avionics and aerospace softwares
In FWS : list of messages to send to a display

P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction 4 novembre 2013 5/ 29

Critical embedded codes and data-structures

A code fragment

Display control
@ Navigation in the list of messages : structure traversal

@ Recomputation of the list of active messages, in order

for(inti = 0,1 < 100,i + +) {
intpriority =...;
if(priority < hd ->prio){ /*insert at first position */
}elseif(priority >= tlprio){ /*insert at last positionk/
}else { /xlocate position (loop over cursor cr) and insert*/ }

w
next insertion tl _l_l—l
at position 3 hd 1

i=3 0x0 invalid elt|invalid elt
1 12 8 ? ?
? ?

P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction 4 novembre 2013 6 /29

Critical embedded codes and data-structures

Issues to resolve

tl

e S -

1= 0x0
12

invalid elt
?
?

invalid elt
?
?

@ Abstract the array, in two zones

© Abstract the dynamic structure, using precise shape invariants

© Analyze memory accesses using array indexes and list pointers

P. Sotin, X. Rival (INRIA)

Hierarchical Shape Abstraction

4 novembre 2013

7/29

Critical embedded codes and data-structures

Array abstractions

First approach : array abstraction [GRS'05,HP'08,CCL'11]
@ partition of the array into zones

@ specific invariants over each zone

tl
hd—l

i=3

0x0 invalid elt|invalid elt
1 12 8 ? ?
? 2
Abstraction over the list zone But...
@ fp[i].next € @ The list structure is lost
{fp+k-sizeof(Cell) | k € N} @ List accesses cannot be
@ fp[i].prio >0 analyzed

P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction 4 novembre 2013 8/ 29

Critical embedded codes and data-structures

Shape abstractions for dynamic structures

Second approach : shape abstraction [SRW'99,DOY'06,CR’'08]
@ use shape graphs to describe unbounded regions

@ rely on e.g., separation logic to fragment the heap

&tl | { 0x0 ,
array remalnder
1 8 12)
Dynamic structure But...

@ The list structure is well @ The contiguousness is lost
described @ Accesses via indexes or via

@ It can be summarized field arithmetics cannot be
partially or fully analyzed

P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction 4 novembre 2013 9/ 29

@ Critical embedded codes and data-structures

© Abstraction
© static analysis

@ Implementation and results

© Conclusion

Abstraction

Abstraction principle

A composite abstraction

@ Array level :
fragmentation, partitions

@ Sub-memory level :
shape abstraction

Both components share most
of their implementation

Contributions :

@ a hierarchical shape abstraction

: 0x0 i 5 :
1 12 8 (old msg)|(old msg)
“high” | “low” |“middle” | (invalid) | (invalid)
memory

abstraction 1

splitting fmto~two sub-regions

memory
abstraction 2

singly linked list
abstraction

@ integration on top of a regular shape abstraction

@ extension of shape analysis operations

P. Sotin, X. Rival (INRIA)

Hierarchical Shape Abstraction

cells of the form
7

(old ;nsg)
?

4 novembre 2013 11 / 29

Abstraction

Abstraction of memory states : shape abstraction

@ Shape graphs with points-to edges, and inductive edges
@ Nodes denote concrete values, edges denote memory regions

@ Memory splitting into regions
0x... ¢
24

values, addresses —— nodes

o Graph abstraction :
cells — edges
next ./ next

@ M__next M\
%@

@ Region summarization :
next /M

@ r\\&»:list
dat a

» abstraction parameterized by a set of inductive definitions
4 novembre 2013

0x0
32

0x...
42

gt [ox...

P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction

12 / 29

Abstraction

Inductive definitions and segments

Inductive definitions in separation logic

o Example :
a-list == (emp,a=0)

| (o -next i+ By * a-prio By * a-...+—x% [y - list,a # 0)

@ User-supplied (could be inferred automatically)

@ Full inductive edges : complete structures
@ Segment edges : structure segments

w[——
w7 | 1]] 1] [ox0 |
I I I I I I I I
can be abstracted by :

P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction 4 novembre 2013

13 / 29

Abstraction

Abstraction of an atomic memory block

Shape graphs introduced in Laviron, Chang, Rival (ESOP'10) :
o describe pointer arithmetics
@ represent pointers to fields, using a (base,offset) abstraction

Abstraction of a cell with a points-to edge av- £ — - g
Valuation : v : Nodes — Values

o
| |
i g v
(); == ® represents '-'_/@i&
I
v(a) + £ | !

