
My Solution

Automatic JavaScript Bug-Detecting Framework and
Different Approaches to False-Positive Minimization

What's JavaScript?

Contributions

My work …
•  is the very first attempt to provide definitions of JavaScript bugs and formal representation of their semantics.

•  provides design and implementation of scalable bug-detecting framework in detail.

•  provides different approaches to minimize false positives among bug reports.

•  makes the source code of the framework open to the public for the JavaScript community.

Future Work

Korea Advanced Institute of Science and Technology | Department of Computer Science | PLRG Lab.

False-Positive Minimization
Benchmark #Line

No Options Bug Options

time(s) #err #war time(s) #err #war

bitops-bitwise-and 42 0.02 0 0 0.02 0 0

bitops-3bit-bits-in-byte 46 0.06 0 0 0.06 0 0

bitops-bits-in-byte 35 0.08 0 0 0.09 0 0

3d-morph 68 0.16 0 2 0.16 0 0

access-nsieve 52 0.13 0 1 0.13 0 0

bitops-nsieve-bits 46 0.15 0 4 0.14 0 0

math-cordic 109 0.35 0 4 0.45 0 0

math-partial-sums 47 0.14 0 0 0.15 0 0

access-fannkuch 80 0.38 0 19 0.55 0 1

crypto-sha1 238 0.44 0 26 0.44 0 1

access-nbody 183 0.47 43 6 0.54 0 0

string-base64 149 0.59 1 34 0.57 1 0

math-spectral-norm 65 0.40 0 7 0.42 0 0

controlflow-recursive 39 0.44 0 2 0.43 0 0

string-fasta 99 0.57 0 11 0.53 0 0

access-binary-trees 64 0.90 1 7 0.93 0 0

splay 401 1.62 51 5 1.51 0 0

richards 544 55.40 28 95 5.33 0 0

3d-raytrace 456 3.66 23 59 3.59 0 8

crypto-md5 300 51.56 0 80 1.48 0 1

3d-cube 351 3.82 31 122 3.87 0 1

deltablue 885 52.71 125 85 54.29 7 3

crypto 1704 60.56 155 598 60.98 1 15

Table 4.4: Reduce false alarms using bug options. The result on left-hand side is sparse analysis with

1-context-sensitive and object-sensitive techniques, and the reuslt on right-hand side is the same analysis

with the harshest bug option setting.

– 31 –

Object-Sensitive Analysis using Location Cloning

P 2 Program = }(FunctionId⇥ ArgName⇥ ArgVars⇥ LocalVars) ⇥ Graph

fid 2 FunctionId ::= fidglobal | fid1 | · · ·
ArgName = String

ArgVars, LocalVars ::= x⇤

Graph = }(Node) ⇥ }(Edge) ⇥ }(Edge) ⇥ }(Call)

n 2 Node = FunctionId⇥ Label

Edge,Call = Node⇥ Node

l 2 Label ::= LEntry | LExit | LExitExc | LBlock(id: BlockId)
BlockId = Int

cmd 2 Cmd = {Entry, Exit, ExitExc} [Block

b 2 Block = Inst⇤

cmdMap = Label ! Cmd

Figure 3.3: Overall environments of CFG. Cmd and Inst correspond to CFG Command and CFG Instruc-

tion, respectively. In the same manner, Expr corresponds to CFG Expression even though it isn’t listed

above.

As briefly mentioned earlier, JavaScript program is translated to a series of CFG Commands, specifi-

cally a series of Nodes, which are the pairs of a function id and a Label. Note that the environment names

CFG Commands as Cmd shortly. Label seems very similar to the Cmds, but it contains only the ids of

them. Specific Cmd can be achieved from the cmdMap, which maps all the Cmd ids to their corresponding

Cmds.

After the translation of a JavaScript program finishes building a series of Nodes, Analyzer starts

to analyze it by traversing the Nodes in order and computing the instructions contained in each of the

Nodes with abstract semantic functions. Abstract semantic functions are designed based on abstract

environments and abstract domains, which are more complicated than the concrete environments as

shown in Figure 3.4. Some of them are included due to the analysis techiques that we use to improve

the precision of analyzed results.

