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선별적 문맥 구분

1 char* xmalloc (int n) { return malloc(n); }

2

3 void f (int size) {

4 p = xmalloc (size);

5 assert (sizeof(p) > 1); // Query 1
6 q = xmalloc (input());

7 assert (sizeof(q) > 1); // Query 2
8 }

9

10 int main() {

11 f (8);

12 f (16);

13 }

Figure 1. Example Program

of this program calls procedure f and g. Procedure multi glob is
called in f and g with different argument values.

The program contains two queries. The first query at line 5 asks
whether p points to a buffer of size larger than 1. The other query at
line 7 asks a similar question, but this time for the pointer variable
q. Note that the first query always holds, but the second query is
not necessarily true.
Context-insensitive analysis If we analyze the program using
a context-insensitive interval analysis, we cannot prove the first
query. Since the analysis is insensitive to calling contexts, it esti-
mates the effect of xmalloc under all the possible inputs, and uses
this same estimation as the result of every call. Note that an input
to xmalloc at line 6 can be any integer, and the analysis concludes
that xmalloc allocates a buffer of size in [�1,+1].
Context-sensitive analysis A natural way to fix this precision
issue is to increase the context-sensitivity. One popular approach
is k-CFA analysis [16, 17]. It uses sequences of call sites up to
length k to distinguish calling contexts of a procedure, and analyzes
the procedure separately for such distinguished calling contexts.
For instane, 3-CFA analyzes the procedure xmalloc separately for
each of the following calling contexts:

4 · 10 · 14 4 · 10 · 15 4 · 11 · 16 4 · 11 · 17
6 · 10 · 14 6 · 10 · 15 6 · 11 · 16 6 · 11 · 17 (1)

Here a · b · c denotes a sequence of call sites a, b and c (we use
the line numbers as call sites), with a being the most recent call.
Note that the 3-CFA analysis can prove the first query: the analysis
analyzes the first four contexts separately and infers that a buffer of
size greater than 1 gets allocated under these calling contexts.
Need of selective context-sensitivity However, using such a “uni-
form” context-sensitivity is not ideal. It is often too expensive to run
such an analysis with high enough k, such as k � 3 that our exam-
ple needs.More importantly, for many procedure calls, increasing
context-sensitivity does not help—either it does not improve the
analysis results of these calls, or the increased precision is not use-
ful for answering queries. For instance, at the second query, for ev-
ery k � 0, the k-CFA analysis concludes that p points to a buffer of
size [�1,+1]. Also, it is unnecessary to analyze g separately for
call sites 16 and 17, because those two calls have the same effect
on the query.
Our selective context-sensitivity With our approach, an analysis
can analyze procedures with only needed context-sensitivity. It an-
alyzes a procedure separately for a calling context if doing so is
likely to improve the precision of the analysis and reduce false
alarms in its answers for given queries. For the example program,
our analysis first predicts that increasing context-sensitivity is un-
likely to help answer the second query (line 7) accurately, but is
likely to do so for the first query (line 5). Next, the analysis finds
out that we can bring the full benefit of context-sensitivity for the

first query, by distinguishing only the following four types of call-
ing contexts of xmalloc:

4 · 10 · 14, 4 · 10 · 15, 4 · 11, all the other contexts (2)

Note that contexts 4 · 11 · 16 and 4 · 11 · 17 are merged into a
single context 4 · 11. This merging happens because the analysis
figures out that two callers of g (line 16 and 17) do not provide
any useful information for resolving the first query. Finally, the
analysis analyzes the given program using the interval domain
while distinguishing calling contexts above and their suffixes (i.e.,
10 ·14, 10 ·15, 14, 15, 11). This selective context-sensitive analysis
is able to prove the first query.
Impact pre-analysis Our key idea is to approximate the main
analysis under full context-sensitivity using a pre-analysis, and
estimate the impact of context-sensitivity on the results of the main
analysis. This impact pre-analysis uses a simple abstract domain
and transfer functions, and can be run efficiently even with full
context-sensitivity.

