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Distributed Cyber-Physical Systems (DCPS)

@ collection of components that control physical entities
@ complex interaction of embedded systems and real-time control

@ e.g., avionics, automative, medical devices, ...
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Distributed Cyber-Physical Systems (DCPS)

safety-critical systems
asynchronous communications
hard real-time constraints

often virtually synchronous
e in each period, read input, perform transition, and produce output
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Challenges (1)

@ Hard to design correctly

e race conditions
o clock skews
e network delays and execution times

@ No fault found

o hard to duplicate a (reported) failure
o due to distributed nature
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Challenges (2)

@ Model checking

e examines all possible behaviors from the initial states
e provides a counterexample

@ Hard to model check

o real-time
e state space explosion due to asynchrony
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Our Approach

@ Multirate PALS

e reduces design and verification of a DCPS to its synchronous version

@ Multirate Synchronous AADL

e makes PALS available in avionics modeling standard AADL
o formal semantics in (real-time) rewriting logic

© The MR-SynchAADL tool
e Eclipse plug-in for Multirate Synchronous AADL
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Outline

© Multirate PALS
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Multirate PALS (1)

PALS : physically asynchronous logically synchronous

Reduces design/verification of DRTS to its synchronous version

@ Relies on asynchronous bounded delay (ABD) network infrastructure

@ Assumes underlying clock synchronization (IEEE 1588, etc.)
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Multirate PALS (2)

PALS : physically asynchronous logically synchronous

Reduces design/verification of DRTS to its synchronous version

e Multirate PALS gives a transformation (£, T,T) = MA(E, T,T)
&: multi-rate synchronous design
T: a rate function
1 bounds on network delay, execution time, and clock skew
MA(E, T,T): the corresponding distributed asynchronous design

Kyungmin Bae December 31, 2013 8 /39



Multirate PALS (2)

PALS : physically asynchronous logically synchronous
Reduces design/verification of DRTS to its synchronous version
e Multirate PALS gives a transformation (£, T,I') — MA(E, T,TN)

@ Correct by construction

EE¢ ifandonlyif MAE T.T)E

o Verified formal architectural pattern
o verification effort amortized over many systems!
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Synchronous Model (1)

Synchronous composition of typed state machines

* A\ V‘ i
M > M2
(rate=1) (rate=1)
M3 M4 + env2 Ms + env3
(rate=3) (rate=2) (rate=3)
v

@ Controller periods multiple of faster periods
@ All components must perform in lock-step

e “slow down" fast components by performing k (= rate) transitions
e input adaptors transform k-tuples to/from single values
December 31, 2013
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Synchronous Model (2)

@ Fast components perform k “internal transitions” in one step

o reads/produces k-tuples of inputs/outputs

@ Input adaptors transform k-tuples to/from single values

<]
<

e Transformations/ "formal patterns” define synchronous model

o “k-step decelerated machine”
e ‘“input adaptor closure machine”
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Asynchronous Model (1)

Add “wrappers” around each machine

PALS wrapper PALS wrapper
Input Adaptor

K-machine

@ input buffers, output buffers, timers

Input Adaptor

@ optimal PALS period: fimax +2 - €+ max(2 - € — timin, Cmax)
o clock skew €, execution time amax, and network delay fimin, fhmax
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Asynchronous Model (2)

@ Components perform at different rates

N

i T

—

—

(i+1)-T

slow component

fast component

@ Assumption: adaptors ignore inputs not received in time
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Correctness of Multirate PALS

@ Stable states of asynchronous models

e virtually synchronized states
o PALS wrapper: all input buffers full, all output buffers empty

@ Correct by construction

synchronous design = ¢
iff
(“stable-state”) asynchronous design = ¢
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Case Study: Active Standby (1)

Integrated modular avionics example
@ Which of two cabinets is active?
@ Non-active side monitors active sides, failures, and pilot toggle

(n e . 2
ActiveStand bySyStem-lmpl SynchAADL::Synchronous => true
SynchAADL::SynchPerod =>2ms
( env: Environment.impl J
side1Failed side1FullyAvail side2FullyAvail side2Failed
) I—’éf‘
4—
sideOne: manualSelection sideTwo:
Side1.impl 0 Side2.impl
T
side1ActiveSide
H
side2ActiveSide

@ By Steven Miller and Darren Cofer at Rockwell-Collins
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Case Study: Active Standby (2)

System Requirements

Ry: Both sides should agree on which side is active (provided neither side
has failed, the availability of a side has not changed, and the pilot has
not made a manual selection).