ĉp 2 \ControlPoint = Node⇥ \CallContext

ĉc 2 \CallContext =

8
>>>>>>><

>>>>>>>:

Context-insensitive : \Address
1-callsite sensitivity : \Address⇥ \Address
k-callsite sensitivity : \Address

⇤

callsite-set sensitivity : }(\Address)
1-object sensitivity : dLoc⇥ \Address

Ŝ, (Ĥ, Ĉ) 2 [State = [Heap⇥ \Context
Ĥ 2 [Heap = dLoc fin! dObj
Ĉ 2 \Context = }(dLoc) ⇥ }(dLoc) ⇥ }(\Address) ⇥ }(\Address)
l̂ 2 dLocold = \Address⇥ \RecencyTag

l̂ 2 dLocnew = \CallContext⇥ \Address⇥ \RecencyTag

â 2 \Address = Int

– 16 –

Refined Object Location

recency address call context

1 bit (31 – n) bit n bit

32 bit

In practice,
 at most few thousands of objects and dozens of call contextsimplemented it to be optionally applied to the analysis. When the locclone option is applied, Analyzer

clones the object locations at every allocation site. With this simple technique, we could lower the false

alarm rate in richards.js along with other analysis techniques:

number of error number of warning

no option 25 97

1-context 28 95

loc 0 66

1-context & loc 0 21

5-context & loc 0 18

Table 4.1: Decreased false alarm rate with location cloning

k-context means that we used the k-context-sensitive analysis with object-sensitive analysis, and

loc means that we used location cloning technique. In 5-context-sensitive analysis with location cloning

technique, all of the bug reports were true alarms, while there was some performance overhead. Moreover,

we found and solved similar problem in analyzing bing.com during websites analysis, which is one of

our ongoing research. Location cloning is a technically simple approach, yet its e↵ect is found to be

considerable in practice.

4.2 Filtering Suspicious Bugs Using User-Configurable Bug Op-

tions

Our framework detects JavaScript bugs based on the analysis result of Analyzer, which is designed

to be sound; even though some of its abstract semantics are unsound. Hence, our framework naturally

detects bugs soundly, which results in such an unacceptable number of false alarms as shown in the

previous chapter. To make it more useful in practice, we needed to filter the uncertain bugs out so that

the framework can report mostly true alarms. We filtered them out by revising our bug-semantics; for

every bug-semantics, we first found out the common points that the bug reports could become inaccurate.

First, when Analyzer passes context-sensitive analysis result to BugDetector, there are more than one

abstract state for each of the Nodes, which means multiple control flows with di↵erent call-contexts have

passed the Nodes during analysis. In this case, we filter out the bugs that can be found only in some of

the control flows because we can’t guarantee that the actual execution of the program will pass through

those control flows, thus reporting such bugs can be false alarms in the other control flows. Consider the

code below:

function f(o) { return o.a; }

if (Math.random())

f({a:3});

else

– 27 –

**

*

User-Configurable Bug Options

More general approach to reduce false positives

!  Filtering Options

Filter out the bugs that can be found only in some of all

possible states, object locations, abstract values, and types

!  Restricting Options

Force to detect bugs only when the bugs meet the conditions

that user provided

�! Experiment results

Our Definition of JavaScript Bugs Design and Implementation of New Bug-Detecting Framework

2.3 Definition of JavaScript Bugs

In consideration of the quirky semantics and the characteristics of JavaScript, we classify all possible

JavaSript bugs into two big categories, error and warning, and clarify their meanings as ‘any JavaScript

semantics that causes the abnormal termination of programs’ and ‘any JavaScript semantics that causes

unintentional results or hampers the optimization of programs’, repectively.

Error. First, the definition of error is almost equivalent to the errors that are described in EC-

MAScript. Among all possible errors, we chose 6 instances that are frequently found in real-world

JavaScript applications, and defined their meanings:

Error Definition

AbsentReadVariable Program is trying to read a non-exisitent variable x.

BinaryOpSecondType
Right-hand side operand e of binary operator op is non-object

(it must be an object).

CallNonConstructor Program is calling non-constructor as if it’s a constructor.

CallNonFunction Program is calling non-function as if it’s a constructor.

ObjectNullOrUndefined Program is trying to access a property p of null or undefined value.

WrongThisType Value of this is not of the expected type in built-in function f.

Table 2.1: Definition of 6 instances of error

For better understanding, we will explain some of them. AbsentReadVariable is described in EC-

MAScript as ReferenceError, and it causes an exception when a program is trying to read a variable that

has never been declared. Note that reading a non-existent object property simply produces ‘undefined’.

Among the 6 errors above, AbsentReadVariable error is the only ReferenceError, and the others are all

TypeErrors. BinaryOpSecondType is a TypeError that causes an exception if the second operand of binary

operators such as in and instanceof is non-object:

var obj1 = {}, obj2 = "t", obj3 = new Object();

"x" in obj1; // false

"x" instanceof obj2; // TypeError: ‘t’ is not a valid argument for ‘instanceof’

The definition of ObjectNullOrUndefined is pretty simple, yet it is one of the most frequently

found exceptions in JavaScript because most of JavaScript features are based on Object, and JavaScript

programs often contain many object property accesses. To prevent this exception, we should rigorously

check the nullity of object property accesses, especially when the objects are function arguments. Finally,

WrongThisType is an error that catches the wrong ‘this’ value of built-in functions. As explained in

– 9 –

Any JavaScript semantics that causes critical exceptions

Error

Warning
Any JavaScript semantics that does not causes critical exceptions,
yet causes unexpected behaviors,
threatens the security of programs,
or hampers the optimization of programs

the first section, JavaScript allows dynamic modification of object prototype. However, accessing the

properties of built-in functions along with modifying prototype of the functions

The definitions of errors are much clearer than the TAJS descriptions, but still it could be ambiguous

without explanations in detail. Hence, we also described the formal representation on their semantics,

and we will show them in the next chapter.

