

A Framework for Static Bug Detection in
JavaScript Web Applications in the Wild

• SAFEWapp : a static analysis framework for bug detection in real-world JavaScript web applications built on the
SAFE framework

 • Features of SAFEWapp
 - Browser environment modeling based on extensive empirical data including a precise tree structure of the DOM, the

event system, and almost all the browser objects and APIs found in more than 1000, web sites
 - Capability of detecting 83.2% of all 155 errors defined in the ECMAScript standard

Overview

Practical DOM Modeling

SAFEWapp Framework

• Tool : instrumented WebKit browser Engin and MiniBrowser
• Target : 9,465 world-wide most popular web sites by alexa.com
• Data : usage of DOM-related fields and APIs

Method

Overall Structure

Static Analysis of JavaScript Web Applications

Changhee Park (KAIST) Sooncheol Won (KAIST) Joonho Jin (KAIST) Jaejoon Choi (S-Core., Ltd.) Sukyoung Ryu (KAIST)

• Modeling
 - DOM tree
 - Browser APIs : document.getElementById,

document.createElement, …
 - Event system : mouse events, keyboard events, ...

Requirement

• No single standard specification
 - W3C DOM recommendations, WHATWG

HTML specifications (informal and incomplete)
 - Non-standard browser features (Screen object,

found in more than 70% of the 10,000 most
popular websites)

 - Inconsistent browser features (attachEvent in
Internet Explorer and addEventListener
in Safari and Chrome)

Challenge 1

• Interleaving HTML parsing and events with JavaScript
 execution

Challenge 2

• Multiple JavaScript execution contexts with
 multiple documents in an application

• Extensive use of JavaScript libraries such as jQuery,
 Prototype, and MooTools

Challenge 3

• 10 most frequently used DOM properties among all properties defined in the W3C DOM Level
 3 Core specification

Result 2
• Usage of DOM fields and APIs defined in DOM
 specifications (W3C DOM Level 3 Core, DOM Level 2
 HTML, DOM Level 2 Events)

• Usage of DOM fields and APIs defined in the main web
 pages of 9,465 websites

About a half of the fields and APIs were never used
=> It is not necessary to model all the fields and APIs

defined in standard specifications

We can minimize the modeling effort by setting
 priorities among DOM properties

Properties marked with * indicate that they are related to DOM tree search and
manipulation
=> It is necessary to model a DOM tree precisely to give precise analysis results

for many web applications

• Combination of two parsers
 - Jericho HTML parser 3.3 (script code extraction)
 - CyberNeko HTML parser 1.9.17 (DOM tree construction)

HTML Parser

Bug Detection in Websites

 Our solution : modeling based on
empirical data

Challenge 4

 Our assumption : only a single document is
present in a web application

Our solution : modeling the core jQuery library

JavaScript Execution Model in Web Applications

 Our assumption : all scripts are
executed after completion of
HTML parsing and all the
events happen after execution
of the top-level code

<html> …
 <iframe src = "another.html"> …
 </iframe> …
</html>

Result 1

Result 3

Event CFG Builder
• Build a ever CFG : adopted the TAJS event model

• Event type : load, unload, mouse, keyboard,
ready, message, time, other

• No consideration of execution order among
events

Added Modules

 Implementation available at : http://safe.kaist.ac.kr

• Capable of detecting 83.2% of all 155 errors defined in the EMCAScript
 standard
• Provides various configuration options for bug messages
 - Example : show all messages or only definite messages
• Bug type

Bug Detector

• Build an initial state for the Analyzer module
• DOMModeler : adds DOM prototype objects that
 have abstract browser APIs

• DOMBuilder : translates a concrete DOM tree to an
 abstract DOM

DOMModeler and DOMBuilder

• Bug detection in the main web pages of 4 popular web sites

 var a = new Array(4.5); // not UInt var x = 10 + y; // y is not declared

 new Function("a, *@", "var x=1;"); // "*@" is not a JavaScript variable

 var x = new "aa"; // non-constructor decodeURI("%1")"; // "%1" not in
an URI format

RangeError ReferenceError

SyntaxError

TypeError URIError

Bug in Wikipedia
lang : "en"

uiLang : "en-us"

uiLang.match(...) :
"en"

date : past time

date : time 1 year later

True : set a cookie value and keep it for 1 year
False : Discard any set cookie

??

Bug

always evaluates to false!!!

Simple Fix

• directrev.com

CallNonFunction Bug

The "accordion" function is
defined in the jQuery UI library
but the site did not import the
library!!!

• wikipedia.com

AbsentRead Bug
Only the Internet Explorer
supports the "attachEvent"
method but most browsers
do not have the property!!!

• odnoklassniki.ru

FunctionArgSize Bug

Called the function
that have 3 parameters
with 2 arguments!!!

• directrev.com

Shadowing Bug
Duplicate declaration
with the same variable!!!

