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Distributed Cyber-Physical Systems (DCPS)

collection of components that control physical entities

complex interaction of embedded systems and real-time control

e.g., avionics, automative, medical devices, . . .
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Distributed Cyber-Physical Systems (DCPS)

safety-critical systems

asynchronous communications

hard real-time constraints

often virtually synchronous

in each period, read input, perform transition, and produce output
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Challenges (1)

Hard to design correctly

race conditions
clock skews
network delays and execution times

No fault found

hard to duplicate a (reported) failure
due to distributed nature
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Challenges (2)

Model checking

examines all possible behaviors from the initial states
provides a counterexample

Hard to model check

real-time
state space explosion due to asynchrony
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Our Approach

1 Multirate PALS

reduces design and verification of a DCPS to its synchronous version

2 Multirate Synchronous AADL

makes PALS available in avionics modeling standard AADL
formal semantics in (real-time) rewriting logic

3 The MR-SynchAADL tool

Eclipse plug-in for Multirate Synchronous AADL
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Outline

1 Multirate PALS

2 Multirate Synchronous AADL

3 Case Study: Turning an Airplane
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Multirate PALS (1)

PALS : physically asynchronous logically synchronous

Reduces design/verification of DRTS to its synchronous version

Relies on asynchronous bounded delay (ABD) network infrastructure

Assumes underlying clock synchronization (IEEE 1588, etc.)

Kyungmin Bae December 31, 2013 7 / 39



Multirate PALS (2)

PALS : physically asynchronous logically synchronous

Reduces design/verification of DRTS to its synchronous version

Multirate PALS gives a transformation (E ,T , Γ)→MA(E ,T , Γ)
E : multi-rate synchronous design
T : a rate function
Γ: bounds on network delay, execution time, and clock skew

MA(E ,T , Γ): the corresponding distributed asynchronous design

Correct by construction
E |= ϕ if and only if MA(E ,T , Γ) |= ϕ

Verified formal architectural pattern

verification effort amortized over many systems!
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Synchronous Model (1)

Synchronous composition of typed state machines

M1
(rate=1)

M2
(rate=1)

M3
(rate=3)

M4 + env2
(rate=2)

M5 + env3
(rate=3)

Controller periods multiple of faster periods

All components must perform in lock-step

“slow down” fast components by performing k (= rate) transitions
input adaptors transform k-tuples to/from single values
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Synchronous Model (2)

Fast components perform k “internal transitions” in one step

reads/produces k-tuples of inputs/outputs

Input adaptors transform k-tuples to/from single values

M{α1,..., αn}

α1 α2 αn...

M

Transformations/“formal patterns” define synchronous model

“k-step decelerated machine”
“input adaptor closure machine”
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Asynchronous Model (1)

Add “wrappers” around each machine

Fast Machine

PALS wrapper
Input Adaptor

K-machine

Slow Machine

PALS wrapper
Input Adaptor

input buffers, output buffers, timers

optimal PALS period: µmax + 2 · ε+ max(2 · ε− µmin, αmax)

clock skew ε, execution time αmax , and network delay µmin, µmax
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Asynchronous Model (2)

Components perform at different rates

fast component

slow component

i · T (i + 1) · T

Assumption: adaptors ignore inputs not received in time
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Correctness of Multirate PALS

Stable states of asynchronous models

virtually synchronized states
PALS wrapper: all input buffers full, all output buffers empty

Correct by construction

synchronous design |= ϕ
iff

(“stable-state”) asynchronous design |= ϕ
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Case Study: Active Standby (1)

Integrated modular avionics example

Which of two cabinets is active?

Non-active side monitors active sides, failures, and pilot toggle

ActiveStandbySystem.impl

sideOne:
Side1.impl

env: Environment.impl

sideTwo:
Side2.impl

side1ActiveSide

side2ActiveSide

manualSelection

side1Failed side2Failedside2FullyAvailside1FullyAvail

SynchAADL::Synchronous => true
SynchAADL::SynchPerod  => 2ms

By Steven Miller and Darren Cofer at Rockwell-Collins
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Case Study: Active Standby (2)

System Requirements

R1: Both sides should agree on which side is active (provided neither side
has failed, the availability of a side has not changed, and the pilot has
not made a manual selection).