R>: A side that is not fully available should not be the active side if the
other side is fully available (again, provided neither side has failed, the
availability of a side has not changed, and the pilot has not made a
manual selection).

R3: The pilot can always change the active side (except if a side is failed
or the availability of a side has changed).

Ry: If a side is failed the other side should become active.

Rs: The active side should not change unless the availability of a side
changes, the failed status of a side changes, or manual selection is
selected by the pilot.
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Case Study: Active Standby (3)

@ Comparison with the simplest possible asynchronous model

Model #States | Time
Synch. 185 0.1s
Asynch. (0) | 3047832 | 1249s
Asynch. (1) n/a n/a

o 10! different message reception ordering in each round
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Outline

© Multirate Synchronous AADL
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Make Multirate PALS methodology and formal verification
available to domain-specific modeling
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Background: AADL

AADL: Industry standard for embedded systems modeling

@ US Army, Honeywell, Airbus, Boeing, Dassault Aviation, EADS, ESA,
Rockwell-Collins, Ford, Lockheed Martin, Raytheon, Toyota,
U. S. Navy, ...

@ Avionics, aerospace, medical devices, robotic, ...
o OSATE: Eclipse plug-ins for AADL
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Multirate Synchronous AADL (1)

Goal:

Make Multirate PALS methodology and formal verification
available to domain-specific modeling

@ Model synchronous design £ in Multirate Synchronous AADL
@ Verify £ using MR-SynchAADL OSATE plugin
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Multirate Synchronous AADL (2)

@ Subset of AADL to model synchronous PALS designs

o identifies AADL models that can be considered as synchronous
o extended with new annotations: property set MR_SynchAADL
e provides predefined input adaptors

@ Focus on behavioral and structuring subset of AADL

e abstract from hardware and memory, etc.,
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Multirate Synchronous AADL (3)

@ AADL constructs in subset have the same meaning as before

e easy to use for AADL modeler
e same behaviors as in AADL, without the intermediate states
introduced by asynchrony

o Formalized in real-time rewriting logic

o Real-Time Maude: formal analysis tool for real-time systems
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The MR-SynchAADL Tool (1)

e OSATE/Eclipse plug-in for Synchronous AADL

@ Real-Time Maude model checking within OSATE

e checks if given model is valid Multirate Synchronous AADL model
e automatic synthesis of Real-Time Maude model

@ Requirement specification language
e easy to define system requirements as temporal formulas
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The MR-SynchAADL Tool (2)

Model checking

Modeling tools Rewriting logic (Real-Time Maude)
System design Rewrite theory LTL
M = Rm time-bounded LTL
== Timed CTL
Property specification Logic formula Metric LTL
spec == Pspec

[0 |
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The MR-SynchAADL Tool (3)

@ MR-SynchAADL window in OSATE

51 Airplane_scenario_instance.pspc 58 | Airplane.aad|

name: Airplane_scenario_Instance;

-~ an AADL implementation
model: Airplane::Airplane.scenario;

-~ @ path for the corresponding instance model
instance:

-- requirements
requirement safety: [] safefan;

requirement safeTurn: safeYaw U (stable /\ reachGoal) in time <= 7200;

-~ other formulas and propositions
formula safeYan:

= formula stable: turningCtrl.mainController.ctrlProc.ctrlThread |
abs(currRol) < 0.5 and abs(currYaw) < @.5;

formula reachGoal: turningCtrl | abs(curr_direction - €8.9) < @.5;

[2 problems | 5 Properties | B Maude Console 52
Ready.
Untimed model check {initial}
Result Bool :

true
rewrites: 486318 in 502ms cpu (587ms real) (967248 rewrites/second)
Model check{initial}

Result Bool :
true

Kyungmin Bae

"/AirplaneTurn/instances/Airplane_Airplane_scenario_Instance.aax12";

turningCtrl.mainController.ctrlProc. ctrlThread | absCcurrYaw) < 1.8;

< Outline | @ SynchAADL ...

