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Figure A.5. Our progress estimation for interval analysis (when depth = 1).
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Figure A.6. Our progress estimation for pointer analysis (when depth = 1).
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Figure A.7. Progress estimation for octagon analysis.
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where we set the parameter depth as 1 by default. That is, the pre-analysis is
flow-sensitive only for flow cycle headers and their immediate preceding points.

All our experiments were performed on a machine with a 3.07 GHz Intel Core
i7 processor and 24 GB of memory. For statistical estimation of the final height,
we used the scikit-learn machine learning library [15].

5.2 Results

We tested our progress estimation techniques on 8 GNU software packages for
each of analyses. Table 2 and 3 show our results.

Table 2. Progress estimation results (interval analysis). LOC shows the lines of code
before pre-processing. Main reports the main analysis time. Pre reports the time spent
by our pre-analysis. Linearity indicates the quality of progress estimation (best : 1).
Height-Approx. denotes the precision of our height approximation (best : 1). Err
denotes mean of absolute difference between Height-Approx. and 1 (best : 0).

Time(s) Height-
Program LOC Main Pre Linearity Overhead Approx.
bison-1.875 38841 3.66 0.91 0.73 24.86% 1.03
screen-4.0.2 44745 40.04 2.37 0.86 5.92% 0.96
lighttpd-1.4.25 56518 27.30 1.21 0.89 4.43% 0.92
a2ps-4.14 64590 32.05 11.26 0.51 35.13% 1.06
gnu-cobol-1.1 67404 413.54 99.33 0.54 24.02% 0.91
gnugo 87575 1541.35 7.35 0.89 0.48% 1.12
bash-2.05 102406 16.55 2.26 0.80 13.66% 0.93
sendmail-8.14.6 136146 1348.97 5.81 0.69 0.43% 0.93
TOTAL 686380 3423.46 130.5 0.74 3.81% Err : 0.07

Table 3. Progress estimation results (pointer analysis).

Time(s) Height-
Program LOC Main Pre Linearity Overhead Approx.
screen-4.0.2 44745 15.89 1.56 0.90 9.82% 0.98
lighttpd 56518 11.54 0.87 0.76 7.54% 1.03
a2ps-4.14 64590 10.06 3.48 0.65 34.59% 1.04
gnu-cobol-1.1 67404 32.27 12.22 0.91 37.87% 1.03
gnugo 87575 217.77 3.88 0.64 1.78% 0.97
bash-2.05 102406 3.68 0.78 0.56 21.20% 1.04
proftpd-1.3.2 126996 74.64 11.14 0.82 14.92% 1.03
sendmail-8.14.6 136146 145.62 3.15 0.58 2.16% 0.98
TOTAL 686380 511.47 37.08 0.73 7.25% Err : 0.03

The Linearity column in Table 2, and 3 quantifies the “linearity”, which we
define as follows:

1−
∑

1≤i≤n(
i
n − P̄ !

i )
2

∑
1≤i≤n(

i
n −

n+1
2n )2
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Time(s)
Program LOC Main Pre Linearity Overhead
httptunnel-3.3 6174 49.5 8.2 0.91 16.6%
combine-0.3.3 11472 478.2 16 0.89 3.4%
bc-1.06 14288 63.9 43.8 0.96 68.6%
tar-1.17 18336 977.0 73.1 0.82 7.5%
parser 18923 190.1 104.8 0.97 55.1%
wget-1.9 35018 3895.36 1823.15 0.92 46.8%
TOTAL 69193 5654.0 2069.49 0.91 36.6%

Even though we completely reused the pre-analysis design and height function for
the interval analysis, the resulting progress bars are almost linear. This prelimi-
nary results suggest that our method could be applicable to relational analyses.

7 Conclusion

We have proposed a technique for estimating static analysis progress. Our tech-
nique is based on the observation that semantically related analyses would have
similar progress behaviors, so that the progress of the main analysis can be esti-
mated by a pre-analysis. We implemented our technique on top of a realistic C
static analyzer and show our technique effectively estimates its progress.
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Fig. 4. Our method is also applicable to octagon domain–based static analyses.

