
뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한 버그 위치 추정 기법

문석현, 김윤호, 김문주
Software Testing & Verification Group (SWTV)

CS Dept., KAIST

유신
Centre of Research on Evolution, Search and Testing (CREST)

CS Dept. Univ. College London (UCL), UK

2014-01-23 SWTV group 1

뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한버그 위치 추정 기법

2014-01-23 SWTV group
2

반지원정대 두개의 탑

왕의 귀환

Peter Jackson
반지의 제왕 3부작

뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한버그 위치 추정 기법

Research Directions @ SWTV

2014-01-23 SWTV group
3

SWTV group
Automated SW Quality Assurence

Sequential
program
testing

Concurrent
program
testing

Fault
localization

Test
cases scenarios

Thread
sched.

scenarios

Suspicious
stmts.

뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한버그 위치 추정 기법

Test case #1 (3,1)

Test result: pass

Motivation

• Developers have spent a large amount of time in debugging.
• One of the most laborious task of debugging activity is to locate the

cause of failures (i.e., fault), which is called fault localization.

2014-01-23 @SWTV group
4

int max = 0;
void Setmax(int x, int y) {

1: max ‐= x; // should be ‘max=x;’
2: if (max<y) {
3: max = y;
4: if(x*y<0)
5: print (“diff. sign”); }
6: print (“%d”, max);
7: Assert (x>=y? max == x : max == y); } Inspecting line by line

Test case #2 (0,‐4)

Test result: fail
== Laborious task

• Research Goal: To develop automated fault localization techniques that assist
developers effectively locate the cause of program failures (i.e., fault).

뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한버그 위치 추정 기법

Contributions

• We have developed techniques that automatically prioritize
likely faulty statements using dynamic information of test
executions.
– MUtation-baSEd fault localization technique (MUSE) that utilizes

mutation analysis to localize faults.
• A novel approach using mutation analysis for the fault localization.
• Highly precise.

– MUSE is 5.6 times more precise than the state-of-art fault localization
technique (ranks the faulty statement among the top 1.65% of
executed statements).

• Widely applicable.
– MUSE only requires source code of target program and test suite.

2014-01-23 @SWTV group
5

뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한버그 위치 추정 기법

Related Work
• Program slicing [Weiser, ICSE1981]

– analyzing program dependencies.
• Delta debugging [Zeller, ESEC/FSE2002]

– analyzing differences between states of a failing execution and those of a passing execution.
• Spectrum-Based Fault Localization (SBFL) [Jones et al., ICSE2002]

– Spectrum: a set of program entities (e.g., statements) executed by a test case.
– computing suspiciousness of each entity based on program spectra.

– E.g., ܵݏݑௗ ݏ ൌ |ು ௦ |
ು ௦ ା|ು ௦ |

where ݂ ݏ and ݏ are a set of failing and a set of passing
test cases that execute ݏ in a target program ܲ, respectively.

2014-01-23 @SWTV group
6

int max = 0;
void Setmax(int x, int y) {

Spectrum of test cases Jaccard

tc 1
(3,1)

tc 2
(5,‐4)

tc 3
(0,‐4)

tc 4
(0,7)

tc 5
(‐1,3) Susp. Rank

1: max ‐= x; // should be ‘max=x;’ ● ● ● ● ● 0.40 5
2: if (max<y) { ● ● ● ● ● 0.40 5
3: max = y; ● ● ● ● 0.50 2
4: if(x*y<0) ● ● ● ● 0.50 2
5: print (“diff. sign”); } ● ● 0.33 6
6: print (“%d”, max); } ● ● ● ● ● 0.40 5

Pass / Fail status Fail Fail Pass Pass Pass

• Developers can find the faulty statement by examining 83.3% (=5/6) of executed statements.

뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한버그 위치 추정 기법

Spectrum-Based Fault Localization
• SBFL outperforms other kinds of fault localization techniques (i.e., program slicing, delta

debugging) [Jones et al., ASE2005],
– Program slicing, delta debugging, etc.
– Thus, many researchers have focused on improving the precision of SBFL.