For instance, we approximate the interval analysis in this ex-
ample using a pre-analysis with two abstract values: F and >.
Here > means all intervals, and F intervals of the form [l, u] with
0  l  u. A typical abstract state in this domain is [x : >, y : F],
which means the following set of states in the interval domain:

{[x : [l
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This simple abstract domain of the pre-analysis is chosen because
we are interested in showing the absence of buffer overruns and
the analysis proves such properties only when it finds non-negative
intervals for buffer sizes and indices.

We run this pre-analysis under full context-sensitivity (i.e., 1-
CFA). For our example program, we obtain a summary of the
procedure xmalloc with eight entries, each corresponding to a
different context in (1). The third column of the table below shows
this summary:

Size of the allocated buffer in xmalloc

Contexts Main analysis Pre-analysis
4 · 10 · 14 [8, 8] F
4 · 10 · 15 [16, 16] F
4 · 11 · 16 [4, 4] F
4 · 11 · 17 [4, 4] F
6 · 10 · 14 [�1,+1] >
6 · 10 · 15 [�1,+1] >
6 · 11 · 16 [�1,+1] >
6 · 11 · 17 [�1,+1] >

The second column of the table shows the results of the interval
analysis with full context-sensitivity. Note that the pre-analysis
in this case precisely estimates the impact of context-sensitivity:
it identifies calling contexts (i.e., the first four contexts in the
table) where the interval analysis accurately tracks the size of the
allocated buffer in xmalloc under the full context-sensitivity. In
general, our pre-analysis might lose precision and use > more often
than in the ideal case. However, even when such approximation
occurs, it does so only in a sound manner—if the pre-analysis
computes F for the size of a buffer, the interval analysis under
full context-sensitivity is guaranteed to compute a non-negative
interval.
Use of pre-analysis results Next, from the pre-analysis results,
we select calling contexts that help improve the precision regard-
ing given queries. We first identify queries whose expressions are
assigned with F in the pre-analysis run. In our example, the pre-
analysis assigns F to the expression sizeof(p) in the first query.
We regard this as a good indication that the interval analysis under
full context-sensitivity is likely to estimate the value of sizeof(p)
accurately. Then, for each query that is judged promising, we con-
sider the slice of the program that contributes to the query. We con-
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선별적 관계 분석

the longest common suffix of 1 and 2. For example, when 

i

is
a suffix of 0, we use ✏ as the partial context for 

i

: if 0 = c2 · c1
and 

i

= c1, then 

i

 0 = ✏. Suppose that 
i

and 0 are not a
suffix of each other, for instance 0 = c2 · c1 and 

i

= c3 · c1. In
this case, 

i

 0 = c3.
In summary, for the path in (9), collecting contexts

{0  0, . . . ,q

 0}
give all the necessary partial calling contexts, where each 

i

 0

belongs to the calling contexts of procedure fid(c
i

). Thus, we
define the context selector for the dependency path (9) as follows:

Definition 9 (K
p

, Context Selector for Path p). Let p be a depen-
dency path from a source (c0, x0) to query (c

q

, x

q

):

p = ((c0,0), x0) ,!K1 · · · ,!
K1 ((c

q
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q

), x
q

),

where 0 is an initial context at c0 such that (◆, ✏)!⇤
K1 (c0, x0).

