Understanding Eventual
Consistency

Hongseok Yang

University of Oxford

Joint work with Sebastian Burckhardt (MSR Redmond),
Alexey Gotsman (IMDEA) and Marek Zawirski (UPMC)

Who heard about “eventual consistency’ before!

Learning outcome

To understand eventual consistency and research
opportunities about it.

® 006 Amazon.co.uk: Low Prices in Electronics, Books, Sports Equipment & more

[4.,] [E.’J [- - 1 8 www.amazon.co.uk ¢ [Reader] [OJ
(1) #E Apple iCloud Facebook Twitter Wikipedia Yahoo! News ™ Popular ¥ g
amazon BOXING Great Offers Until
couk HONGSEOK's Amazon Today's Deals GiftCards Sell Help DAY December 31 R30S
N — DEALS WEEK » Shop now
Shop by earch | Az~ Hello, HONGSEOK Try \4s Wish
Department ~ - Your Account ~ Prime ~ « » Basket ~ List ~
A Cloud PI t Audibl Amazon uses cookies. What are cookies?
uotm:z:;p. for%l;: an:yI:;c LOVEFILM Kindle Cloud Drive foArpX:d%.id Aud‘llobogks

Hundreds of titles from £0.99 each Buy 2 or more, save 20%

n our bnggmt ever sale on Kindle Accessones

»Learn more

> Shop now » Shop now

'he Amazon
Amazon Family Boxing Day A Space x ? y \ 8
Prize Draw Up to 60% off Fashion Dosls Amazon Prime Subscribe & Save 4o R (.I(| ||| | |;_‘ SILOTe
Shop levi's
Ben Sherman
BOXING Great Offers ok Covaser
7 For All Mankind
ond more

DAY Until December 31

: Vo »See more
DEALS WEEK » Shop now hl‘dVL‘..‘._"\.3D“SY e TS

Advertisement [

Information about

® 06 Amazon.co.uk: Low Prices in Electronics, Books, S e
'« » | |2 | + 8 wwwamazoncouk eaCh CUStOmeI" cader W O]
(1) #: Apple iCloud Facebook Twitter Wikipedia Yahoo! News ™ Popular ¥ d
, Offers Until
amazonm"k HONGSEOK's Amazon Today's Deals GiftCards Sell Help DAY Degember 31)Sho;r‘:?‘-

Wish
List ~

Hello, HONGSEOK Try 4

Shop by v
Department ~ e n Your Account ~ Prime ~ « + Basket -

. .
Appstore Audible Amazon uses cookies. What are cookies?
Kindle CloudDrive ¢ "Androld Audlobooks

Amazon Cloud Player
Moblle Apps for PC and Mac LOVEFILM

Hundreds of titles from £0.99 each Buy 2 or more, save 20%

n our biggest ever sale on Kindle Accessones

Dot | » » Learn more

> Shop now

The A\mazon
Clothing Store

Amazon Family Boxing Day A Space
Prize Draw Up to 60% off Fashion Doals Amazon Prime Subscribe & Save Adventure

BOXING Great Offers
DAY Until December 31

: »See more
DEALS WEEK » Shop now »..-nu'.u,3b's')

Advertisement -V'

Shop levi's
Ben Sherman,
French Connection
7 FClr A” ﬁ‘."‘()ﬂklﬂd
and more

Amazon shopping cart (in 2008)

Hongseok
in UK

Hongseok’s
—{A
Mom in Korea A

Amazon shopping cart (in 2008)

Hongseok >{A}
N UK T

Hongseok’s —>{A}
Mom in Korea

Amazon shopping cart (in 2008)

Hongseok N A . B
in UK {< I—18)
Hongseok's { A} {A,C)

Mom in Korea

Amazon shopping cart (in 2008)

Hongseok {A}—{B} » Checkout
in UK -~
Hongseok’s { A} -{A,C}

Mom in Korea

Amazon shopping cart (in 2008)

Hongseok {A}—{B} » Checkout
in UK -~
Hongseok’s { A} -{A,C}

Mom in Korea

[Q] What could the shopping cart have at checkout?
. {B} 2.{A,C} 3.{}

Amazon shopping cart (in 2008)

Hongseok {A}—{B} » Checkout
in UK -~
Hongseok’s { A} -{A,C}

Mom in Korea

[Q] What could the shopping cart have at checkout?
. {B} 2.{A,C} 3.{}

Amazon shopping cart (in 2008)

Hongseok {A}—{B} » Checkout
in UK -~
Hongseok’s { A} -{A,C}

Mom in Korea

[Q] What could the shopping cart have at checkout?
. {B} 2.{A,C} 3.{} 4.{A,B,C}

Amazon shopping cart (in 2008)

Hongseok {A}—{B} —— Checkout

in UK K

Hongseok’s Because Amazon
—{A} -{A,C} BT eventually

Mom in Korea

consistent stores.