AADL Property Spec
Spec: | Airplane_scenario_lnstance.psp
Real-Time Maude Simulation
Bound:
Perform Simulation
AADL Property Requirement

[Sfsafety
safeTurn

@ SelectAll | Perform Verification
Gu 6B [E

weslel@=n

I=u safety in AIRPLANE_SCENARIO_INSTANCE-VERIFICATION-DEF with mode deterministic time increase

I=t safeTurn in AIRPLANE_SCENARIO_INSTANCE-VERIFICATION-DEF in time <= 7288 with mode deterministic time increase
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Outline

e Case Study: Turning an Airplane
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Problem: Design a Controller for Turning an Airplane

@ aileron controllers (e.g. 67 Hz) and rudder controllers (e.g. 50 Hz)

@ controller must ensure synchronization for turning aircraft

ELEVATOR

SPEED BRAKE
= FLIGHT SPOILERS

CONTROL SURFACES SRR SRR IS
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Turning an Airplane (1)

@ Move ailerons to roll airplane for a turn
e Turning rate di) = (g/v) * tan¢d (roll angle ¢)

Lift
z Zcos ® 20"
| Increased ate p
Lift /—
A
! Centrifugal —
To centre; Force
<t e — — — — 5 N\— - — — — — — > . | D d
of turn  Zsin® mvr ¥ y y Y Lift
Incidence 3
Increase Wﬂ
Incidence
Weight T v_Decrease
v py7
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Turning an Airplane (2)

Rolling causes adverse yaw

@ sideslip in wrong direction
@ use rudder to avoid this

@ yaw angle 8 should always be 0
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Turning an Airplane (3)

Roll angle (¢) and yaw angle (5):

dé? = (Lift Right — Lift Left) / (Weight % Length of Wing) (1)
df? = Drag Ratio = (Lift Right — Lift Left) / (Weight % Length Wing)
+ Lift Vertical | (Weight « Length of Aircraft) (2)

where
Lift = Lift constant * Angle (3)
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itecture of the Airplane Turning Control System

R e N
The Airplane Turning Control System (60ms, rate = 10)
) 4 K N
—»| Left-wing Sub-controller
) < (15ms, rate = 4)
Pilot Main N
Console > Controller p
+ »  Rudder Sub-controller
(600ms, Sensors < (20ms, rate = 3)
rate=1) | \
(60ms, rate = 1) Vs N
Right-wing Sub-controller
— (15ms, rate = 4)
~ @@ N
— \ J
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Multirate Synchronous AADL Model (1)

system TurningController -- "interface” of the turning controller
features
pilot_goal: in data port Base_Types::Float {MR_SynchAADL::InputAdaptor => "use in first iteration”;};
curr_dr: out data port Base_Types::Float;
end TurningController;

system implementation TurningController.impl

subcomponents
mainCtrl: system Maincontroller.impl; rudderCtrl: system Subcontroller.impl;
leftCtrl: system Subcontroller.impl; rightCtrl: system Subcontroller.impl;
connections
port leftCtrl.curr_angle -> mainCtrl.left_angle {Timing => Delayed;};

port rightCtrl.curr_angle -> mainCtrl.right_angle {Timing =
port rudderCtrl.curr_angle -> mainCtrl.rudder_angle {Timing
port mainCtrl.left_goal -> leftCtrl.goal_angle {Timing

port mainCtrl.right_goal -> rightCtrl.goal_angle {Timing => Delayed;};

port mainCtrl.rudder_goal -> rudderCtrl.goal_angle {Timing => Delayed;};

port pilot_goal -> mainCtrl.goal_angle;

port mainCtrl.curr_dr -> curr_dr;

properties

Period => 60 ms;

Period => 15 ms applies to leftCtrl, rightCtirl;

Period => 20 ms applies to rudderCirl;

Data_Model::Initial_Value => ("1.0") applies to -- ailerons can move 1° in 15ms
leftCtrl.ctrlProc.ctrlThread.diffAngle, rightCtrl.ctrlProc.ctrlThread.diffAngle;

Data_Model::Initial_Value => ("0.5") applies to -- rudder can move 0.5° in 20ms

rudderCtrl.ctrlProc.ctrlThread.diffAngle;

end TurningController.impl;
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Multirate Synchronous AADL Model (2)

system Subcontroller -- "interface" of a device controller
features
goal_angle: in data port Base_Types::Float
{MR_SynchAADL: : InputAdaptor => "use in first iteration”;};
curr_angle: out data port Base_Types::Float;
end Subcontroller;

thread implementation SubcontrollerThread.impl
subcomponents
currAngle : data Base_Types::Float {Data_Model::Initial_Value =>
goalAngle : data Base_Types::Float {Data_Model::Initial_Value =>
diffAngle : data Base_Types::Float;
annex behavior_specification {**

states
init: initial complete state; move, update: state;
transitions

init -[on dispatch]-> move;

move -[abs(goalAngle - currAngle) > diffAngle]-> update {
if (goalAngle - currAngle >= 0) currAngle := currAngle + diffAngle
else currAngle := currAngle - diffAngle end if };

move -[otherwise]-> update {currAngle := goal_angle};
update -[ 1-> init {

if (goal_angle’fresh) goalAngle := goal_angle end if; curr_angle := currAngle};