The context selector K
p

for the path is defined as,

K

p

= �f. {
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 0 | fid(c
i

) = f ^ ((c
i

,

i

), ) 2 p}.
Example 6. From the path p1 in Example 5, the collection of 

i

is {0, 2 · 0, 4 · 2 · 0} (see Figure 2). Hence, the collection of


i

 0 is {✏, 2, 4 · 2}, where ✏ belongs to procedure m, 2 to f, and
4 · 2 to g. Similar for path p2. Thus, K

p1 and K

p2 are:

K

p1 =

2

4
m 7! {✏}
f 7! {2}
g 7! {4 · 2}

3

5
K

p2 =


h 7! {✏}
g 7! {8}

�

Then, the final context selector K is the union of K
p

’s:

Definition 10 (K, Context Selector). Let (c
q

, x

q

) be a query. The
context selector K 2 F! }(C⇤

c

) for our selective analysis is:

K(f) = E(f) [
[

{K
p

(f) | p 2 Paths(cq ,xq)} (10)

where E(f) = {✏} if f 6= fid(c
q

); and otherwise, E(f) = ;.

Running selective context-sensitive main analysis Finally, we
run the main analysis with selective context-sensitivity K defined
by the result of the impact pre-analysis. The following proposition
states that the pre-analysis-guided context-sensitivity (K) manages
to pay off at the selective main analysis, although the pre-analysis
is fully context-sensitive and the main analysis is not.

Proposition 1 (Impact Realization). Let PA

K1 2 C ! S]

be the result of the impact pre-analysis (Definition 5). Let q 2
Q] be a selected query (7). Let K be the context selector for q

(Definition 10) defined using the pre-analysis result PA
K1 . Let

MAK 2 C
K

! S be the main analysis result with the context
selector K. Then, the selective main analysis is at least as precise
as the fully context-sensitive pre-analysis for the selected query q:

MAK vq

PA

K1

where MAK vq

PA

K1 iff (q let
= (c, x))

8 2 K(fid(c)). MAK(, c) 2 �(>[x 7! PA

K1(c)(x)]).

This impact realization holds thanks to two key properties. First,
our selective context-sensitivity K (Definition 10) distinguishes all
the calling contexts that matter for the queries selected by the pre-
analysis. Second, the main analysis designed in Section 4 isolates
these distinguished contexts from other undistinguished contexts
(✏), ensuring that spurious flows caused by merging contexts never
adversely affect the precision of the selected query.

6. Application to Selective Relational Analysis
A general principle behind our method is that we can selectively
improve the precision of the analysis by using an impact pre-
analysis that estimates the main static analysis of the maximal

precision. In this section, we use the same principle to develop a
selective relational analysis with the octagon domain [11].
Overview Consider the following code snippet:

1 int a = b;

2 int c = input(); // User input
3 for (i = 0; i < b; i++) {

4 assert (i < a); // Query 1
5 assert (i < c); // Query 2
6 }

The first query at line 4 always holds but the second one at line 5 is
not necessarily true.

A fully relational octagon analysis, which tracks contraints of
the form ±x± y  c (where c 2 Z [ {1}) between all variables
x and y, can prove the first query. The analysis infers constraints
b � a  0 at line 1 and i � b  �1 at line 3. Then, combining
the two via a closure operation [11], the analysis concludes that
constraint i � a  �1 holds at line 4. More specifically, the
fully relational octagon analysis computes the table (i.e., difference
bound matrix [11]) on the left side of the following:

a b c i

a 0 0 1 �1
b 0 0 1 �1
c 1 1 0 1
i 1 1 1 0

a b c i

a F F > F
b F F > F
c > > F >
i > > > F

(11)

where the bound c in constraint x � y  c is stored at row y and
column x in the table.1 Note that the (a,i) entry of the table stores
�1, which means that the analysis proves i� a  �1 at line 4.

However, this fully relational analysis tracks unnecessary rela-
tionships between variables, which are either irrelevant to the query
or not beneficial to the analysis precision. For instance, it is suffi-
cient to keep only the contraints between a, b, and i to prove the
first query, but the analysis unnecessarily maintains other relation-
ships such as one between a and c. Besides, tracking a relationship
between, for example, i and c does not change the end result of the
analysis because the second query is impossible to prove.