Warning Definition

AbsentReadProperty Program is trying to read a non-existent property p of an object.

BuiltinWrongArgType Parameter x to a built-in function f is not of the expected type.

CallConstFunc Function f is called as both a function and a constructor.

ConditionalBranch Conditional expression e is always false (or always true).

ConvertUndefToNum Program is trying to convert undefined to a number.

DefaultValue
Assigning a non-function value to toString or valueOf property

may cause a TypeError.

FunctionArgSize
The number of parameters to a function f does not match to

its declaration.

GlobalThis this refers to the global object.

ImplicitTypeConversion Implicit type conversion occurs in equality comparison.

PrimitiveToObject Program is trying to convert primitive value to an object.

Shadowing
Function, parameter or variable x is shadowed by a function,

parameter or variable.

UnreachableCode Following codes will never be executed.

UncalledFunction Function f will never be called.

UnusedVarProp
Value assigned to a variable or an object property x

will never be used.

VaryingTypeArguments Type of parameter x to a function f is varying.

Table 2.2: Definition of 15 instances of warning

As shown in Table 2.2, accessing non-existent properties of objects returns undefined. The undefined

value returned from the object access may result in a series of following bugs such as ObjectNullOrUn-

defined error or ConvertUndefToNum warning, when a program is trying to access a property of the

property that doesn’t belong to the object, or a program is trying to implicitly convert the property to

a number, respectively:

var obj = {a: {"n": 3}};

var tmp = obj["a"];

– 10 –

Table : Definition of 15 instances of warning

•  Based on the analysis result of SAFE Analyzer

•  Detect all of the bugs we defined

•  Modularly designed structure (easy to modify, prove, customize, …)

Junho Jin

Advisor Ryu, Sukyoung
Dept. Department of Computer Science
Lab. Programming Language Research Group
Contact junho.jin@kaist.ac.kr

2013.12.19.
Master Workshop
Session 2. Program Analysis, Debugging

Problem Statement

Parser&

Translator&

AST&

IR&

Analyzer)

JavaScript&

Analysis&
Result&

AST)
Checker)

Bug3Detec6ng)Framework)

Inst3)
Detect)

BugStorage)

Sta7s7cs&Bug&
Report&

Expr3)
Detect)

Final3)
Detect)

Bugs&

Bugs& Bugs& Bugs&

BugDetector)

BugDetector&

TraverseCFG)

C" I" V"

Bug&
Op7on&

BugHelper&

VarManager&

StateManager&

CFG&

CFGBuilder&

Supplementary"
modules"

Core"
modules"

Message5collec7ng"
modue"

Core Modules (BugDetector)

N : Node; S : State; B : BugStorage; /* arguments */
begin
 IF N == Block (insts) THEN

 repeat
 inst := insts.head;
 insts := insts.tail;
 B := IBug (inst, S, B);
 until insts = {}; /* no more instructions */
 return B;
 ELSE
 return B;

end

Core Modules (ExprDetect, InstDetect, FinalDetect)

ExprDetect Detect Expression-level bugs
 ConvertUndefToNum, ImplicitTypeConversion, …

InstDetect Detect Instruction-level bugs
 ObjectNullOrUndefined, CallNonFunction, …

ExprDetect Detect yet uncaught bugs
 UncalledFunctions, VaryingTypeArguments, …

E : Expr; S : State; B : BugStorage; /* arguments */
begin
 IF E == CFGBin (expr1, op, expr2) THEN

 B = VBug (expr1, S, B); B = VBug (expr2, S, B);
 …
 ELSE
 /* do nothing */
 return ExprDetect (E, S, B);

end

I : Inst; S : State; B : BugStorage; /* arguments */
begin
 IF I == CFGAlloc (expr?) THEN

 B = VBug (expr?, S, B);
 ELIF I == CFGCall (expr1, expr2, expr3) THEN
 B = VBug (expr1, S, B); B = VBug (expr2, S, B); B = VBug (expr3, S, B);
 …
 ELSE
 /* do nothing */
 return InstDetect (I, S, B);

end

P : Node*; T : inTable; B : BugStorage;
begin
 T := Analyzer (P, {}); B := {};

 repeat
 curr := P.head;
 P := P.tail;
 B := CBug (cmdMap[curr.Label], T[curr], B); /* detect bugs */
 until P = {}; /* end of program */
 B = FinalDetect (B); /* detect uncaught bugs */
 return B; /* report detected bugs */

end