[Q] What could the shopping cart have at checkout?
. {B} 2.{A,C} 3.{} 4.{A,B,C)

Geo-replicated databases

® Every data centre stores a complete replica of data

® Purpose: Minimising latency. Fault tolerance.

Geo-replicated databases

P’m
/\(\
|i

)

| ,'
? ,
3 A
-
0

® Every data centre stores a complete replica of data

® Purpose: Minimising latency. Fault tolerance.

Geo-replicated databases

P’m
/\(\
|i

)

| ,'
’ !
b A
Py .
7 | ’
| x
L v)

® Every data centre stores a complete replica of data

® Purpose: Minimising latency. Fault tolerance.

Data consistency

'
I“ A‘V
£ \
i A
i
“"'
N _

] \

® Do data centre stores behave as if a single store!
® Strong consistency: Yes.

® Weak consistency: No.

el

Data consistency

8 cart.write({A})

-
-

® Do data centre stores behave as if a single store!
® Strong consistency:Yes. Block until all get updated.

® Weak consistency: No.

Data consistency

@ cart.write({A})

® Do data centre stores behave as if a single store!
® Strong consistency:Yes. Block until all get updated.

® Weak consistency: No.

Data consistency

8 cart.write({A})

1]
-
= A}

A

® Do data centre stores behave as if a single store!
® Strong consistency:Yes. Block until all get updated.

® Weak consistency: No.

Data consistency

8 cart.write({A})

1]
-
= A}

{A} =

® Do data centre stores behave as if a single store!
® Strong consistency:Yes. Block until all get updated.

® Weak consistency: No.

Data consistency
8 cart.write({A})

— 1
_ |cartread() : {A} B
= {A}

{A} =

® Do data centre stores behave as if a single store!
® Strong consistency:Yes. Block until all get updated.

® Weak consistency: No.

Data consistency

8 -5 9

(A}

cart.write({A})
cart.read() : {A}

- cart.read() {A:} \\%

® Do data centre stores behave as if a single store!

® Strong consistency:Yes. Block until all get updated.

® Weak consistency: No.

Data consistency

cart.write({A})
8 e cart.read() : {A}

~ |cart.read() {A:}
| |cart.write({B})

Issue |: Latency

® Do data centre stores behave as if a single store!
® Strong consistency:Yes. Block until all get updated.

® Weak consistency: No.

Data consistency

cart.write({A})
8 cart. reac_:l() . {A}

Q {“' —
X

e U

~ |cart.read() {A:}
| |cart.write({B})

1A}

Issue 2: Cannot tolerate network partition

® Do data centre stores behave as if a single store!
® Strong consistency:Yes. Block until all get updated.

® Weak consistency: No.

Data consistency

Y-
. - Q

- {A} .k 5

X

-
-
R v

1A}

® Do data centre stores behave as if a single store?
® Strong consistency:Yes. Block until all get updated.

® Weak consistency: No. First update. Then propagate.

Data consistency
@ cart.write({A,C})

: _
3 N
E— -’k_/\]

= 1A}

e 9

ACh

® Do data centre stores behave as if a single store?
® Strong consistency:Yes. Block until all get updated.

® Weak consistency: No. First update. Then propagate.

(A}

Data consistency

8

e U

cart.write({A,C})

1A}

=

| x

e

knj\

R
-

ACh

® Do data centre stores behave as if a single store!

® Strong consistency:Yes. Block until all get updated.

® Weak consistency: No. First update. Then propagate.

Data consistency
8 cart.write({A,C})

1]
-

® Do data centre stores behave as if a single store?
® Strong consistency:Yes. Block until all get updated.

® Weak consistency: No. First update. Then propagate.