Our selective octagon analysis tracks octagon constraints only
when doing so is likely to improve the precision that matters for
resolving given queries. To achieve this goal, we use an impact pre-
analysis that aims at estimating the behavior of the octagon analysis
under its fully relational setting. More specifically, like the fully
relational octagon analysis, the pre-analysis tracks constraints of
the form ±x ± y  a for all variables x and y but approximately
tracks the bound; we use one of two abstract values F and > as
bound a, rather than all integers and1. Here x+y  > represents
all octagon constraints of the form x + y  c including the case
that c = 1, whereas x + y  F means octagon constraints
x + y  c with integer constant c. This simple abstract domain
is chosen because constant bound, not 1, proves buffer-overrun
properties. For instance, in our example program, the pre-analysis
result at line 4 is the table on the righthand side in (11).

Next, using the pre-analysis results, we select variables whose
relationships help improve the precision regarding given queries.
We first identify queries (in our example, the first query) whose
values are evaluated to F using the pre-analysis results. Then, for
each of selected queries, we do a dependency analysis to find out
the variables whose relationships should be tracked together for
the main analysis to answer query. For instance, consider that the
constraint regarding the first query is i� a v F. Our dependency
analysis figures out that the constraint was derived in the pre-
analysis by combining two constraints i�b v F and b�a v F in
its closure operation. Therefore, the dependency analysis concludes

1 For simplicity, we consider only constraints of the form x � y  c. In
fact, the octagon analysis tracks constraints of both forms x � y  c and
x+ y  c and maintains a matrix of size (2⇥ |Var|)2.
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문제

fully relational octagon analysis did not stop after 24 hours even for the smallest
program. Below, we discuss the experimental results in more detail.

Selected Queries In the experiments, our pre-analysis identified a number of
non-trivial queries that require the octagon analysis. For instance, consider the
following examples adopted from httptunnel-3.3 and bash-2.05a.

1 int http_parse_request(...){

2 n = real_until(&data);

3 data[n-1] = 0; // Query
4 }

5 int read_until(char** data){

6 while(...)

7 len++;

8 buf = realloc(buf, len+1);

9 *data = buf;

10 return len;

11 }

1 char* specifier(char* spec, int* i){

2 spec[*i] = ... // Query
3 }

4 int expand_internal(char* s, int i){

5 word_specifier(s, &i);

6 }

7 int expand(...){

8 string = malloc(l);

9 for (i = 0; i < l; i++)

10 expand_internal(string, i);

11 }

Let X.size be the size of array X. In the first example, function read until

always generates a relation between the parameter and return value. At line 8,
realloc generates relation len � buf.size  �1. After that, buf is stored in
the address passed by the parameter and len is returned. Finally, the analysis
captures n � data.size  �1 at line 3 and concludes the bu↵er access is safe.
In the other example, expand allocates bu↵er string with the size l and passes
string and i to another function where i is always less than l. The relations
between string and i are passed to function expand internal and used to
prove the safety of the bu↵er access at line 2. Our pre-analysis is able to reason
all these steps and let them to be properly analyzed in the subsequent main
analysis.

Missing Queries The pre-analysis missed 8%, on average, of queries that are
provable by full octagon analysis, which is due to the abstraction of pre-analysis.
Let us see the following simplified code from httptunnel-3.3.

1 static ssize_t parse_header (...){

2 data = realloc(data, n + 2);

3 n+=2;

4 data[n-1] = 0; // Query
5 }

The bu↵er access at line 4 is safe because n-1 is less than the size of data: n+2.
However, the pre-analysis produces i�data vV >V so that the query is missed.

p1 = xmalloc(s1);

p1[s1 - 1] = 0;

p2 = xmalloc(s2);

p2[s2 - 1] = 0;
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char* xmalloc(int size){

return malloc(size);

}

Time Cost The time cost varies with syntactic and semantic features of pro-
grams. The pre-analysis cost generally depends on the number of basic blocks
and abstract locations as well as program size. For example, less-290 has two
times more basic blocks cflow-1.3 with similar numbers of abstract locations.
Meanwhile, the main analysis time mostly depends on the pack size and pro-
gram size. In case of gzip-1.2.4a, the latest pack size is 11 so that it takes more
time than the larger program, bc-1.06, which has 9 variables in the largest pack.

