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Who heard about “eventual consistency” before?



Learning outcome

To understand eventual consistency and research 
opportunities about it.
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Because Amazon 
used eventually 

consistent stores.
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Popularity of weak consistency

• Dynamo/Simple DB (Amazon), Riak, Cassandra 
(Facebook/Twitter), CouchDB, Google Doc,etc	



• Due to better responsiveness and availability.	



• CAP theorem [Brewer, Lynch&Gilbert]:          
Impossible to achieve all of strong consistency, 
availability and tolerance to network partition.
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Challenge

To develop correct, efficient distributed applications 
on top of EC stores.
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• Very low-level formalisms ➔ difficult reasoning. 	



• Wildly different ➔ hard to explore design space.
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Keep all the values. In this case, take the union.
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Describe what happened between stores and clients.
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Models processes.



Execution: (E, so, vis, ar)

cart.write({A})

cart.write({B})

cart.read() : {A,B,C}

cart.write({A,C})

so

so

vis

vis

ar

ar



Execution: (E, so, vis, ar)

cart.write({A})

cart.write({B})

cart.read() : {A,B,C}

cart.write({A,C})

so

so

vis

vis

ar

ar

Visibility relation:	


Models updates visible to each operation.



Execution: (E, so, vis, ar)

cart.write({A})

cart.write({B})

cart.read() : {B}

cart.write({A,C})

so

sovis

ar

ar

Visibility relation:	


Models updates visible to each operation.



Execution: (E, so, vis, ar)

cart.write({A})

cart.write({B})

cart.read() : {}

cart.write({A,C})

so

so

ar

ar

Visibility relation:	


Models updates visible to each operation.



Execution: (E, so, vis, ar)

cart.write({A})

cart.write({B})

cart.read() : {A,B,C}

cart.write({A,C})

so

so

vis

vis

ar

ar



Execution: (E, so, vis, ar)
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Arbitration relation:	


Represents global timestamps abstractly.



Our formalism

• We specify replicated stores in terms of 
possible executions with them.	



• Our specification is based on axioms that 
executions should satisfy.



Basic eventual consistency

Figure 13. A selection of consistency axioms over an execution
(E, repl, obj, oper, rval, ro, vis, ar)

Auxiliary relations
sameobj(e, f) () obj(e) = obj(f)
Per-object causality (aka happens-before) order:
hbo = ((ro \ sameobj) [ vis)+

Causality (aka happens-before) order: hb = (ro [ vis)+

Axioms
EVENTUAL:
8e 2 E.¬(9 infinitely many f 2 E. sameobj(e, f) ^ ¬(e

vis
�! f))

THINAIR: ro [ vis is acyclic
POCV (Per-Object Causal Visibility): hbo ✓ vis

POCA (Per-Object Causal Arbitration): hbo ✓ ar

COCV (Cross-Object Causal Visibility): (hb \ sameobj) ✓ vis

COCA (Cross-Object Causal Arbitration): hb [ ar is acyclic

Figure 14. Anomalies allowed or disallowed by different axioms

(a) Disallowed by THINAIR:
x, y : intreg

i = x.rd j = y.rd

y.wr(i) x.wr(j)

x.rd: 42

y.wr(42)

y.rd: 42

x.wr(42)

ro rovis vis

(b) Disallowed by POCV:
x : orset

x.add(1) i = x.rd j = x.rd
x.add(2) x.add(3)

x.add(1)

x.add(2)

ro

x.rd: {2}

x.add(3)

x.rd: {3}
vis

vis ro

(c) Allowed by COCV and COCA:
x, y : intreg

x.wr(1) y.wr(1)

i = y.rd j = x.rd

x.wr(1)

y.rd: 0

y.wr(1)

x.rd: 0

ro ro

from effects of speculative computations, which are done by some
older replicated stores [36].

THINAIR is validated by {V

state,Vop
} and T-Any, and EVEN-

TUAL by {V

state,Vop
} and the following condition on C ensuring

that every message is eventually delivered to all other replicas and
every operation is followed by a message generation:

(8e 2 C.E. 8r, r0. C.act(e) = send ^ C.repl(e) = r ^ r 6= r0

=) 9f. C.repl(f) = r0 ^ e
del(C)
����! f) ^

(8e2C.E.C.act(e)= do =) 9f. act(f)= send ^ e
roo(C)
����! f),

where roo(C) is ro(C) projected to events on the same object.