Data consistency

Q cart.write({A,C})
& — cart.read() : {A}
=
{A,C} -
R
: A,C
Issue 2: Anomalies AC)

® Do data centre stores behave as if a single store?
® Strong consistency:Yes. Block until all get updated.

® Weak consistency: No. First update. Then propagate.

Data consistency

Q cart.write({A,C})
1) N cart.read() : {A}
cart.write({B

- (&) - A .
- X
{A,C} =

X v

{AC}

Issue 2: Conflicting updates

® Do data centre stores behave as if a single store?
® Strong consistency:Yes. Block until all get updated.

® Weak consistency: No. First update. Then propagate.

Data consistency

8

cart.write({l?;}) -

cart.write({A,C})

TN , [|cartread() : {A}

{A,C

Issue 2: Conflicting updates

A

<0 d
|

=

| x

e

e »

AC}

® Do data centre stores behave as if a single store!

® Strong consistency:Yes. Block until all get updated.

® Weak consistency: No. First update. Then propagate.

Popularity of weak consistency

® Dynamo/Simple DB (Amazon), Riak, Cassandra
(Facebook/Twitter), CouchDB, Google Doc,etc

® Due to better responsiveness and availability.

® CAP theorem [Brewer, Lynch&Gilbert]:
Impossible to achieve all of strong consistency,
availability and tolerance to network partition.

Eventual consistency

® One of the weakest consistency conditions.
® |ntuitively, it says that replicas never diverge.

® Requires conflict detection and resolution.

Eventual consistency

® One of the weakest consistency conditions.
® |ntuitively, it says that replicas never diverge.

® Requires conflict detection and resolution.

8 cart.write({A,C})

cart.write({l?;}) -

1B}

Eventual consistency

® One of the weakest consistency conditions.
® |ntuitively, it says that replicas never diverge.

® Requires conflict detection and resolution.

cart.write({A,C})

8

cart.write({l?;})

Eventual consistency

® One of the weakest consistency conditions.

® |ntuitively, it says that replicas never diverge.

® Requires conflict detection and resolution.

3

cart.write({l?;}) -
{AC}

Replicas diverge. Hence, this case
never happens in EC stores.

cart.write({A,C})

Eventual consistency

® One of the weakest consistency conditions.
® |ntuitively, it says that replicas never diverge.

® Requires conflict detection and resolution.

@ cart.write({A,C})

‘ A

cart.write({l?;}) -
£

{A,B,C}
{A,B,C}

Challenge

To develop correct, efficient distributed applications
on top of EC stores.

Research opportunities for EC

® Formalisation and foundation.

® New EC store that provides different
levels of consistency on demand.

® Design a new programming language.
® Static analysis.

® Efficient data structures with intuitive
conflict resolution policies.

Research opportunities for EC

® Formalisation and foundation.

® New EC store that provides different
levels of consistency on demand.

® Design a new programming language.
® Static analysis.

® Efficient data structures with intuitive
conflict resolution policies.

Convergence property.

If no new updates are
made to the store, then
replicas will eventually
reach a consistent state.

practice

DOLI0.1145/1435417.1435432

Building reliable distributed systems
at a worldwide scale demands trade-offs
between consistency and availability.

| BY WERNER VOGELS

Eventually
Consistent

AT THE FOUNDATION of Amazon's cloud computing are
infrastructure services such as Amazon's S3 (Simple
Storage Service), SimpleDB, and EC2 (Elastic Compute
Cloud) that provide the resources for constructing
Internet-scale computing platforms and a great variety
of applications. The requirements placed on these
infrastructure services are very strict; they need to
score high marks in the areas of security, scalability,
availability, performance, and cost-effectiveness, and
they need to meet these requirements while serving
millions of customers around the globe, continuously.
Under the covers these services are massive
distributed systems that operate on a worldwide scale.
This scale creates additional challenges, because
when a system processes trillions and trillions of
requests, events that normally have a low probability

of occurrence are now guaranteed to happen and

must be accounted for upfront in the design and
architecture of the system. Given the worldwide

scope of these systems, we use replication techniques
ubiquitously to guarantee consistent performance and
high availability. Although replication brings us closer
to our goals, it cannot achieve them in a perfectly

transparent manner; under a number
of conditions the customers of these
services will be confronted with the
consequences of using replication
techniques inside the services.