6.3 Discussion

Widening Our pre-analysis may not over-approximate the octagon analysis
with widening, but, in our experiments, we could not observe this limitation.
The pre-analysis results may not subsume the full octagon analysis results when
a widening operator is used. Suppose the octagon analysis uses the standard
widening operator [7].

(mOn)
ij

=

⇢
mij if mij � nij

+1 otherwise

1 i = j = 0;

2 while(*){ // j � i vV >V
3 j = j + 1;

4 }

1 i = j = 0;

2 while(*){ // j � i vV F
3 j = i + 1;

4 }

In both cases, the octagon analysis yields j � i  +1 at line 2 because of the
widening. In the left example, the pre-analysis result is sound with respect to the
octagon analysis result : j�i vV >V at line 2. On the other hand, the pre-analysis
result is unsound in the right example: j � i vV F at line 2. This unsoundness
might yield wrongly selected query hc, x, yi that has relation y � x  +1. In
practice, however, many relations at query points are usually regenerated by
loop conditions, or assignments after ruined by widening operation. Therefore,
all selected queries are proven by the main analysis even using widening in our
experiments.

Strong closure of DBMV To run the pre-analysis faster, we compute the
shortest-path closure [7] rather than the strong closure in practice. Like octagon
analysis, the time cost of the pre-analysis heavily depends on the strong closure
operation. According to Mine’s work [7], the strong closure operation on the
octagon domain has O(n3) time cost by using Floyd-Warshall algorithm where
n is the number of variable. Instead, the shortest-path closure is relatively simple
and satisfies the following properties:

⇢
8i, j, k o

]
ij vV o

]
ik tV o

]
kj

8i o

]
ii = F

• 관계과 문맥이 동시에 필요한 경우
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문제
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In both cases, the octagon analysis yields j � i  +1 at line 2 because of the
widening. In the left example, the pre-analysis result is sound with respect to the
octagon analysis result : j�i vV >V at line 2. On the other hand, the pre-analysis
result is unsound in the right example: j � i vV F at line 2. This unsoundness
might yield wrongly selected query hc, x, yi that has relation y � x  +1. In
practice, however, many relations at query points are usually regenerated by
loop conditions, or assignments after ruined by widening operation. Therefore,
all selected queries are proven by the main analysis even using widening in our
experiments.

Strong closure of DBMV To run the pre-analysis faster, we compute the
shortest-path closure [7] rather than the strong closure in practice. Like octagon
analysis, the time cost of the pre-analysis heavily depends on the strong closure
operation. According to Mine’s work [7], the strong closure operation on the
octagon domain has O(n3) time cost by using Floyd-Warshall algorithm where
n is the number of variable. Instead, the shortest-path closure is relatively simple
and satisfies the following properties:

⇢
8i, j, k o

]
ij vV o

]
ik tV o

]
kj

8i o

]
ii = F

s1 = size s2 = size
(s1 = size) \/ (s2 = size)


= T

p1.size - s1 <= +oo p2.size - s2 <= +oo

• 관계과 문맥이 동시에 필요한 경우
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해결책
•선별적으로 문맥을 구분하고 변수를 관계 짓는 분석 

• 관계와 문맥 구분의 효과를 같이 가늠하는 전분석

fully relational octagon analysis did not stop after 24 hours even for the smallest
program. Below, we discuss the experimental results in more detail.

Selected Queries In the experiments, our pre-analysis identified a number of
non-trivial queries that require the octagon analysis. For instance, consider the
following examples adopted from httptunnel-3.3 and bash-2.05a.

1 int http_parse_request(...){

2 n = real_until(&data);

3 data[n-1] = 0; // Query
4 }

5 int read_until(char** data){

6 while(...)