• However, SBFL has also been criticized for its impractical accuracy
[Parnin et al. ISSTA 2011].

– The rank of the faulty statement is too low to use SBFL practically.
– Comparison results of SBFL techniques on 7 programs from SIEMENS benchmark.

2014-01-23 SWTV group
7

 An innovative approach is required to improve the precision!
*extracted from [Naish et al., TOSEM2011]

SBFL Technique % of executed
stmts examined SBFL Technique % of executed

stmts examined
Op2 15.75 Cohen 21.20
Op1 15.79 CBI Log 21.90
M2 16.91 CBI Sqrt 22.00

Ochiai 18.42 Ochiai2 24.01
Amean 19.61 Binary 27.91
Hmean 19.72 Russell 27.87
Ample2 20.25 Overlap 27.96
Jaccard 20.72 Ample 26.95
Rogot2 21.45 Scott 36.98

Tarantula 21.59 Fleiss 37.23

뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한버그 위치 추정 기법

Our Approach

• I propose MUSE (MUtation-baSEd fault localization technique), a new
fault localization technique based on mutation analysis.

– MUSE localizes faulty statements based on two key conjectures.

2014-01-23 @SWTV group
8

MUSE automatically
localizes

the faulty statement.

stmt susp. rank
ଵݏ xx 1
ଶݏ xx 2
ଷݏ xx 3
… … …
ݏ xx n

࢚࢛ /) wሺࢉ࢚
ࢉ࢚ w/ ࢚࢛
ሻ)ࢉ࢚ w/ ࢚࢛

…
()ࢉ࢚ w/ ࢚࢛

test suite ܶ

stmt ݏଵ;
stmt ݏଶ;
stmt ݏଷ;
…
stmt ݏ;

Program ܲ

뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한버그 위치 추정 기법

Key Conjecture Ⅰ
• Conjecture Ⅰ: mutating faulty statements is more likely to make failed tests

pass than mutating correct statements.

2014-01-23 @SWTV group
9

Test results:

stmt S1;
stmt S2;
stmt S3;
stmt S4;

Program ࡼ

Test cases:

Test results:

stmt S1;
stmt s2;
stmt s3’;
stmt s4;

Program ࢙

Test cases:

Test results:

stmt S1;
stmt S2’;
stmt S3;
stmt S4;

Program ࢙

Test cases:

:passed test case
:failed test case

:test case

뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한버그 위치 추정 기법

Key Conjecture Ⅱ
• Conjecture Ⅱ : mutating correct statements is more likely to make passed

tests fail than mutating faulty statements.

2014-01-23 @SWTV group
10

Test results:

stmt s1;
stmt s2;
stmt s3;
stmt s4;

Program ࡼ

Test cases:

Test results:

stmt s1;
stmt s2’;
stmt s3;
stmt s4;

Program ࢙

Test cases:

Test results:

stmt s1;
stmt s2;
stmt s3’;
stmt s4;

Program ࢙

Test cases:

:passed test case
:failed test case

:test case

뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한버그 위치 추정 기법

MUSE: Suspiciousness Metric

• Based on the two conjectures, the suspiciousness metric of μ for a
statement ݏ	in a program ܲ is defined as: μݏݑܵ ݏ ൌ	ߙ௦ – β௦

– ௦ߙ : The average # of failing tests that become passing ones for all mutants on ݏ.
– β௦ : The average # of passing tests that become failing ones for all mutants on ݏ.

