Analyzing ARM Native Code for
Tracking Information Flow

Woo-Yeon Lee
Seo-Yoon Choi
Tae-Hun Kim
Byung-Gon Chun

CMS laboratory
Seoul National University



Privacy Leak in Mobile Environment

* Third-party “apps” may leak users’ privacy-
sensitive data or manifest malicious behavior




Why do we Target ARM Native Code?

e Platform Environmental Reason

— Android : 49% of the apps packaged with third-
party native library (increasing trend)

— Tizen : Native apps written as ARM native code.

* Lots of studies about information flow
tracking, but not in ARM-instruction level

— Tainttrace, Panorama, TaintBochs for x86
— Taintdroid for byte-code level



Approach

* Dynamically monitor ARM native code’s
behavior to detect leakage of user’s privacy-
sensitive data

* Main Challenge

— Architecture Dependent
* ARM’s limited control feature



Taint Tracking

* Technique used to track information
dependencies from an origin

* Three Factors
— Taint Source
— Taint Propagation
— Taint Sink

vl = taint_source()

N/

v3i=v2+vl

taint_sink(v3)




System Overview

 ARM Binary Analysis Tool (ABAT)

ABAT

Taint Tracking

I
: Taint Taint

1 | Source/Sink Propagation
: Detector Logic Table

Application

JIT Interpreter

Code Cache

System Architecture of ABAT



Dynamic Taint Tracking

Taint Map

* Taint Map

Require fast search

=>Hash table-based taint tag storage
(Key : address, value : taint tag)

No data type at theinstruction level
=>Taint tags per each byte address



Dynamic Taint Tracking

1. Detect Taint Source
=> Insert new taint into Taint Map

=

Taint Map

* Taint Map

Require fast search

=>Hash table-based taint tag storage
(Key : address, value : taint tag)

No data type at theinstruction level
=>Taint tags per each byte address



Dynamic Taint Tracking

Taint Map
* Taint Map
1. Detect Taint Source = Require fast search
=> Insert new taint into Taint Map =>Hash table-based taint tag storage
(Key : address, value : taint tag)

No data type at theinstruction level

2. Detect Taint Propagation
Pag =>Taint tags per each byte address

=> Propagate taint tag in Taint Map




Dynamic Taint Tracking

1. Detect Taint Source
=> Insert new taint into Taint Map

2. Detect Taint Propagation
=> Propagate taint tag in Taint Map

3. Detect Taint Sink
=> Access to tainted data
alerts the data leak

=

Taint Map

* Taint Map

Require fast search

=>Hash table-based taint tag storage
(Key : address, value : taint tag)

No data type at theinstruction level
=>Taint tags per each byte address



ARM Architecture

* Advanced RISC architecture
— 32bit-fixed instruction length
— PCis a general register
— Single execution cycle
— Conditional execution
* Extension
— Thumb / Thumb-2 mode (16bit)

* Challenges
— Implicit branch
— Restricted features to control program flow



Taint Tracking with DBI

* |nserts additional codes into original
application to trace and maintain information
about the propagation.

e Handle over 800 ARM instructions:

Before Instrumentation After Instrumentation

ADD Rd, Rn, <immediate> ADD Rd, Rn, <immediate>
MOV t(Rd),t(Rn)

ADD Rd, Rn, Rm ADD Rd, Rn, Rm
OR t(Rd), T(Rn), T(Rm)

MOV Rd, <immediate> MOV Rd, <immediate>
MOV t(Rd), O

MOV Rd, Rn MOV Rd, Rn

MOV t(Rd), T(Rn)



Current status & Future work

e Current status & Future work
— Finish Basic Implementation

— Taint tracking module is on implementation and
verification stage

— Reduce overhead with optimized DBI

* Details on poster session