Causality guarantees. Many replicated stores achieve availabil-
ity and partition tolerance while providing stronger guarantees,
which we formalize by the other axioms in Fig. 13. We call an ex-
ecution per-object, respectively, cross-object causally consistent,
if it is eventually consistent (as per above) and satisfies the ax-
ioms POCV and POCA, respectively, COCV and COCA. POCV
guarantees that an operation sees all operations connected to it by
a causal chain of events on the same object; COCV also consid-
ers causal chains via different objects. Thus, POCV disallows the
execution in Fig. 14(b), and COCV the one in §3.1, correspond-
ing to (2) from §1. POCA and COCA similarly require arbitration
to be consistent with causality. The axioms highlight the principle
of formalizing stronger consistency models: including more edges
into vis and ar, so that clients have more up-to-date information.

Cross-object causal consistency is implemented by, e.g.,
COPS [27] and Gemini [23]. It is weaker than strong consistency,
as it allows reading stale data. For example, it allows the execution
in Fig. 14(c), where both reads fetch the initial value of the register,
despite writes to it by the other replica. It is easy to check that this

outcome cannot be produced by any interleaving of the events at
the two replicas, and is thus not strongly consistent.

An interesting feature of per-object causal consistency is that
state-based data types ensure most of it just by the definition of
V

state: POCV is validated by {V

state
} and T-Any. If the witness

set is {V state,Vop
}, then we need T to guarantee the following: in-

formally, if a send event e and another event f are connected by
a causal chain of events on the same object, then the message cre-
ated by e is delivered to C.repl(f) by the time f is done. POCA
is validated by {V

state,Vop
} and the transport layer specification

(roo(C) [ del(C))

+
|do ✓ ar(C). This states that timestamps of

events on every object behave like a Lamport clock [22]. Condi-
tions for COCV and COCA are similar.

There also exist consistency levels in between basic eventual
consistency and per-object causal consistency, defined using so-
called session guarantees [35]. We cover them in [12, §D].

Comparison with shared-memory consistency models. Inter-
estingly, the specializations of the consistency levels defined by the
axioms in Fig. 13 to the type intreg of LWW-registers are very
close to those adopted by the memory model in the 2011 C and
C++ standards [5]. Thus, POCA and POCV define the semantics
of the fragment of C/C++ restricted to so-called relaxed operations;
there this semantics is defined using coherence axioms, which are
analogous to session guarantees [35]. COCV and COCA are close
to the semantics of C/C++ restricted to release-acquire operations.
However, C/C++ does not have an analog of EVENTUAL and does
not validate THINAIR, since it makes the effects of speculations
visible to the programmer [4]. We formalize the correspondence to
C/C++ in [12, §D]. In the future, this correspondence may open the
door to applying technology developed for shared-memory mod-
els to eventually consistent systems; promising directions include
model checking [3, 9], automatic inference of required consistency
levels [26] and compositional reasoning [4].

8. Related Work
For a comprehensive overview of replicated data type research we
refer the reader to Shapiro et al. [32]. Most papers proposing new
data type implementations [6, 31–33] do not provide their formal
declarative specifications, save for the expected property (1) of qui-
escent consistency or first specification attempts for sets [6, 7]. For-
malizations of eventual consistency have either expressed quiescent
consistency [8] or gave low-level operational specifications [17].

An exception is the work of Burckhardt et al. [10, 13], who pro-
posed an axiomatic model of causal eventual consistency based on
visibility and arbitration relations and an operational model based
on revision diagrams. Their store specification does not provide
customizable consistency guarantees, and their data type specifica-
tions are limited to the sequential S construction from §3.2, which
cannot express advanced conflict resolution used by the multi-value
register, the OR-set and many other data types [32]. More signif-
icantly, their operational model does not support general op- or
state-based implementations, and is thus not suited for studying the
correctness or optimality of these commonly used patterns.

Simulation relations have been applied to verify the correctness
of sequential [25] and shared-memory concurrent data type imple-
mentations [24]. We take this approach to the more complex set-
ting of a replicated store, where the simulation needs to take into
account multiple object copies and messages and associate them
with structures on events, rather than single abstract states. This
poses technical challenges not considered by prior work, which we
address by our novel notion of replication-aware simulations.