(RS
4

Example : chain of pointers to fields in a given block

a-0 — «a-
E co oo
a8 — «-4

P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction 4 novembre 2013 14 / 29

OO

Abstraction

Abstraction of memory states and numeric contents

Product of shape graphs and numerical in Chang, Rival (POPL'08) :
@ utilize a numerical invariant A € D,um tied to the nodes of G :
v(G,N) ={f| Jv: Nodes — Values, v € v(N) A (#,v) € v(9)}
@ relies on a cofibered abstraction (Venet, SAS'96)
Example : abstraction of a sorted array of length 4

| ap | ay | az | as |

One abstract cell per concrete cell

Alternate abstraction
=) 0
o [msa Ob—>® Fersaemle)
Q= N ar < a
1 12 @ A Qg S Qs i i
@) @ A single “fat” points-to edge
Octagon numeric abstract domain ® Array specific abstraction

P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction 4 novembre 2013 15 / 29

Abstraction

Sub-memory predicate

Principle
@ The array zone :
a single, “fat” points-to edge
@ The contents : a sub-memory
described by a shape invariant

A two layers memory abstraction

[

0x0

1

12

8

(additional fields dropped
for the sake of concision)

@)—0
0 +0 60
wtp(Jor—>(®) {+1(5 —
116

@ Node @ describes a 24 bytes long value

@ Sub-memory predicate, enclosing :

a shape graph : array contents viewed as a memory in itself
a sub-environment : mapping main offsets into sub-nodes

P. Sotin, X. Rival (INRIA)

Hierarchical Shape Abstraction

4 novembre 2013

16 / 29

Abstraction

Hierarchical memory abstraction

Shape domain as an underlying numerical abstract domain
@ Abstract elements of Dg,p are of the form Sz(Sub-env,Sub-graph)

@ The concretization of the whole domain is still of the form :

Y(G,N) = {4 | Jv : Nodes — Values, v € v(N) A (#,v) € v(N)}

Example, putting it all together :

1

0x0

invalid elt

1

12

8 ?

invalid elt

is abstracted by :

P. Sotin, X. Rival (INRIA)

{

+0 60
+16 — &

Hierarchical Shape Abstraction

4 novembre 2013

17 / 29

@ Critical embedded codes and data-structures

© Abstraction
© static analysis

@ Implementation and results

© Conclusion

Static analysis

Abstract interpretation of a statement

Computing sound abstract transfer functions

o Conservative analysis of concrete execution steps in the abstract
e.g., assignments, condition tests...

@ May lose precision, will never forget any behavior

Example : analysis of a translation with octagons

Yy Yy

-
e

/
/ T =
concrete computation step abstract transfer function
Soundness : all concrete behaviors are accounted for!)

P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction 4 novembre 2013 19 / 29

Static analysis

Abstract interpretation of a loop

Computing invariants about infinite executions with widening v

@ Widening V over-approximates U : soundness guarantee

@ Widening Vv guarantees the termination of the analyses

Example : iteration of the translation (2,1), with octagons

Yy Y
=== j
’ i
/
s
7
’

\ - z l Ed

initial state 1st iteration 2nd iteration : stable!
Soundness : all concrete behaviors are accounted for!)
P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction 4 novembre 2013 20 / 29

Static analysis

Algorithms underlying operations, shape abstraction

Foundation for transfer functions and widening J

@ Unfolding : cases analysis on summaries
x y X Y

X ¥y
O O . ()_next y M) O_>O
list list Olist st \ list

=020

data

@ Abstract postconditions, on “exact” regions, e.g. insertion

nex @

nex
datd O nex list
X y . X y
nex:
list list - list data
data data

@ Folding : builds summaries and ensures termination

nex ()_,

X y X y list X y

: list : list v list : list : list
data O

P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction 4 novembre 2013 21 /29

Static analysis

Algorithms underlying operations, hierarchical abstraction

Foundation for transfer functions and widening J

@ Introduction of a sub-memory predicate :

0 .
im0 = S5 N=[..An=0]