7 len++;

8 buf = realloc(buf, len+1);

9 *data = buf;

10 return len;

11 }

1 char* specifier(char* spec, int* i){

2 spec[*i] = ... // Query
3 }

4 int expand_internal(char* s, int i){

5 word_specifier(s, &i);

6 }

7 int expand(...){

8 string = malloc(l);

9 for (i = 0; i < l; i++)

10 expand_internal(string, i);

11 }

Let X.size be the size of array X. In the first example, function read until

always generates a relation between the parameter and return value. At line 8,
realloc generates relation len � buf.size  �1. After that, buf is stored in
the address passed by the parameter and len is returned. Finally, the analysis
captures n � data.size  �1 at line 3 and concludes the bu↵er access is safe.
In the other example, expand allocates bu↵er string with the size l and passes
string and i to another function where i is always less than l. The relations
between string and i are passed to function expand internal and used to
prove the safety of the bu↵er access at line 2. Our pre-analysis is able to reason
all these steps and let them to be properly analyzed in the subsequent main
analysis.

Missing Queries The pre-analysis missed 8%, on average, of queries that are
provable by full octagon analysis, which is due to the abstraction of pre-analysis.
Let us see the following simplified code from httptunnel-3.3.

1 static ssize_t parse_header (...){

2 data = realloc(data, n + 2);

3 n+=2;

4 data[n-1] = 0; // Query
5 }

The bu↵er access at line 4 is safe because n-1 is less than the size of data: n+2.
However, the pre-analysis produces i�data vV >V so that the query is missed.

p1 = xmalloc(s1);

p1[s1 - 1] = 0;

p2 = xmalloc(s2);

p2[s2 - 1] = 0;
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char* xmalloc(int size){

return malloc(size);

}

Time Cost The time cost varies with syntactic and semantic features of pro-
grams. The pre-analysis cost generally depends on the number of basic blocks
and abstract locations as well as program size. For example, less-290 has two
times more basic blocks cflow-1.3 with similar numbers of abstract locations.
Meanwhile, the main analysis time mostly depends on the pack size and pro-
gram size. In case of gzip-1.2.4a, the latest pack size is 11 so that it takes more
time than the larger program, bc-1.06, which has 9 variables in the largest pack.

6.3 Discussion

Widening Our pre-analysis may not over-approximate the octagon analysis
with widening, but, in our experiments, we could not observe this limitation.
The pre-analysis results may not subsume the full octagon analysis results when
a widening operator is used. Suppose the octagon analysis uses the standard
widening operator [7].
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all selected queries are proven by the main analysis even using widening in our
experiments.

Strong closure of DBMV To run the pre-analysis faster, we compute the
shortest-path closure [7] rather than the strong closure in practice. Like octagon
analysis, the time cost of the pre-analysis heavily depends on the strong closure
operation. According to Mine’s work [7], the strong closure operation on the
octagon domain has O(n3) time cost by using Floyd-Warshall algorithm where
n is the number of variable. Instead, the shortest-path closure is relatively simple
and satisfies the following properties:
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{p1, s1, size} {p2, s2, size}
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해결책

• 전체 변수의 관계와 모든 문맥을 구분하는 전분석 

• 값 도메인은 본분석보다 훨씬 요약 

• 전분석 결과를 토대로 정확도 향상이 있을 부분 선정 

• 정확도 향상을 위해 필요한 문맥과 변수 관계 추출
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전분석
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main

f

f

xmalloc

xmalloc

xmalloc

xmalloc

11

12

4

6

4
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• 관계와 문맥 구분의 효과를 같이 가늠

Query1 : {s1, size, n, p},  4·11 
Query2 : {s2, size, n, p},  4·12  

void str_add_char(str* str, char c){

str->len++;

if (str->len >= str->men){

str->mem = str->len + 64;

str->str = xrealloc(str->str, str->mem);

}

str->str[str->len - 1] = c;