The distributed computing community has established a num-
ber of asymptotic lower bounds on the complexity of implement-
ing certain distributed or concurrent abstractions, including one-
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to the semantics of C/C++ restricted to release-acquire operations.
However, C/C++ does not have an analog of EVENTUAL and does
not validate THINAIR, since it makes the effects of speculations
visible to the programmer [4]. We formalize the correspondence to
C/C++ in [12, §D]. In the future, this correspondence may open the
door to applying technology developed for shared-memory mod-
els to eventually consistent systems; promising directions include
model checking [3, 9], automatic inference of required consistency
levels [26] and compositional reasoning [4].

8. Related Work
For a comprehensive overview of replicated data type research we
refer the reader to Shapiro et al. [32]. Most papers proposing new
data type implementations [6, 31–33] do not provide their formal
declarative specifications, save for the expected property (1) of qui-
escent consistency or first specification attempts for sets [6, 7]. For-
malizations of eventual consistency have either expressed quiescent
consistency [8] or gave low-level operational specifications [17].

An exception is the work of Burckhardt et al. [10, 13], who pro-
posed an axiomatic model of causal eventual consistency based on
visibility and arbitration relations and an operational model based
on revision diagrams. Their store specification does not provide
customizable consistency guarantees, and their data type specifica-
tions are limited to the sequential S construction from §3.2, which
cannot express advanced conflict resolution used by the multi-value
register, the OR-set and many other data types [32]. More signif-
icantly, their operational model does not support general op- or
state-based implementations, and is thus not suited for studying the
correctness or optimality of these commonly used patterns.

Simulation relations have been applied to verify the correctness
of sequential [25] and shared-memory concurrent data type imple-
mentations [24]. We take this approach to the more complex set-
ting of a replicated store, where the simulation needs to take into
account multiple object copies and messages and associate them
with structures on events, rather than single abstract states. This
poses technical challenges not considered by prior work, which we
address by our novel notion of replication-aware simulations.

The distributed computing community has established a num-
ber of asymptotic lower bounds on the complexity of implement-
ing certain distributed or concurrent abstractions, including one-



Basic eventual consistency

Figure 13. A selection of consistency axioms over an execution
(E, repl, obj, oper, rval, ro, vis, ar)

Auxiliary relations
sameobj(e, f) () obj(e) = obj(f)
Per-object causality (aka happens-before) order:
hbo = ((ro \ sameobj) [ vis)+

Causality (aka happens-before) order: hb = (ro [ vis)+

Axioms
EVENTUAL:
8e 2 E.¬(9 infinitely many f 2 E. sameobj(e, f) ^ ¬(e

vis
�! f))

THINAIR: ro [ vis is acyclic
POCV (Per-Object Causal Visibility): hbo ✓ vis

POCA (Per-Object Causal Arbitration): hbo ✓ ar

COCV (Cross-Object Causal Visibility): (hb \ sameobj) ✓ vis

COCA (Cross-Object Causal Arbitration): hb [ ar is acyclic

Figure 14. Anomalies allowed or disallowed by different axioms

(a) Disallowed by THINAIR:
x, y : intreg

i = x.rd j = y.rd

y.wr(i) x.wr(j)

x.rd: 42

y.wr(42)

y.rd: 42

x.wr(42)

ro rovis vis

(b) Disallowed by POCV:
x : orset

x.add(1) i = x.rd j = x.rd
x.add(2) x.add(3)

x.add(1)

x.add(2)

ro

x.rd: {2}

x.add(3)

x.rd: {3}
vis

vis ro

(c) Allowed by COCV and COCA:
x, y : intreg

x.wr(1) y.wr(1)

i = y.rd j = x.rd

x.wr(1)

y.rd: 0

y.wr(1)

x.rd: 0

ro ro

from effects of speculative computations, which are done by some
older replicated stores [36].
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roo(C)
����! f),
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}, then we need T to guarantee the following: in-
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state,Vop
} and the transport layer specification
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+
|do ✓ ar(C). This states that timestamps of

events on every object behave like a Lamport clock [22]. Condi-
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estingly, the specializations of the consistency levels defined by the
axioms in Fig. 13 to the type intreg of LWW-registers are very
close to those adopted by the memory model in the 2011 C and
C++ standards [5]. Thus, POCA and POCV define the semantics
of the fragment of C/C++ restricted to so-called relaxed operations;
there this semantics is defined using coherence axioms, which are
analogous to session guarantees [35]. COCV and COCA are close
to the semantics of C/C++ restricted to release-acquire operations.
However, C/C++ does not have an analog of EVENTUAL and does
not validate THINAIR, since it makes the effects of speculations
visible to the programmer [4]. We formalize the correspondence to
C/C++ in [12, §D]. In the future, this correspondence may open the
door to applying technology developed for shared-memory mod-
els to eventually consistent systems; promising directions include
model checking [3, 9], automatic inference of required consistency
levels [26] and compositional reasoning [4].