R2: A side that is not fully available should not be the active side if the
other side is fully available (again, provided neither side has failed, the
availability of a side has not changed, and the pilot has not made a
manual selection).

R3: The pilot can always change the active side (except if a side is failed
or the availability of a side has changed).

R4: If a side is failed the other side should become active.

R5: The active side should not change unless the availability of a side
changes, the failed status of a side changes, or manual selection is
selected by the pilot.
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Case Study: Active Standby (3)

Comparison with the simplest possible asynchronous model

Model #States Time

Synch. 185 0.1 s
Asynch. (0) 3047832 1249 s
Asynch. (1) n/a n/a

10! different message reception ordering in each round
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Goal

Make Multirate PALS methodology and formal verification
available to domain-specific modeling
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Background: AADL

AADL: Industry standard for embedded systems modeling

US Army, Honeywell, Airbus, Boeing, Dassault Aviation, EADS, ESA,
Rockwell-Collins, Ford, Lockheed Martin, Raytheon, Toyota,
U. S. Navy, . . .

Avionics, aerospace, medical devices, robotic, . . .

OSATE: Eclipse plug-ins for AADL
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Multirate Synchronous AADL (1)

Goal:

Make Multirate PALS methodology and formal verification
available to domain-specific modeling

1 Model synchronous design E in Multirate Synchronous AADL

2 Verify E using MR-SynchAADL OSATE plugin
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Multirate Synchronous AADL (2)

Subset of AADL to model synchronous PALS designs

identifies AADL models that can be considered as synchronous
extended with new annotations: property set MR SynchAADL

provides predefined input adaptors

Focus on behavioral and structuring subset of AADL

abstract from hardware and memory, etc.,
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Multirate Synchronous AADL (3)

AADL constructs in subset have the same meaning as before

easy to use for AADL modeler
same behaviors as in AADL, without the intermediate states
introduced by asynchrony

Formalized in real-time rewriting logic

Real-Time Maude: formal analysis tool for real-time systems
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The MR-SynchAADL Tool (1)

OSATE/Eclipse plug-in for Synchronous AADL

Real-Time Maude model checking within OSATE

checks if given model is valid Multirate Synchronous AADL model
automatic synthesis of Real-Time Maude model

Requirement specification language

easy to define system requirements as temporal formulas
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The MR-SynchAADL Tool (2)

Model checking
Modeling tools Rewriting logic (Real-Time Maude)

System design Rewrite theory LTL
M =⇒ RM time-bounded LTL

=⇒ Timed CTL
Property specification Logic formula Metric LTL

spec =⇒ ϕspec . . .
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The MR-SynchAADL Tool (3)

MR-SynchAADL window in OSATE
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Outline

1 Multirate PALS

2 Multirate Synchronous AADL

3 Case Study: Turning an Airplane
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Problem: Design a Controller for Turning an Airplane

aileron controllers (e.g. 67 Hz) and rudder controllers (e.g. 50 Hz)

controller must ensure synchronization for turning aircraft
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Turning an Airplane (1)

Move ailerons to roll airplane for a turn

Turning rate dψ = (g/v) ∗ tanφ (roll angle φ)
3.4 Aircraft Dynamics 129

Fig. 3.23 Rolling moment due to rate of roll.

on the other wing is decreased and a rolling moment is thus generated. The rolling
moment due to the rate of roll, p, acts in the opposite sense to the direction of rolling
and is equal to Lpp where Lp is the rolling moment derivative due to rate of roll.

Yawing moment derivative due to rate of roll Np. The rate of roll which increases
the lift on the outer part of one wing and reduces it on the other also creates a
differential drag effect. The increase in lift is accompanied by an increase in drag in
the forward direction and the decrease in lift on the other wing by a corresponding
reduction in drag. A yawing moment is thus produced by the rate of roll, p, which
is equal to Npp where Np is the yawing moment derivative due to rate of roll.