00>—>(5

» the fresh predicates says nothing new, but can be later extended
(next slides)

@ Fusion of consecutive sub-memory predicates
G .
e = O—0
02
S5-(Eo, Go) S5(Eo W By, Go W Gy)
A Sg(E1,Gh)

» merged predicates have to match consecutive points-to edges
» result joins sub-graphs, and sub-environments

P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction 4 novembre 2013 22 /29

Static analysis

Analysis of an assignment

Next slides : assignment transfer function and join / widening

@ Graphs are simplified : other fields than next are not shown

Inner loop traversal (localisation of the insertion position) :

@ Pre-condition :

o Post-condition :

P. Sotin, X. Rival (INRIA)

cr = cr ->next;

Computation of the post

]

next

+09 — b

]

.next .
@ list

og = do
01}—>61

Modified edge :
inside the main memory
shape graph
Effect :
update of the
destination offset into

the new o}
0p could be dropped

Hierarchical Shape Abstraction

4 novembre 2013 23 /29

Static analysis

Analysis of an assignment

Assignment inside a sub-memory :

b ->next = a;

o Pre-condition :

@ +00
O
@ +o01

o Post-condition :

@ +09
O
@ +o01

P. Sotin, X. Rival (INRIA)

00?—)58

=6

01+ &

00 > 89

01 Héé

Computation of the post
@ Modified edge :

inside the sub-memory
shape graph attached to
ay

o Effect :

edge replacement
towards fresh node 4}
equality constraint to
capture equality across
boundary

81 could be dropped

V=16 =

Hierarchical Shape Abstraction

o If needed, preliminary

unfolding should apply

4 novembre 2013 24 / 29

Static analysis

Hierarchical abstract join : introduction

Join after the second iteration in the inner loop, at the first iteration
in the outer loop :

o First argument : Computation

O—@N @ O Make elements

ker 0s O compatible
introduction at node
3, in the first argument
introductions at nodes

B =a! B%, 1, in the second
argument, and fusion

@ Second argument :

© Main memory join :

@ Output : _
shape abstract domain
Yo 0 .list .list . e
O & ot b © Sub-memory join :
5 > . ..
“ +0 - 6y also classical shape join

P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction 4 novembre 2013 25 / 29

Static analysis

Hierarchical abstract join : extension

Inner loop second join :

o First argument :

P. Sotin, X. Rival (INRIA)

/! 0
+oi — &y

' list

7 1
+of — g

1_ 1 "
a; = + 0

Computation

O Make elements
compatible
introduction at node
al, in the second
argument
fusion of both second
argument sub-memories
similar to array analyses

© Main memory join :
shape abstract domain

list list S .
.+o”b—>51. © Sub menr?ory join P
+o" 5 6, also classical shape join
Hierarchical Shape Abstraction 4 novembre 2013 26 / 29

@ Critical embedded codes and data-structures

© Abstraction
© static analysis

@ Implementation and results

© Conclusion

Implementation and results

Implementation and results

Implementation inside the MemCAD analyzer
@ Two instances of the shape abstract domain

@ Hierarchical abstraction implemented as a functor

o Effectively, an integration of an array analysis to reason about
contiguous points-to edges
@ Shape analysis algorithms are reused as is, unmodified

Automatic verifcation (no runtime errors), analysis of code using
free-pool compared to equivalent codes with malloc (more in the paper) :

Allocation method
Program
malloc | free-pool array
structure construction | 0.195 0.520
structure traversal 0.056 0.107

Roughly, a 2X to 3X slowdown (but analysis of much trickier code)

P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction 4 novembre 2013 28 / 29

Conclusion

Concluding remarks

Analysis of a trick code that is implementing their own malloc

@ integration of array abstract interpretation techniques into a
separation logic based shape analyzer

o multi-level view of the memory, matching the data-types

Achieved thanks to a modular shape abstract domain

(Mid term) future task :
remove the contiguousness assumption on sub-memories

@ Verification of memory managers

(Long term) future work : integration into Astrée
o Significant work in abstract domain engineering
@ Verification of industrial code user defined memory management

P. Sotin, X. Rival (INRIA) Hierarchical Shape Abstraction 4 novembre 2013 29 / 29

	Critical embedded codes and data-structures
	Abstraction
	Static analysis
	Implementation and results
	Conclusion