• Very detailed MUSE metric
– μݏݑܵ ݏ ൌ	ሺ∑ |ುሺ௦ሻ∩|

ଶ୮ାଵ
െ |ುሺୱሻ∩|

୮ଶାଵ∈௨௧ ௦ ሻ ݐݑ݉|) / ݏ | + 1)

• ݐݑ݉ ݏ is the set of all mutants of ܲ that mutates ݏ with observed changes in test results.
• ݂ ݏ and ሺsሻ are a set of failing tests and a set of passing tests that execute ݏ	 on program target

program ܲ, respectively.
• and ݂ are a set of failing and a set of passing tests on mutant ݉.
• 2݂ and 2݂ are the number of test result changes from fail to pass and vice versa between before

and after all mutants of ܲ, the set of which is ݉ݐݑ ܲ .
– MUSEݏݑܵ ݏ ൌ ݏݑS_݉ݎܰ μ, ݏ ݏݑS_݉ݎܰ SBFL, ݏ

• ,ݐሺ݂݈ݏݑܵ_݉ݎܰ ሻݏ is the normalized suspiciousness of a statement ݏ in a fault localization
technique ݂݈ݐ, which is normalized into [0,1].

• With this metric, we can give a meaningful suspiciousness to a statement ݏ where ݉ݐݑሺݏሻ 	ൌ 	0.

2014-01-23 @SWTV group
11

뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한버그 위치 추정 기법

MUSE: Example

• MUSE perfectly locates the faulty statement, whereas the
SBFL technique Jaccard does not.

2014-01-23 @SWTV group
12

int max;
void Setmax(int x,int y){

Mutants

Test Result Changes
| ݂ሺݏሻ
∩ |

ሺsሻ|
∩ ݂|

MUSE Jaccard

Susp. Rank Susp. Rankftc1
(3,1)

ftc2
(5,‐4)

ptc3
(0,‐4)

ptc4
(0,7)

ptc5
(‐1,3)

1: max ‐= x; // ‘max=x;’
M1:max‐=x‐1; P‐>F 0 1

1.40 1 0.40 5
M2:max=x; F‐>P F‐>P 2 0

2: if(max<y) {
M3:if(!(max<y)){ P‐>F P‐>F P‐>F 0 3

0.83 4 0.40 5
M4:if(max==y){ F‐>P P‐>F 1 1

3: max = y;
M5:max‐=y; P‐>F P‐>F 0 2

1.07 3 0.50 2
M6:max=y+1; P‐>F P‐>F 0 2

4: if(x*y<0)
M7:if(!(x*y<0)) P‐>F P‐>F 0 2

1.14 2 0.50 2
M8:if(x/y<0) P‐>F 0 2

5: print(“diff. sign”);}
M9:return; P‐>F 0 2

0.21 6 0.33 6
M10:; P‐>F 0 2

6: print(“%d”, max); }
M11:printf("%d",0);} P‐>F P‐>F 0 2

0.40 5 0.50 5
M12:;} P‐>F P‐>F P‐>F 0 3

뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한버그 위치 추정 기법

MUSE: Overall Procedure

2014-01-23 @SWTV group
13

test
suite
ࢀ

progr-
am ࡼ

result spec.
anlys

stmts.
covered
by failing

tests

exec.

Selecting target statements to mutate

Susp.
&

Rank

comp.
susp.

Compute susp.

mut-
ation

exec. res.

 res.exec.

Testing mutants

… … …

뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한버그 위치 추정 기법

Empirical Evaluation
• Experimentation

– Research questions
• RQ1. Are the conjectures of MUSE valid?
• RQ2. How precise is MUSE, compared with the SBFL techniques?

– We compared MUSE with Jaccard, Ochiai, Op2 which are the state-of-art SBFL techniques.
• RQ3. How precise is MUSE with a subset of mutants utilized, compared with the SBFL techniques

– Subjects
• 51 faulty versions of 5 real-world programs (6000~ 13000 LOC) from the SIR benchmark.

– Experiments took 19 hours with 25 machines equipped with Intel i5 3.6Ghz quad core CPU
• On average 29.85 mutants are used for each executed statement.