One of the ways in which this mani-
fests itself is in the type of data con-
sistency that is provided, particularly
when many widespread distributed
systems provide an eventual consis-
tency model in the context of data rep-
lication. When designing these large-
scale systems at Amazon, we use a set
of guiding principles and abstractions
related to large-scak data replication
and focus on the trade-offs between
high availability and data consistency.
Here, 1 present some of the relevant
background that has informed our ap-
proach to delivering reliable distrib-
uted systems that must operate on a
global scale. (An earlier version of this
article appeared as a posting on the
“All Things Distributed” Weblog and
was greatly improved with the help of
itsreaders.)

Historical Perspective

In an ideal world there would be only
one consistency model: when an up-
date is made all observers would see
that update. The first time this sur-
faced as difficult to achieve was in the
database systems of the late 1970s.
The best “period piece” on this topic
is “Notes on Distributed Databases”
by Bruce Lindsay et al.” It kays out the
fundamental principles for database
replication and discusses a number
of techniques that deal with achieving
consistency. Many of these techniques
try to achieve distribution transparen-
cy—that is, to the user of the system it
appears as if there is only one system
instead of a number of collaborating
systems. Many systems during this
time took the approach that it was bet-
ter to fail the complete system than to
break this transparency.?

In the mid-1990s, with the rise of
larger Internet systems, these practic-
es were revisited. At that time people
began to consider the idea that avail-
ability was perhaps the most impor-

Convergence property.

If no new updates are
made to the store, then
replicas will eventually
reach a consistent state.

But updates never stop.

Not useful for developing

application programs.

practice

DOLI0.1145/1435417.1435432

Building reliable distributed systems
at a worldwide scale demands trade-offs
between consistency and availability.

| BY WERNER VOGELS

Eventually
Consistent

AT THE FOUNDATION of Amazon's cloud computing are
infrastructure services such as Amazon's S3 (Simple
Storage Service), SimpleDB, and EC2 (Elastic Compute
Cloud) that provide the resources for constructing
Internet-scale computing platforms and a great variety
of applications. The requirements placed on these
infrastructure services are very strict; they need to
score high marks in the areas of security, scalability,
availability, performance, and cost-effectiveness, and
they need to meet these requirements while serving
millions of customers around the globe, continuously.
Under the covers these services are massive
distributed systems that operate on a worldwide scale.
This scale creates additional challenges, because
when a system processes trillions and trillions of
requests, events that normally have a low probability
of occurrence are now guaranteed to happen and
must be accounted for upfront in the design and
architecture of the system. Given the worldwide

scope of these systems, we use replication techniques

ubiquitously to guarantee consistent performance and
high availability. Although replication brings us closer
to our goals, it cannot achieve them in a perfectly

transparent manner; under a number
of conditions the customers of these
services will be confronted with the
consequences of using replication
techniques inside the services.

One of the ways in which this mani-
fests itself is in the type of data con-
sistency that is provided, particularly
when many widespread distributed
systems provide an eventual consis-
tency model in the context of data rep-
lication. When designing these large-
scale systems at Amazon, we use a set
of guiding principles and abstractions
related to large-scak data replication
and focus on the trade-offs between
high availability and data consistency.
Here, 1 present some of the relevant
background that has informed our ap-
proach to delivering reliable distrib-
uted systems that must operate on a
global scale. (An earlier version of this
article appeared as a posting on the
“All Things Distributed” Weblog and
was greatly improved with the help of
itsreaders.)

Historical Perspective

In an ideal world there would be only
one consistency model: when an up-
date is made all observers would see
that update. The first time this sur-
faced as difficult to achieve was in the
database systems of the late 1970s.
The best “period piece” on this topic
is “Notes on Distributed Databases”
by Bruce Lindsay et al.” It kays out the
fundamental principles for database
replication and discusses a number
of techniques that deal with achieving
consistency. Many of these techniques
try to achieve distribution transparen-
cy—that is, to the user of the system it
appears as if there is only one system
instead of a number of collaborating
systems. Many systems during this
time took the approach that it was bet-
ter to fail the complete system than to
break this transparency.?