8. Related Work
For a comprehensive overview of replicated data type research we
refer the reader to Shapiro et al. [32]. Most papers proposing new
data type implementations [6, 31–33] do not provide their formal
declarative specifications, save for the expected property (1) of qui-
escent consistency or first specification attempts for sets [6, 7]. For-
malizations of eventual consistency have either expressed quiescent
consistency [8] or gave low-level operational specifications [17].

An exception is the work of Burckhardt et al. [10, 13], who pro-
posed an axiomatic model of causal eventual consistency based on
visibility and arbitration relations and an operational model based
on revision diagrams. Their store specification does not provide
customizable consistency guarantees, and their data type specifica-
tions are limited to the sequential S construction from §3.2, which
cannot express advanced conflict resolution used by the multi-value
register, the OR-set and many other data types [32]. More signif-
icantly, their operational model does not support general op- or
state-based implementations, and is thus not suited for studying the
correctness or optimality of these commonly used patterns.

Simulation relations have been applied to verify the correctness
of sequential [25] and shared-memory concurrent data type imple-
mentations [24]. We take this approach to the more complex set-
ting of a replicated store, where the simulation needs to take into
account multiple object copies and messages and associate them
with structures on events, rather than single abstract states. This
poses technical challenges not considered by prior work, which we
address by our novel notion of replication-aware simulations.

The distributed computing community has established a num-
ber of asymptotic lower bounds on the complexity of implement-
ing certain distributed or concurrent abstractions, including one-

cart.write({B})
cart.read() : {}

...
cart.read() : {B}



Forbidding anomalies

cart.write({B})	


!
!
!

cart.write() : {B}

so vis

READ YOUR WRITES: so \ sameobj ✓ vis

We require that certain events be visible by 
including additional edges into vis.



Data type specifications

• Conflict resolution policies are 
implemented in data types [Shapiro+2011].	



• Data type specifications in our formalism 
express these policies.	



• They determine the return value of each 
operation in executions.



Data type specifications

F⌧ : OperationContexts ! Values

Data : 8e 2 E. retval(e) = Ftype(e)(ctxt(e))

1



Data type specifications

cart.write({A})

cart.write({B})

cart.read() : {A,B,C}

cart.write({A,C})

so

so

vis

vis

ar

ar

F⌧ : OperationContexts ! Values

Data : 8e 2 E. retval(e) = Ftype(e)(ctxt(e))

1

{A,B,C}



Data type specifications

cart.write({A})

cart.write({B})

cart.read() : {A,B,C}

cart.write({A,C})

so

so

vis

vis

ar

ar

F⌧ : OperationContexts ! Values

Data : 8e 2 E. retval(e) = Ftype(e)(ctxt(e))

1

{A,B,C}



Multi-valued register

• Fmv collects all values written by concurrent 
operations.

cart.write({B})cart.write({A})

cart.read()

cart.write({C})

vis vis vis

arar

Fmv(ctxt(cart.read)) = {A,B,C} 



Multi-valued register

• Fmv collects all values written by concurrent 
operations.

cart.write({B})cart.write({A})

cart.read()

cart.write({C})

vis vis vis

arar

Fmv(ctxt(cart.read)) = {A,C} 

vis



Last-writer-win Register

• Flast selects the value written by the last 
update according to the ar relation.

cart.write({B})cart.write({A})

cart.read()

cart.write({C})

vis vis vis

arar

Flast(ctxt(cart.read)) = {C} 

vis



Application 1

Use F to specify a new data type.



Application 2

Verify that a data-type implementation satisfies 
a given specification F.



Application 3

Obtain a lower bound on the size of the meta 
data for any data type satisfying F.



Research opportunities for EC

• Formalisation and foundation.	



• New EC store that provides different 
levels of consistency on demand.	



• Efficient data structures with intuitive 
conflict resolution policies.	



• Design a new programming language.	



• Static analysis.