2014-01-23 @SWTV group
14

Target
program

of faulty
version used

Size
(LOC) |f| |p| Description

flex 2.4.7 13 12,423 15.9 24.4 Lexical analyzer generator
grep 2.2 2 12,653 91.0 98.5 Patter matcher

gzip 1.1.2 7 6,576 34.3 178.6 Compression utility
sed 1.18 5 11,990 43.4 235.0 Stream editor

space 24 9,129 22.8 130.2 ADL interpreter

Average 10.2 10,554.2 41.48 133.3

뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한버그 위치 추정 기법

Our Conjectures Are Valid

• RQ1. Are the conjectures of MUSE valid?
– Conjecture Ⅰ, “mutating faulty statements is more likely to make originally failing tests pass than

mutating correct statements”, is valid.
– Conjecture Ⅱ, “mutating correct statements is more likely to make originally passing tests fail than

mutating faulty statements”, is valid.

2014-01-23 @SWTV group
15

We can expect that MUSE will localize faults precisely.

Target
Program

of failing tests that pass after mutating: # of passing tests that fail after
mutating:

faulty stmts.
(A)

correct stmts.
(B)

faulty/correct
(A/B)

correct stmts.
(C)

faulty stmts.
(D)

correct/faulty
(C/D)

flex 9.79 0.09 109.32 8.00 3.85 2.08
grep 38.69 8.31 4.66 13.27 3.22 4.11
gzip 3.68 0.10 35.29 87.80 4.13 21.25
sed 10.69 1.41 7.59 108.86 30.14 3.61

space 3.70 0.01 419.14 31.69 15.16 2.09
Average 13.31 1.98 115.20 49.92 11.30 6.63

뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한버그 위치 추정 기법

MUSE Significantly Outperforms SBFL

• On average, MUSE ranks a faulty statement top 1.65% of executed statements.
– The best-performing SBFL (i.e., Op2) ranks a faulty statement top 9.25%.

• MUSE ranks a faulty statement among the top 10 for 38 faulty versions out of 51 faulty versions.
– The best-performing SBFL (Op2) ranks a faulty statement among the top 10 for 9 faulty versions.

2014-01-23 @SWTV group
16

0%

5%

10%

15%

20%

25%

flex grep gzip sed space

Av
er

ag
e

%
 o

f e
xe

cu
te

d
st

at
em

en
ts

 e
xa

m
in

ed

Target program

Jaccard
Ochiai
Op2
MUSE

• RQ2. How precise is MUSE, compared with the SBFL techniques?

뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한버그 위치 추정 기법

MUSE with Few Mutants Still Outperforms SBFL

2014-01-23 @SWTV group
17

• MUSE with mutant sampling rate 1% requires a developer to inspect 6.2% of executed
statements.

• MUSE with only 1% generated mutants shows better performance than the best SBFL
technique.

• RQ3. How precise is MUSE with a subset of mutants utilized, compared with the
SBFL techniques?

0%

2%

4%

6%

8%

10%

1% 10% 40% 70% 100%

Av
er
ag
e
%
 o
f e

xe
cu
te
d

st
at
em

en
ts
 e
xa
m
in
ed

Sampling rate (%)

BEST SBFL (Op2)

MUSE

뮤즈 (MUSE): 프로그램의 수많은 돌연변이들을
활용한버그 위치 추정 기법

Conclusion and Future Work

• MUSE is a new fault localization technique which is highly precise and
widely applicable based on mutation analysis [ICST’14].

• Future work
– User study and more empirical study to show that MUSE actually helps developers locate

faults quickly
– Additional techniques to improve fault localization

• Automatic test case generation for enhancing fault-localization
• Clustering highly suspicious target statements to speed up the review process
• Backward/forward iterative symbolic analysis to narrow down candidate faulty statements

– Applying MUSE to very large size real-world programs including real-faults (e.g., PHP
(1MLOC)).

• For randomly selected 10 PHP faults among the PHP bugs used by GenProg
(ICSE2012),

– Faulty stmt rank: MUSE 25.3 / SBFL (Op2): 84.2
» For each faulty version, we randomly selected 100 passing test cases from all test

cases that execute at least one line of faulty file.

2014-01-23 @SWTV group
18