}

void f(){

// str1->str1.size = str1->mem > str1->len
str_add_char(str1, c1);

}

void g(){

// str2->str2.size = str2->mem > str2->len
str_add_char(str2, c2);

}

1 char* xmalloc (int n) { return malloc(n); }

2

3 void f (int size) {

4 p = xmalloc (size);

5 p[size - 1] = 0; // Query 1
6 q = xmalloc (input());

7 q[size - 1] = 0; // Query 2
8 }

9

10 int main() {

11 f (s1);

12 f (s2);

13 }



실험 결과
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Pgm LOC Q
구문 기반 패킹 방식 선별적 문맥&관계 분석 비교

증명 시간 증명 전분석 본분석 합계 정확도↑ 시간↓

spell-1.0 2,213 16 1 4.8 16 1.5 1.6 3.1 15 35.4%

httptunnel-3.3 6,174 28 16 26.0 26 12.3 5.5 17.8 10 31.5%

bc-1.06 13,093 10 2 247.1 10 69.2 34.8 104 8 57.9%

tar-1.17 20,258 17 7 1043.2 17 69.3 191.1 260.4 10 75.0%

종합 71 26 1321.1 69 152.3 233 385.3 43 70.8%



상향식 분석
• 각 함수별로 입출력 관계를 기록, 함수 호출시 사용
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fully relational octagon analysis did not stop after 24 hours even for the smallest
program. Below, we discuss the experimental results in more detail.

Selected Queries In the experiments, our pre-analysis identified a number of
non-trivial queries that require the octagon analysis. For instance, consider the
following examples adopted from httptunnel-3.3 and bash-2.05a.

1 int http_parse_request(...){

2 n = real_until(&data);

3 data[n-1] = 0; // Query
4 }

5 int read_until(char** data){

6 while(...)

7 len++;

8 buf = realloc(buf, len+1);

9 *data = buf;

10 return len;

11 }

1 char* specifier(char* spec, int* i){

2 spec[*i] = ... // Query
3 }

4 int expand_internal(char* s, int i){

5 word_specifier(s, &i);

6 }

7 int expand(...){

8 string = malloc(l);

9 for (i = 0; i < l; i++)

10 expand_internal(string, i);

11 }

Let X.size be the size of array X. In the first example, function read until

always generates a relation between the parameter and return value. At line 8,
realloc generates relation len � buf.size  �1. After that, buf is stored in
the address passed by the parameter and len is returned. Finally, the analysis
captures n � data.size  �1 at line 3 and concludes the bu↵er access is safe.
In the other example, expand allocates bu↵er string with the size l and passes
string and i to another function where i is always less than l. The relations
between string and i are passed to function expand internal and used to
prove the safety of the bu↵er access at line 2. Our pre-analysis is able to reason
all these steps and let them to be properly analyzed in the subsequent main
analysis.

Missing Queries The pre-analysis missed 8%, on average, of queries that are
provable by full octagon analysis, which is due to the abstraction of pre-analysis.
Let us see the following simplified code from httptunnel-3.3.

1 static ssize_t parse_header (...){

2 data = realloc(data, n + 2);

3 n+=2;

4 data[n-1] = 0; // Query
5 }

The bu↵er access at line 4 is safe because n-1 is less than the size of data: n+2.
However, the pre-analysis produces i�data vV >V so that the query is missed.

p1 = xmalloc(s1);

p1[s1 - 1] = 0;

p2 = xmalloc(s2);

p2[s2 - 1] = 0;
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3 }
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5 word_specifier(s, &i);

6 }

7 int expand(...){

8 string = malloc(l);

9 for (i = 0; i < l; i++)

10 expand_internal(string, i);

11 }

Let X.size be the size of array X. In the first example, function read until

always generates a relation between the parameter and return value. At line 8,
realloc generates relation len � buf.size  �1. After that, buf is stored in
the address passed by the parameter and len is returned. Finally, the analysis
captures n � data.size  �1 at line 3 and concludes the bu↵er access is safe.
In the other example, expand allocates bu↵er string with the size l and passes
string and i to another function where i is always less than l. The relations
between string and i are passed to function expand internal and used to
prove the safety of the bu↵er access at line 2. Our pre-analysis is able to reason
all these steps and let them to be properly analyzed in the subsequent main
analysis.