In the mid-1990s, with the rise of
larger Internet systems, these practic-
es were revisited. At that time people
began to consider the idea that avail-
ability was perhaps the most impor-

50 shades of eventual consistency

Session Guarantees for Weakly Consistent Replicated Data

Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M. Theimer,

and Brent B. Welch

Don’t Settle for Eventual:

Scalable Causal Consistency for Wide-Area Storage with COPS

Wyatt Lloyd*, Michael J. Freedman*, Michael Kaminsky®, and David G. Andersent

*Princeton University, Intel Labs, *Carnegie Mellon University

Conflict-free Replicated Data Types *

Mare Shapiro!®, Nuno Preguica®!, Carlos Baquero®, and Marek Zawirski'-*

! INRIA, Paris, France
2 CITI, Universidade Nova de Lisboa, Portugal
* Universidade do Minho, Portugal
1 UPMC, Paris, France
® LIPG, Paris, France

Transactional storage for geo-replicated systems

Yair Sovran® Russell Powers Marcos K. Aguilerai Jinyang Li*
*New York University " Microsoft Research Silicon Valley

Strengthen
consistency,
somewhat.

Add features

that make coping
with weak
consistency
easier.

50 shades of eventual consistency

Session Guarantees for Weakly Consistent Replicated Data

Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M. Theimer,
and Brent B. Welch

Don’t Settle for Eventual:

Scalable Causal Consistency for Wide-Area Storage with COPS

Strengthen
consistency,
somewhat

! INRIA, Paris, France
2 CITI, Universidade Nova de Lisboa, Portugal
* Universidade do Minho. Portugal
' UPMC, Paris, France
® LIPG6, Paris, France

Transactional storage for geo-replicated systems

Yair Sovran* Russell Powerr Marcos K. Aguilerat Jinyang Li

® Very low-level formalisms => difficult reasoning.

® Wildly different => hard to explore design space.

*New York University "Microsoft Research Silicon Valley

Add features

that make coping
with weak
consistency
easier

Key issues beyond ‘eventual’

|. Database eventually consistent if updates stop.

Which anomalies can we see before this?

.....

)7

cart.wite ({A})

\art.re;d() :{}

Key issues beyond ‘eventual’

2. Users can make conflicting updates at
different replicas.

How do we resolve conflicts!?
= Which state do the replicas converge to?

\ J :

cart.write({B}) cart.write({A,C}‘)

Divergence problem

s 1 U,

cart.writ.e({B}) cart.;/vrite({A,é}) ‘J

Update the replica you are connected to now,
propagate to others later.

Divergence problem

£ g
8 A

cart.writ:e({B}) P cart.Write({A,é})

cart.write({A,C}) cart.write({B})

operations

Update the replica you are connected to now,
propagate to others later.

Divergence problem
- -

LI

cart.writ:e({B}) cart.Write({A,é}) '

cart.write({A,C}) cart.write({B})
5 operations :

(AC) (B}

Update the replica you are connected to now,
propagate to others later.

Multi-value policy

cart.writ:e({B}) P cart.;/vrite({A,é:})

cart.write({A,C}) cart.write({B})
5 operations :

{A,I:3,C} {A,é,C}

Keep all the values. In this case, take the union.

Last-writer-win policy

g U g

cart.write({B},t|) cart.Write({A,é},tZ)

Use a distributed global clock, such as Lamport clock.

Last-writer-win policy

cart.write({B},t/) Cal’t-\:Nl‘ite({A,C},tz)

cart.write({A,C},t2) A cartwrite({B,t1)
t <t

Use a distributed global clock, such as Lamport clock.

Last-writer-win policy

cart.write({B},t/) Cal’t-\:Nl‘ite({A,C},tz)

cart.write({A,C},t2) A cart.write ({B},t1)
. tl < t2 :

{A,EC} {A,EC}

Use a distributed global clock, such as Lamport clock.

Execution: (E, so, vis, ar)

cart.write({A})

cart.write({B}) / s
\

vis | [so cart.write({A,C})

Vis

vy

cart.read() : {A,B,C}

Execution: (E, so, vis, ar)

cart.write({A})

cart.write({B}) / s
\

vis | [so cart.write({A,C})

Vis

vy

cart.read() : {A,B,C}

Events:
Describe what happened between stores and clients.

Execution: (E, so, vis, ar)

cart.write({A})

cart.write({B}) / s
\

vis | [so cart.write({A,C})

Vis

vy

cart.read() : {A,B,C}

Execution: (E, so, vis, ar)

cart.write({A})
cart.write({B}) / l
vi j | cart.write({A,C})

cart.read() : {A,B,C}

Session order:
Models processes.