Yawing moment derivative due to rate of yaw Nr . The rate of yaw, r , produces
a tangential velocity component equal to lf r where lf is the distance between the
aerodynamic centre of the fin and the yaw axis through the CG. The resulting change
in the effective fin incidence angle, lf r/VT , produces a lift force which exerts a
damping moment about the CG opposing the rate of yaw. The yawing moment due
to the rate of yaw is equal to Nrr where Nr is the yawing moment derivative due to
rate of yaw.

Rolling moment derivative due to rate of yaw Lr . When the aircraft yaws, the
angular velocity causes one wing to experience an increase in velocity relative to
the airstream and the other wing a decrease. The lift on the leading wing is thus
increased and the trailing wing decreased thereby producing a rolling moment. The
rolling moment derivative due to rate of yaw is denoted by Lr and the rolling mo-
ment due to rate of yaw is equal to Lrr .

Lateral control derivatives due to ailerons and rudder. The ailerons and rudder
are illustrated in Figure 3.15. The angle through which the ailerons are deflected
differentially from their position in steady trimmed flight is denoted by ξ and the

3.6 Lateral Control 149

Fig. 3.33 Forces acting in a turn.

Z sin ! = mVT "̇

Vertical component of the lift force is Z cos !. Equating this to the aircraft weight
gives

Z cos ! = mg

from which

tan ! = VT "̇

g
(3.66)

Thus the acceleration towards the centre of the turn is g tan !.
Referring to the inset vector diagram in Figure 3.33, the normal acceleration

component is thus equal to g sec !. Thus a 60◦ banked turn produces a centripetal
acceleration of 1.73g and a normal acceleration of 2g. At a forward speed of 100 m/s
(200 knots approx.) the corresponding rate of turn would be 10.4◦/s.

The lift required from the wings increases with the normal acceleration and the
accompanying increase in drag requires additional engine thrust if the forward speed
is to be maintained in the turn. The ability to execute a high g turn thus requires a
high engine thrust/aircraft weight ratio.

To execute a coordinated turn with no sideslip requires the operation of all three
sets of control surfaces, that is the ailerons and the tailplane (or elevator) and to a
lesser extent the rudder. It is also necessary to operate the engine throttle(s) to con-
trol the engine thrust. The pilot first pushes the stick sideways to move the ailerons
so that the aircraft rolls, the rate of roll being dependent on the stick movement. The
rate of roll is arrested by centralising the stick when the desired bank angle for the
rate of turn has been achieved. The pilot also pulls back gently on the stick to pitch
the aircraft up to increase the wing incidence and hence the wing lift to stop loss
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Turning an Airplane (2)

Rolling causes adverse yaw

sideslip in wrong direction

use rudder to avoid this

yaw angle β should always be 0

3.4 Aircraft Dynamics 127

Fig. 3.21 Lateral forces.

Side force derivative due to sideslip velocity Yv . The change in sideslip velocity,
v, during a disturbance changes the incidence angle, β, of the aircraft’s velocity
vector, VT , (or relative wind) to the vertical surfaces of the aircraft comprising the
fin and fuselage sides (see Figure 3.21). The change in incidence angle v/VT results
in a sideways lifting force being generated by these surfaces. The net side force from
the fuselage and fin combined is equal to Yvv where Yv is the sideforce derivative
due to the sideslip velocity.

Yawing moment derivative due to sideslip velocity Nv . The side force on the fin
due to the incidence, β, resulting from the sideslip velocity, v, creates a yawing
moment about the CG which tends to align the aircraft with the relative wind in a
similar manner to a weathercock (refer to Figure 3.21).