Missing Queries The pre-analysis missed 8%, on average, of queries that are
provable by full octagon analysis, which is due to the abstraction of pre-analysis.
Let us see the following simplified code from httptunnel-3.3.

1 static ssize_t parse_header (...){

2 data = realloc(data, n + 2);

3 n+=2;

4 data[n-1] = 0; // Query
5 }

The bu↵er access at line 4 is safe because n-1 is less than the size of data: n+2.
However, the pre-analysis produces i�data vV >V so that the query is missed.

p1 = xmalloc(s1);

p1[s1 - 1] = 0;

p2 = xmalloc(s2);

p2[s2 - 1] = 0;

char* xmalloc(int size){

return malloc(size);

}

Time Cost The time cost varies with syntactic and semantic features of pro-
grams. The pre-analysis cost generally depends on the number of basic blocks
and abstract locations as well as program size. For example, less-290 has two
times more basic blocks cflow-1.3 with similar numbers of abstract locations.
Meanwhile, the main analysis time mostly depends on the pack size and pro-
gram size. In case of gzip-1.2.4a, the latest pack size is 11 so that it takes more
time than the larger program, bc-1.06, which has 9 variables in the largest pack.

6.3 Discussion

Widening Our pre-analysis may not over-approximate the octagon analysis
with widening, but, in our experiments, we could not observe this limitation.
The pre-analysis results may not subsume the full octagon analysis results when
a widening operator is used. Suppose the octagon analysis uses the standard
widening operator [7].

(mOn)
ij

=

⇢
mij if mij � nij

+1 otherwise

1 i = j = 0;

2 while(*){ // j � i vV >V
3 j = j + 1;

4 }

1 i = j = 0;

2 while(*){ // j � i vV F
3 j = i + 1;

4 }

In both cases, the octagon analysis yields j � i  +1 at line 2 because of the
widening. In the left example, the pre-analysis result is sound with respect to the
octagon analysis result : j�i vV >V at line 2. On the other hand, the pre-analysis
result is unsound in the right example: j � i vV F at line 2. This unsoundness
might yield wrongly selected query hc, x, yi that has relation y � x  +1. In
practice, however, many relations at query points are usually regenerated by
loop conditions, or assignments after ruined by widening operation. Therefore,
all selected queries are proven by the main analysis even using widening in our
experiments.

Strong closure of DBMV To run the pre-analysis faster, we compute the
shortest-path closure [7] rather than the strong closure in practice. Like octagon
analysis, the time cost of the pre-analysis heavily depends on the strong closure
operation. According to Mine’s work [7], the strong closure operation on the
octagon domain has O(n3) time cost by using Floyd-Warshall algorithm where
n is the number of variable. Instead, the shortest-path closure is relatively simple
and satisfies the following properties:

⇢
8i, j, k o

]
ij vV o

]
ik tV o

]
kj

8i o

]
ii = F

s1 - size <= ★

size - xmalloc1.ret <= ★

xmalloc1.ret - p1 <= ★


s1 - p1 <= ★

Summary of xmalloc: 

size - xmalloc.ret <= ★

s2 - size <= ★

size - xmalloc2.ret <= ★

xmalloc2.ret - p2 <= ★


s2 - p2 <= ★

1:

2:



정리

• 문맥 구분과 변수 관계를 모두 추적하기 위한 전분석 설계 

• 효율적인 상향식 전분석 (전, 후방) 고안 

• 포스터 : 선별적으로 정확도를 높이는 분석 

• 문맥, 관계, 문맥&관계 등

 11



고맙습니다

 12