We have implemented a prototype progress estimator for the octagon analysis as follows. For
pre-analysis, we used the same partial flow-sensitive abstraction described in Section 4.2 with
depth = 1. Regarding the height function H, we also used that of the interval analysis. Note
that, since an octagon domain element is a collection of intervals denoting ranges of program
variables such as x and y, their sum x+y, and their di↵erence x�y, we can use the same height
function in Example 3. In this prototype implementation, we assumed that we are given heights
of the final analysis results.

Figure 4 shows that our technique e↵ectively normalizes the height progress of the octagon
analysis. The solid lines in Figure 4(a) depicts the height progress of the main octagon analysis
of program wget-1.9 and the dotted line shows that of the pre-analysis. By normalizing the
main analysis’ progress behavior, we obtain the progress bar depicted in Figure 4(b), which is
almost linear.

Figure 5 depicts the resulting progress bar for other benchmark programs, and the following
table reports detailed experimental results.

Time(s)
Program LOC Main Pre Linearity Overhead
httptunnel-3.3 6174 49.5 8.2 0.91 16.6%
combine-0.3.3 11472 478.2 16 0.89 3.4%
bc-1.06 14288 63.9 43.8 0.96 68.6%
tar-1.17 18336 977.0 73.1 0.82 7.5%
parser 18923 190.1 104.8 0.97 55.1%
wget-1.9 35018 3895.36 1823.15 0.92 46.8%
TOTAL 69193 5654.0 2069.49 0.91 36.6%

Even though we completely reused the pre-analysis design and height function for the interval
analysis, the resulting progress bars are almost linear. This preliminary results suggest that our
method could be applicable to relational analyses.

7 Conclusion

We have proposed a technique for estimating static analysis progress. Our technique is based
on the observation that semantically related analyses would have similar progress behaviors, so
that the progress of the main analysis can be estimated by a pre-analysis. We implemented our
technique on top of an industrial-strength static analyzer and show our technique e↵ectively
estimates its progress.

wget-1.9 (octagon analysis)
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Figure 1. The height progress of a main analysis can be normalized using a pre-analysis. In this program (sendmail-8.14.6), the pre-analysis
takes only 6.6% of the main analysis time.

height is initially zero. 2) H is monotone. The second condition is for building a progress bar that monotonically
increases as the analysis makes progress.

The first job in our progress estimation is to approximate the height of the final analysis result. Let Hfinal be the
height of the final analysis result, i.e., Hfinal = H(

F
i2N Fi(?)). In Section 4.3, we describe a method for precisely

estimating Hfinal with the aid of statistical regression. This height estimation method is orthogonal to the rest part of
our progress estimation technique. In this overview, let H]final be the estimated final height and assume, for simplicity,

that H]final = Hfinal.

A Naive Approach. Given H and H]final, a simple progress bar could be developed as follows. At each iteration i, we
first compute the height of the current analysis result:

Hi = H(Fi(?)).

Then, we show to the users the following height progress of the analysis :

Pi =
Hi

H]final

Note that we can use Pi as a progress estimation: Pi is initially 0, monotonically increases as the analysis makes
progress, and has 1 when the analysis is completed.

Problem of the Naive Approach. We noticed that this simple method for progress estimation is, however, unsatisfac-
tory in practice. The main problem is that the height progress does not necessarily indicate the amount of computation
that has been completed. We depict the problem with the following example.

Example 1 (Liveness analysis). Suppose we do analysis which figures out live variables(variables of which value
just before at a particular program point will be used in the future) at each program point. Suppose we wil use
CFG(control flow graph)’s in which nodes represent program statements. We will get In : Node ! 2Variable which
denotes set of live variables at each program point. We can calculate a fixpoint using the following equation:

In[n] = use[n] [ (
[

s2succ(n)

in(s) � de f (n))

where use, de f , and succ returns used, defined variables and successor nodes of a given node respectively. Fig. 1
demonstrates a CFG.
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as follows.
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pre-analysis design we used. Next, we run this pre-analysis, computing the following sequence
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where H]
i = H(�(F ]i(?]))). The second component i

m of each pair represents the actual progress
of the pre-analysis at the ith iteration, and the first represents the corresponding height progress.
Generalizing the data (using techniques such as interpolation or regression), we obtain a nor-
malization function normalize] : [0, 1]! [0, 1] for the pre-analysis.