**};
end SubcontrollerThread.impl;
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System Requirements

o Key properties:

e reach desired direction (+ no roll or yaw) in reasonable time
e yaw angle always close to 0 during turn

@ In the requirement specification language:

requirement safeTurn: safeYaw U (stable / reachGoal) in time <= 7200;

formula safeYaw:
turnCtrl.mainCtrl.ctrlProc.ctrlThread | abs(currYaw) < 1.0;
formula stable:
turnCtrl.mainCtrl.ctrlProc.ctrlThread |
abs(currRol) < 0.5 and abs(currYaw) < 0.5;
formula reachGoal:
turnCtrl | abs(curr_dr - 60.0) < 0.5;
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Synch. vs. Asynch.

@ Model checking with different pilot behaviors

T <600 ms T < 1,800 ms T < 3,000 ms
Model | Env. . . .
states  time states  time(s) states  time(s)
Det. 2 014 4 016 6 1.18
Sync. | 3 4 016 28 033 202 1.55
5 6 0.16 116 0.89 2,091 14.86

Det. 6,327 0.76 28,071 2.98 50,139 50.14
Async. 3 17,469 2.26 381,213 73.13 | 2,547,423 2,884.81
5 28,611 3.01 | 1,634,211 938.79 - > 10 hours
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Concluding Remarks

@ Multirate PALS

e reduces design and verification of DRTS to its synchronous version

@ Multirate Synchronous AADL

e modeling synchronous designs in AADL

e MR-SynchAADL
e simulation and model checking in OSATE
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Thank you
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Background: Rewriting Logic

Rewrite theory R = (X, E, R): a formal specification of concurrent systems
> : signature for logical terms t € Ty
E : equations that define equalities t =g t/

R : rewrite rules specifying labeled transitions / : [t]g — [t']e

@ naturally describes many concurrent systems

e including their states and events
e can be used as a universal system specification logic

@ executable under reasonable assumptions

© Maude: high-performance rewriting logic language and tool
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More Background: Real-Time Maude

Real-Time Maude : formal analysis tool for real-time systems
@ expressiveness and ease of specification

simulation and (LTL and timed CTL) model checking tool

equational algebraic specification defines static parts

rewrite rules define transitions

suitable for object-oriented specification
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Real-Time Maude Semantics of Synchronous AADL (1)

@ Object-oriented semantics

o “one-to-one” correspondence AADL model <+ Real-Time Maude term

e Example (the active standby)

< MAIN : System |
features : none,

properties : Synchronous(true) ; SynchPeriod(2),
subcomponents : < env

: System | ... >
< sideOne : System | ... >
< sideTwo : System | ... >

connections : sideOne . sidelActiveSide

-=->> sideTwo
sideTwo . side2ActiveSide

-=>> sideOne
env . side2Failed --> sideTwo

@ Synchronous step formalized by rewrite rules

Kyungmin Bae

. sidelActiveSide ;
. side2ActiveSide ;

. side2Failed >
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Real-Time Maude Semantics of Synchronous AADL (2)

Rewrite rule defining synchronous dynamics for each step:

crl [syncStepWithTime]
{SYSTEM}
=>
{applyTransitions(
transferData(
applyEnvTransitions(VAL, SYSTEM)))}
in time period(SYSTEM)
if VAL ; VALS := allEnvAssignments(SYSTEM)
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Real-Time Maude Semantics of S

Equation defining deterministic thread behaviors:

ceq applyTransitions(
< 0 : Thread | properties : Deterministic(true) ; PROPS,
features : PORTS, currState : L1,
completeStates : LS, variables : VAL,
transitions : (L1 -[GUARD]-> L2 {SL}) ; TRANS >)
= if L2 in LS then
< 0 : Thread | features : NEW-PORTS, currState : L2,
variables : NEW-VALUATION >
else
applyTransitions(< 0 : Thread | features : NEW-PORTS,
currState : L2,

variables : NEW-VALUATION >) fi
if evalGuard(GUARD, PORTS, VAL) = true

/\ not someTransEnabled(TRANS, L1, VAL, PORTS)
/\ transResult (NEW-PORTS, NEW-VALUATION) :=
executeTransition(L1 -[GUARD]-> L2 {SL}, PORTS, VAL)

Kyungmin Bae December 31, 2013

5/5



	Multirate PALS
	Multirate Synchronous AADL
	Case Study: Turning an Airplane
	Appendix