Execution: (E, so, vis, ar)

cart.write({A})

cart.write({B}) / s
\

vis | [so cart.write({A,C})

Vis

vy

cart.read() : {A,B,C}

Execution: (E, so, vis, ar)

cart.write({A})

cart.write({B}) / s
\

Vis SO
Vis
\ 4

cart.read() : {A,B,C}

cart.write({A,C})

Visibility relation:
Models updates visible to each operation.

Execution: (E, so, vis, ar)

cart.write({A})

cart.write({B}) / s
\

visl SO
\ 4

cart.read() : {B}

cart.write({A,C})

Visibility relation:
Models updates visible to each operation.

Execution: (E, so, vis, ar)

cart.write({A})

cart.write({B}) / s
\

so cart.write({A,C})

v

cart.read() : {}

Visibility relation:
Models updates visible to each operation.

Execution: (E, so, vis, ar)

cart.write({A})

cart.write({B}) / s
\

vis | [so cart.write({A,C})

Vis

vy

cart.read() : {A,B,C}

Execution: (E, so, vis, ar)

cart.write({A})
cart.write({B}) / so
vis | s \cart.write({A,C})

vy

cart.read() : {A,B,C}

Arbitration relation:
Represents global timestamps abstractly.

Our formalism

® VWe specify replicated stores in terms of
possible executions with them.

® Our specification is based on axioms that
executions should satisfy.

Basic eventual consistency

EVENTUAL: |
Ve € E.—(T infinitely many f € E.sameobj(e, f) A ~(e — f))

Basic eventual consistency

EVENTUAL: |
Ve € E.—(T infinitely many f € E.sameobj(e, f) A ~(e — f))

-

‘,;".v,‘;.-
.
e g
S g
s N
P s

K
\

8 cart.write({B}) ———=p
cart.read() : {} .

Basic eventual consistency

EVENTUAL: |
Ve € E.—(T infinitely many f € E.sameobj(e, f) A ~(e — f))

8 cart.write({B}) ——as
cart.read() : {} _

cart.read() : {B} e

Forbidding anomalies

We require that certain events be visible by
including additional edges into vis.

READ YOUR WRITES: so N sameobj C vis

cart.wrilte({B})

1
SO | ! vis

\ 2

cart.write() : {B}

Data type specifications

® Conflict resolution policies are
implemented in data types [Shapiro+201 1].

® Data type specifications in our formalism
express these policies.

® They determine the return value of each
operation Iin executions.

Data type specifications

F. : OperationContexts — Values
DATA : Ve € E.retval(e) = Fiype(e) (ctxt(e))

Data type specifications

F. : OperationContexts — Values
DATA : Ve € E.retval(e) = Fiype(e) (ctxt(e))

{A,B,C}
cart.write({A})
cart.write({B}) / s
vis | |50 \cart.v&rite({A,C})

vy

cart.read() : {A,B,C}

Data type specifications

F. : OperationContexts — Values
DATA : Ve € E.retval(e) = Fiype(e)(ctxt(e))

{A,B,C}
cart.write({A})
cart.write({B}) / so
l so \cart.v&rite({A,C})

cart.read() : {A,B,C}

Multi-valued register

® [collects all values written by concurrent
operations.

ar

— ar\ T
cart.write({A}) cartwrite({B}) cart.write({C})

v
cart.read()

Vis

Frv(ctxt(cart.read)) = {A,B,C}

Multi-valued register

® [collects all values written by concurrent
operations.

ar

/ ar\ / \
cart.write({A}) cart.write({B}) =¥ cart.write({C})

'
cart.read()

Vis

Frv(ctxt(cart.read)) = {A,C}

Last-writer-win Register

® Fi.s selects the value written by the last
update according to the ar relation.

ar ar

/\ /\

cart.write({A}) cart.write({B}) = cart.write({C})

'
cart.read()

Vis

Flase(ctxt(cart.read)) = {C}

Application |

Use F to specify a new data type.

Application 2

Verify that a data-type implementation satisfies
a given specification F.

Application 3

Obtain a lower bound on the size of the meta
data for any data type satisfying F.

Research opportunities for EC

® Formalisation and foundation.

® New EC store that provides different
levels of consistency on demand.

® Efficient data structures with intuitive
conflict resolution policies.

® Design a new programming language.

® Static analysis.