Surprisingly, the normalization function normalize] for such a pre-analysis is closely related
with the normalization function normalize for the main analysis. For instance, the dotted curve
in Figure 1(a) shows the height progress of our pre-analysis (defined in Section 4.2), which has
a clear resemblance with the height progress (the solid line) of the main analysis. Thanks to
this similarity, it is acceptable in practice to use the normalization function normalize] for the
pre-analysis instead of normalize in our progress estimation. Thus, we revise (2) as follows:

P̄ ]
i = normalize]

� Hi

Hfinal

�
(3)

That is, at each iteration i of the main analysis, we show the estimated normalized progress P̄ ]
i to

the users. Figure 1(b) depicts P̄ ]
i for sendmail-8.14.5 (on the assumption that H]

final = Hfinal ).
Note that, unlike the original progress bar (the solid line in Figure 1(a)), the normalized progress
bar progresses at an almost linear rate.

3 Setting

In this section, we define a class of static analyses on top of which we develop our progress
estimation technique. For presentation brevity, we consider non-relational analyses (in particular,
analyses with the interval domain).

However, our overall approach to progress estimation is also applicable to relational analyses.
In Section 6, we discuss the application to a relational analysis with the octagon domain.
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of c. Each program point is associated with a command: cmd(c) denotes the command associated
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Our goal is to compute H]final such that |H]final � Hfinal| is as smaller as possible, for which we use the pre-analysis
and a statistical method. First, we compute Hpre, the final height of the pre-analysis result, i.e.,

Hpre = H(�(lfpF]))

Next, we statistically refine Hpre into H]final such that |H]final � Hfinal| is likely smaller than |Hpre � Hfinal|. The job of the

statistical method is to predict ↵ = Hfinal

Hpre
(0  ↵  1) for a given program. With ↵, H]final is defined as follows:

H]final = ↵ · Hpre

We assume that ↵ is defined as a linear combination of a set of program features in Table 1. We used eight
syntactic features and six semantic features. The features are selected among over 30 features by feature selection
for the purpose of removing redundant or irrelevant ones for better accuracy. We used L1 based recursive feature
elimination to find optimal subset of features using 254 benchmark programs.

The feature values are normalized to real numbers between 0 and 1. The Post-fixpoint features are about the post-
fixpoint property. Since the pre-analysis result is a post fixpoint of the semantic function F, i.e., �(lfpF]) 2 {x 2 D |
x w F(x)}, we can refine the result by iteratively applying F to the pre-analysis result. Instead of doing refinement,
we designed simple indicators that show possibility of the refinement to avoid extra cost. For every traning example,
a feature vector is created with a negligible overhead.

We used the ridge linear regression as the learning algorithm. The ridge linear regression algorithm is known as a
quick and e↵ective technique for numerical prediction.

Table 1. The feature vector used by linear regression to construct prediction models
Category Feature

# function calls in the program
Inter-procedural # functions in recursive call cycles

(syntactic) # undefined library function calls
the maximum loop size
the average loop sizes

Loop-related the standard deviation of loop sizes
(syntactic) the standard deviation of depths of loops

# loopheads
Numerical analysis # bounded intervals in the pre-analysis result

(semantic) # unbounded intervals in the pre-analysis result
Pointer analysis # points-to sets of cardinality over 4 in the pre-analysis result

(semantic) # points-to sets of cardinality under 4 in the pre-analysis result
Post-fixpoint # program points where applying the transfer function once
(semantic) improves the precision

height decrease when transfer function is applied once
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flow cycles. For instance, when the analysis uses widening, significant changes in abstract states
occur at flow cycle headers. Thus, it is reasonable to pay particular attention to height increases
occurred at widening points (W). To control the level of flow-sensitivity, we also distinguish
some preceding points of widening points.