The main function of the fin is to provide this directional stability (often referred
to as weathercock stability). This yawing moment is proportional to the sideslip ve-
locity and is dependent on the dynamic pressure, fin area, fin lift coefficient and the
fin moment arm, the latter being the distance between the aerodynamic centre of the
fin and the yaw axis through the CG. However, the aerodynamic lateral forces acting
on the fuselage during side-slipping also produce a yawing moment which opposes
the yawing moment due to the fin and so is destabilising. The net yawing moment
due to sideslip is thus dependent on the combined contribution of the fin and fusel-
age. The fin area and moment arm, known as the fin volume, is thus sized to provide
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Turning an Airplane (3)

Roll angle (φ) and yaw angle (β):

dφ2 = (Lift Right − Lift Left) / (Weight ∗ Length of Wing) (1)

dβ2 = Drag Ratio ∗ (Lift Right − Lift Left) / (Weight ∗ Length Wing)

+ Lift Vertical / (Weight ∗ Length of Aircraft) (2)

where
Lift = Lift constant ∗ Angle (3)

Kyungmin Bae December 31, 2013 30 / 39



Architecture of the Airplane Turning Control System

The Airplane Turning Control System (60ms, rate = 10)

Main
Controller

+
Sensors

(60ms, rate = 1)

Left-wing Sub-controller 
(15ms, rate = 4)

Rudder Sub-controller 
(20ms, rate = 3)

Right-wing Sub-controller 
(15ms, rate = 4)

Pilot
Console

(600ms,
  rate = 1)

Kyungmin Bae December 31, 2013 31 / 39



Multirate Synchronous AADL Model (1)

system TurningController -- "interface" of the turning controller

features

pilot_goal: in data port Base_Types::Float {MR_SynchAADL::InputAdaptor => "use in first iteration";};
curr_dr: out data port Base_Types::Float;

end TurningController;

system implementation TurningController.impl

subcomponents

mainCtrl: system Maincontroller.impl; rudderCtrl: system Subcontroller.impl;

leftCtrl: system Subcontroller.impl; rightCtrl: system Subcontroller.impl;

connections

port leftCtrl.curr_angle -> mainCtrl.left_angle {Timing => Delayed;};
port rightCtrl.curr_angle -> mainCtrl.right_angle {Timing => Delayed;};
port rudderCtrl.curr_angle -> mainCtrl.rudder_angle {Timing => Delayed;};
port mainCtrl.left_goal -> leftCtrl.goal_angle {Timing => Delayed;};
port mainCtrl.right_goal -> rightCtrl.goal_angle {Timing => Delayed;};
port mainCtrl.rudder_goal -> rudderCtrl.goal_angle {Timing => Delayed;};
port pilot_goal -> mainCtrl.goal_angle;

port mainCtrl.curr_dr -> curr_dr;

properties

Period => 60 ms;

Period => 15 ms applies to leftCtrl, rightCtrl;

Period => 20 ms applies to rudderCtrl;

Data_Model::Initial_Value => ("1.0") applies to -- ailerons can move 1◦ in 15 ms

leftCtrl.ctrlProc.ctrlThread.diffAngle, rightCtrl.ctrlProc.ctrlThread.diffAngle;

Data_Model::Initial_Value => ("0.5") applies to -- rudder can move 0.5◦ in 20 ms

rudderCtrl.ctrlProc.ctrlThread.diffAngle;

...

end TurningController.impl;
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Multirate Synchronous AADL Model (2)

system Subcontroller -- "interface" of a device controller

features

goal_angle: in data port Base_Types::Float

{MR_SynchAADL::InputAdaptor => "use in first iteration";};
curr_angle: out data port Base_Types::Float;

end Subcontroller;

thread implementation SubcontrollerThread.impl

subcomponents

currAngle : data Base_Types::Float {Data_Model::Initial_Value => ("0.0");};
goalAngle : data Base_Types::Float {Data_Model::Initial_Value => ("0.0");};
diffAngle : data Base_Types::Float;

annex behavior_specification {**
states

init: initial complete state; move, update: state;

transitions

init -[on dispatch]-> move;

move -[abs(goalAngle - currAngle) > diffAngle]-> update {
if (goalAngle - currAngle >= 0) currAngle := currAngle + diffAngle

else currAngle := currAngle - diffAngle end if };

move -[otherwise]-> update {currAngle := goal_angle};

update -[ ]-> init {
if (goal_angle’fresh) goalAngle := goal_angle end if; curr_angle := currAngle};

**};
end SubcontrollerThread.impl;
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System Requirements

Key properties:

reach desired direction (+ no roll or yaw) in reasonable time
yaw angle always close to 0 during turn

In the requirement specification language:

requirement safeTurn: safeYaw U (stable / reachGoal) in time <= 7200;

formula safeYaw:

turnCtrl.mainCtrl.ctrlProc.ctrlThread | abs(currYaw) < 1.0;

formula stable:

turnCtrl.mainCtrl.ctrlProc.ctrlThread |

abs(currRol) < 0.5 and abs(currYaw) < 0.5;

formula reachGoal:

turnCtrl | abs(curr_dr - 60.0) < 0.5;
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Synch. vs. Asynch.