Formally, the set of distinguished program points is defined as follows. Suppose that a pa-
rameter depth is given, which indicates how many preceding points of flow cycle headers are
separated in our pre-analysis. Then, we decide to distinguish the following set � ✓ C of program
points:

� = {c 2 C | w 2W ^ c ,!depth w}

where c ,!i c0 means that c0 is reachable from c within i steps of ,!.
We define the pre-analysis that is flow-sensitive only for � as a special instance of the trace

partitioning [15]. The set of partitioning indicies � is defined by � = �[{•}, where • represents
all the other program points not included in �. That is, we use the following partitioning function
� : C! �:

�(c) =

⇢
c c 2 �
• c 62 �

With �, we define the abstract domain (D]) and semantic function (F ]) of the pre-analysis as
follows:

C! S ���! ���↵
�

�! S

where
�(X) = �c. X(�(c)).

The semantic function F ] : (�! S)! (�! S) is defined as,

F ](X) = �i 2 �. (
G

c2��1(i)

fc(
G

c0,!c

X(�(c0))) (6)

where ��1(i) = {c 2 C | �(c) = i}.
Note that, in our pre-analysis, we can control the granularity of flow-sensitivity by adjusting

the parameter depth 2 [0,1]. A larger depth value yields a more precise pre-analysis. In our
experiments (Section 5), we use 1 for the default value of depth and show that how the progress
estimation quality improves with higher depth values.

It is easy to check that our pre-analysis is sound with respect to the main analysis regardless
of parameter depth:

Lemma 1 (Pre-analysis Soundness). lfpF̂ v �(lfpF ]).

4.3 Precise Estimation of the Final Height

The last component in our approach is to estimate Hfinal , the height value of the final analysis
result.

Basically, we estimate Hfinal by the height of the final analysis result of our pre-analysis

designed in the previous subsection. We write H]
final for the estimated final height:

H]
final = H(�(lfpF ])).

Because of the soundness of the pre-analysis and monotonicity of H, H]
final over-approximates

Hfinal :

Hfinal = H(lfpF )  H(�(lfpF ])) = H]
final
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조정할 수 있는 매개변수. 클수록 
본분석에 가까워짐

3.2 Static Analysis

We consider a class of static analyses whose abstract domain maps program points to abstract
states:

D = C ! S
where the abstract state is a map from abstract locations to abstract values:

S = L ! V

We assume that the set of abstract locations is finite and V is a complete lattice. The abstract
semantics of the program is characterized by the least fixpoint of abstract semantic function
F 2 (C ! S) ! (C ! S) defined as,

F (X) = �c 2 C.fc(
G

c0,!c

X(c0)) (4)

where fc 2 S ! S is the transfer function for control point c.

Example 1 (Interval Analysis). A typical example of non-relational analyses is the interval anal-
ysis. Consider the following simple imperative language.

x := e | assume(x < n) where e ! n | x | e + e

All basic commands are assignments or assume commands. An expression may be a constant
integer (n), a binary operation (e + e), a variable expression (x). Let Var be the set of all
program variables. We define the abstract state as a map from program variables to the lattice
of intervals:

L = Var
V = {[l, u] | l, u 2 Z [ {�1,+1} ^ l  u} [ {?}

The transfer function fc : S ! S is defines as follows:

fc(s) =

⇢
s[x 7! V(e)(s)] cmd(c) = x := e
s[x 7! s(x) u [�1, n� 1])] cmd(c) = assume(x < n)

where auxiliary function V(e)(s) computes the abstract value for e under s:

V(e) 2 S ! V
V(n)(s) = [n, n]

V(e1 + e2)(s) = V(e1)(s)� V(e2)(s)
V(x)(s) = s(x)

where � denotes the abstract binary operator for the interval domain.
⇤

3.3 Fixpoint Computation with Widening

When the domain of abstract values (V) has infinite height, we need a widening operator
`

:
V⇥V ! V to approximate the least fixpoint of F . In practice, the widening operator is applied
at only headers of flow cycles [3]. Let W ✓ C be the set of widening points (all loop headers in
the program) in the program.

Example 2 (Widening Operator for Intervals). We use the following widening operator in our
interval analysis:

[l, u]
`
[l0, u0] = [if (l0 < l) then �1 else l, if (u0 > u) then +1 else u].

⇤

• 요약 의미 함수 
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