Model checking with different pilot behaviors

Model Env.
T ≤ 600ms T ≤ 1,800 ms T ≤ 3,000 ms
states time states time(s) states time(s)

Sync.
Det. 2 0.14 4 0.16 6 1.18

3 4 0.16 28 0.33 202 1.55
5 6 0.16 116 0.89 2,091 14.86

Async.
Det. 6,327 0.76 28,071 2.98 50,139 50.14

3 17,469 2.26 381,213 73.13 2,547,423 2,884.81
5 28,611 3.01 1,634,211 938.79 - > 10 hours
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Concluding Remarks

Multirate PALS

reduces design and verification of DRTS to its synchronous version

Multirate Synchronous AADL

modeling synchronous designs in AADL

MR-SynchAADL

simulation and model checking in OSATE
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Thank you
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Background: Rewriting Logic

Rewrite theory R = (Σ,E ,R): a formal specification of concurrent systems

Σ : signature for logical terms t ∈ TΣ

E : equations that define equalities t =E t ′

R : rewrite rules specifying labeled transitions l : [t]E −→ [t ′]E

1 naturally describes many concurrent systems

including their states and events
can be used as a universal system specification logic

2 executable under reasonable assumptions

3 Maude: high-performance rewriting logic language and tool
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More Background: Real-Time Maude

Real-Time Maude : formal analysis tool for real-time systems

expressiveness and ease of specification

simulation and (LTL and timed CTL) model checking tool

equational algebraic specification defines static parts

rewrite rules define transitions

suitable for object-oriented specification
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Real-Time Maude Semantics of Synchronous AADL (1)

Object-oriented semantics

“one-to-one” correspondence AADL model ↔ Real-Time Maude term

Example (the active standby)

< MAIN : System |

features : none,

properties : Synchronous(true) ; SynchPeriod(2),

subcomponents : < env : System | ... >

< sideOne : System | ... >

< sideTwo : System | ... >,

connections : sideOne . side1ActiveSide -->> sideTwo . side1ActiveSide ;

sideTwo . side2ActiveSide -->> sideOne . side2ActiveSide ;

...

env . side2Failed --> sideTwo . side2Failed >

Synchronous step formalized by rewrite rules
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Real-Time Maude Semantics of Synchronous AADL (2)

Rewrite rule defining synchronous dynamics for each step:

crl [syncStepWithTime] :

{SYSTEM}

=>

{applyTransitions(

transferData(

applyEnvTransitions(VAL, SYSTEM)))}

in time period(SYSTEM)

if VAL ; VALS := allEnvAssignments(SYSTEM) .
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Real-Time Maude Semantics of Synchronous AADL (3)

Equation defining deterministic thread behaviors:

ceq applyTransitions(

< O : Thread | properties : Deterministic(true) ; PROPS,

features : PORTS, currState : L1,

completeStates : LS, variables : VAL,

transitions : (L1 -[GUARD]-> L2 {SL}) ; TRANS >)

= if L2 in LS then

< O : Thread | features : NEW-PORTS, currState : L2,

variables : NEW-VALUATION >

else

applyTransitions(< O : Thread | features : NEW-PORTS,

currState : L2,

variables : NEW-VALUATION >) fi

if evalGuard(GUARD, PORTS, VAL) = true

/\ not someTransEnabled(TRANS, L1, VAL, PORTS)

/\ transResult(NEW-PORTS, NEW-VALUATION) :=

executeTransition(L1 -[GUARD]-> L2 {SL}, PORTS, VAL) .
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